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Abstract
We present PHORHUM, a novel, end-to-end trainable,

deep neural network methodology for photorealistic 3D hu-
man reconstruction given just a monocular RGB image.
Our pixel-aligned method estimates detailed 3D geometry
and, for the first time, the unshaded surface color together
with the scene illumination. Observing that 3D supervision
alone is not sufficient for high fidelity color reconstruction,
we introduce patch-based rendering losses that enable reli-
able color reconstruction on visible parts of the human, and
detailed and plausible color estimation for the non-visible
parts. Moreover, our method specifically addresses method-
ological and practical limitations of prior work in terms of
representing geometry, albedo, and illumination effects, in
an end-to-end model where factors can be effectively dis-
entangled. In extensive experiments, we demonstrate the
versatility and robustness of our approach. Our state-of-
the-art results validate the method qualitatively and for dif-
ferent metrics, for both geometric and color reconstruction.

1. Introduction
We present PHORHUM, a method to photorealistically

reconstruct the 3D geometry and appearance of a dressed
person as photographed in a single RGB image. The pro-
duced 3D scan of the subject not only accurately resem-
bles the visible body parts but also includes plausible ge-
ometry and appearance of the non-visible parts, see fig. 1.
3D scans of people wearing clothing have many use cases
and demand is currently rising. Applications like immer-
sive AR and VR, games, telepresence, virtual try-on, free-
viewpoint photo-realistic visualization, or creative image
editing would all benefit from accurate 3D people models.
The classical way to obtain models of people is to automat-
ically scan using multi-camera set-ups, manual creation by
an artist, or a combination of both as often artists are em-
ployed to ‘clean up’ scanning artifacts. Such approaches are
difficult to scale, hence we aim for alternative, automatic
solutions that would be cheaper and easier to deploy.

Prior to us, many researchers have focused on the prob-
lem of human digitization from a single image [6,16,17,19,

Figure 1. Given a single image, we reconstruct the full 3D geom-
etry – including self-occluded (or unseen) regions – of the pho-
tographed person, together with albedo and shaded surface color.
Our end-to-end trainable pipeline requires no image matting and
reconstructs all outputs in a single step.

36, 37, 42]. While these methods sometimes produce aston-
ishingly good results, they have several shortcomings. First,
the techniques often produce appearance estimates where
shading effects are baked-in, and some methods do not pro-
duce color information at all. This limits the usefulness of
the resulting scans as they cannot be realistically placed into
a virtual scene. Moreover, many methods rely on multi-step
pipelines that first compute some intermediate representa-
tion, or perceptually refine the geometry using estimated
normal maps. While the former is at the same time imprac-
tical (since compute and memory requirements grow), and
potentially sub-optimal (as often the entire system cannot
be trained end-to-end to remove bias), the latter may not
be useful for certain applications where the true geometry
is needed, as in the case of body measurements for virtual
try-on or fitness assessment, among others. In most exist-
ing methods color is exclusively estimated as a secondary
step. However, from a methodological point of view, we
argue that geometry and surface color should be computed
simultaneously, since shading is a strong cue for surface ge-
ometry [18] and cannot be disentangled.

Our PHORHUM model specifically aims to address the
above-mentioned state of the art shortcomings, as sum-
marised in table 1. In contrast to prior work, we present
an end-to-end solution that predicts geometry and appear-
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✗ ✗ ✓ ✗ ✗ ✓ ✗ PIFu [36]
✗ ✗ ✗ ✗ ✗ ✓ ✓ PIFuHD [37]
✗ ✗ ✗ ✗ ✗ ✓ ✗ Geo-PIFu [16]
✗ ✗ ✓ ✗ ✗ ✗ ✗ Arch [19]
✗ ✗ ✓ ✗ ✗ ✗ ✗ Arch++ [17]
✓ ✓ ✓ ✓ ✓ ✓ ✓ PHORHUM (ours)

Table 1. Overview of the properties of single image 3D human
reconstruction methods. Our method is the only one predicting
albedo surface color and shading. Further, our method has the
most practical training set-up, does not require image matting at
test-time, and returns signed distances rather than binary occu-
pancy – a more informative representation.

ance as a result of processing in a single composite net-
work, with inter-dependent parameters, which are jointly
estimated during a deep learning process. The appearance
is modeled as albedo surface color without scene specific il-
lumination effects. Furthermore, our system also estimates
the scene illumination which makes it possible, in princi-
ple, to disentangle shading and surface color. The predicted
scene illumination can be used to re-shade the estimated
scans, to realistically place another person in an existing
scene, or to realistically composite them into a photograph.
Finally, we found that supervising the reconstruction using
only sparse 3D information leads to perceptually unsatisfac-
tory results. To this end, we introduce rendering losses that
increase the perceptual quality of the predicted appearance.
Our contributions can be summarised as follows:

- We present an end-to-end trainable system for high
quality human digitization

- Our method computes, for the first time, albedo and
shading information

- Our rendering losses significantly improve the visual
fidelity of the results

- Our results are more accurate and feature more detail
than current state-of-the-art

2. Related Work
Reconstructing the 3D shape of a human from a single

image or a monocular video is a wide field of research. Of-
ten 3D shape is a byproduct of 3D human pose reconstruc-
tion and is represented trough parameters of a statistical hu-
man body model [26,44]. In this review, we focus on meth-
ods that go beyond and reconstruct the 3D human shape
as well as garments or hairstyle. Early pioneering work is
optimization-based. Those methods use videos of moving
subjects and integrate information over time in order to re-
construct the complete 3D shape [5, 9]. The advent of deep

learning questioned the need for video. First, hybrid recon-
struction methods based on a small number of images have
been presented [4, 8]. Shortly after, approaches emerged to
predict 3D human geometry from a single image. Those
methods can be categorized by the used shape representa-
tion: voxel-based techniques [20, 42, 50] predict whether a
given segment in space is occupied by the 3D shape. A
common limitation is the high memory requirement result-
ing in shape estimates of limited spatial resolution. To this
end, researchers quickly adopted alternative representations
including visual hulls [31], moulded front and back depth
maps [14, 39], or augmented template meshes [6]. Another
class of popular representations consists of implicit function
networks (IFNs). IFNs are functions over points in space
and return either whether a point is inside or outside the
predicted shape [11, 27] or return its distance to the clos-
est surface [32]. Recently IFNs have been used for vari-
ous 3D human reconstruction tasks [12, 13, 15, 30] and to
build implicit statistical human body models [7, 28]. Neu-
ral radiance fields [29] are a related class of representations
specialized for image synthesis that have also been used to
model humans [25, 33, 43]. Saito et al. were the first to
use IFNs for monocular 3D human reconstruction. They
proposed an implicit function conditioned on pixel-aligned
features [36, 37]. Other researchers quickly adopted this
methodology for various use-cases [16, 24, 45, 49]. ARCH
[19] and ARCH++ [17] also use pixel-aligned features but
transform information into a canonical space of a statistical
body model. This process results in animatable reconstruc-
tions, which comes, however, at the cost of artifacts that
we will show. In this work, we also employ pixel-aligned
features but go beyond the mentioned methods in terms of
reconstructed surface properties (albedo and shading) and
in terms of the quality of the 3D geometry. Also related is
H3D-Net [35], a method for 3D head reconstruction, which
uses similar rendering losses as we do, but requires three
images and test-time optimization. In contrast, we work
with a monocular image, purely feed-forward.

3. Method
Our goal is to estimate the 3D geometry S of a subject as

observed in a single image I. Further, we estimate the un-
shaded albedo surface color and a per-image lighting model.
S is defined as the zero-level-set of the signed distance func-
tion (SDF) f represented using a neural network,

Sθ(I) =
{
x ∈ R3 | f

(
g(I,x;θ), γ(x);θ

)
= (0,a)

}
(1)

where θ is the superset of all learnable parameters. The
surface S is parameterized by pixel aligned features z (cf .
[36]) computed from the input image I using the feature
extractor network G

g(I,x;θ) = b(G(I;θ), π(x)) = zx, (2)
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Figure 2. Overview of our method. The feature extractor network G produces pixel-aligned features zx from an input image I for all points
in space x. The implicit signed distance function network f computes the distance d to the closest surface given a point and its feature.
Additionally f returns albedo colors a defined for surface points. The shading network s predicts the shading for surface points given its
surface normal nx, as well as illumination l. On the right we show the reconstruction of geometry and albedo colors, and the shaded 3D
geometry.

where b defines pixel access with bilinear interpolation and
π(x) defines the pixel location of the point x projected us-
ing camera π. f returns the signed distance d of the point x
w.r.t. S and additionally its albedo color a

f(zx, γ(x);θ) = (d,a), (3)

where γ denotes basic positional encoding as defined in
[40]. In the sequel, we will use dx for the estimated dis-
tance at x and ax for the color component, respectively.

To teach the model to decouple shading and surface
color, we additionally estimate the surface shading using
a per-point surface shading network

s(nx, l;θ) = sx, (4)

where nx = ∇xdx is the estimated surface normal defined
by the gradient of the estimated distance w.r.t. x. l(I;θ) =
l is the illumination model estimated from the image. In
practice, we use the bottleneck of G for l and further reduce
its dimensionality. The final shaded color is then c = s ◦
a with ◦ denoting element-wise multiplication. We now
define the losses we use to train f , G, and s.

3.1. Losses

We create training examples by rendering scans of hu-
mans and drawing samples from the raw meshes – please
see §3.2 for details. We define losses based on sparse 3D su-
pervision and losses informed by ray-traced image patches.
Geometry and Color Losses. Given a ground truth mesh
M describing the surface S as observed in an image I and
weights λ∗ we define losses as follows. The surface is su-
pervised via samples O taken from the mesh surface M
and enforcing their distance to return zero and the distance
gradient to follow their corresponding ground truth surface
normal n̄

Lg =
1

|O|
∑
i∈O

λg1 |dxi
|+ λg2∥nxi

− n̄i∥. (5)

Moreover, we supervise the sign of additional samples F
taken around the surface

Ll =
1

|F|
∑
i∈F

BCE
(
li, ϕ(kdxi)

)
, (6)

where l are inside/outside labels, ϕ is the sigmoid func-
tion, and BCE is the binary cross-entropy. k determines the
sharpness of the decision boundary and is learnable. Fol-
lowing [15], we apply geometric regularization such that f
approximates a SDF with gradient norm 1 everywhere

Le =
1

|F|
∑
i∈F

(∥nxi∥ − 1)2. (7)

Finally, we supervise the albedo color with the ‘ground
truth’ albedo ā calculated from the mesh texture

La = λa1

1

|O|
∑
i∈O

|axi − āi|+λa2

1

|F|
∑
i∈F

|axi − āi|. (8)

Following [36], we apply La not only on but also near the
surface. Since albedo is only defined on the surface, we
approximate the albedo for points near the surface with the
albedo of their nearest neighbor on the surface.
Rendering losses. The defined losses are sufficient to train
our networks. However, as we show in the sequel, 2D
rendering losses help further constrain the problem and in-
crease the visual fidelity of the results. To this end, during
training, we render random image patches of the surface S
with random strides and fixed size using ray-tracing. First,
we compute the rays R corresponding to a patch as defined
by π. We then trace the surface using two strategies. First,
to determine if we can locate a surface along a ray, we query
f in equal distances along every ray r and compute the sign
of the minimum distance value

σr = ϕ
(
kmin

t≥0
do+tr

)
, (9)

where o is the camera location. We then take the subset
RS ⊂ R of the rays containing rays where σ ≤ 0.5 and
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l = 0, i.e. we select the rays which located a surface where
a surface is expected. Hereby, the inside/outside labels l
are computed from pixel values of the image segmentation
mask M corresponding to the rays. For the subset RS ,
we exactly locate the surface using sphere tracing. Follow-
ing [46], we make the intersection point x̂ at iteration t dif-
ferentiable w.r.t. to the network parameters without having
to store the gradients of sphere tracing

x̂ = x̂t − r

nt · r
dx̂t . (10)

In practice, we trace the surface both from the camera into
the scene and from infinity back to the camera. This means,
we locate both the front surface and the back surface. We
denote the intersection points x̂f for the front side and x̂b

for the back side, respectively. Using the above defined ray
set RS and intersection points x̂, we enforce correct surface
colors through

Lr =
1

|RS |
∑
i∈RS

|ax̂f
i
− āf

i |+ |ax̂b
i
− āb

i |, (11)

where ground truth albedo colors ā are taken from synthe-
sized unshaded images Af and Ab. The back image Ab de-
picts the backside of the subject and is created by inverting
the Z-buffer during rendering. We explain this process in
more detail in §3.2. Additionally, we also define a VGG-
loss [10] LVGG over the rendered front and back surface
patches, enforcing that structure is similar to the unshaded
ground-truth images. Finally, we supervise the shading us-
ing

Lc =
1

|RS |
∑
i∈RS

|ax̂f
i
◦ sx̂i

− pi|, (12)

with p being the pixel color in the image I corresponding to
the ray r. We found it also useful to supervise the shading
on all pixels of the image I = {p0, . . . ,pN} using ground
truth normals n̄ and albedo ā

Ls =
1

N

∑
i∈I

|āf
i ◦ s(n̄i, l;θ)− pi|. (13)

The final loss is a weighted combination of all previously
defined losses L∗. In §4.3, we ablate the usage of the ren-
dering losses and the shading estimation network.

3.2. Dataset

We train our networks using pairs of meshes and ren-
dered images. The meshes are scans of real people from
commercial websites [3] and our own captured data. We
employ high dynamic range images (HDRI) [2] for realis-
tic image-based lighting and as backgrounds. Additionally
to the shaded images, we also produce an alpha mask and
unshaded albedo images. In the absence of the true sur-
face albedo, we use the textures from the scans. Those are

Figure 3. A sample from our dataset. From left to right: rendered,
shaded image on HDRI background; front and back albedo im-
ages; normal and an alpha map, and 3D mesh used for sampling.

uniformly lit but may contain small and local shading ef-
fects, e.g. from small wrinkles. As mentioned earlier, we
produce not only a front side albedo image, but also one
showing the back side. We obtain this image by inverting
the Z-buffer during rendering. This means, not that the first
visible point along each camera ray is visible, but the last
passed surface point. See fig. 3 for an example of our train-
ing images. Furthermore, we produce normal maps used
for evaluation and to supervise shading. Finally, we take
samples by computing 3D points on and near the mesh sur-
face and additionally sample uniformly in the bounding box
of the whole dataset. For on-surface samples, we compute
their corresponding albedo colors and surface normals, and
for near and uniform samples we compute inside/outside la-
bels by casting randomized rays and checking for parity.

We use 217 scans of people in different standing poses,
wearing various outfits, and sometimes carrying bags or
holding small objects. The scans sources allow for different
augmentations: we augment the outfit colors for 100 scans
and repose 38 scans. In total we produce a dataset contain-
ing ≈ 190K images, where each image depicts a scan ren-
dered with a randomly selected HDRI backdrop and with
randomized scan placement. Across the 217 scans some
share the same identity. We strictly split test and train iden-
tities and create a test-set containing 20 subjects, each ren-
dered under 5 different light conditions.

3.3. Implementation Details

We now present our implementation and training proce-
dure. Our networks are trained with images of 512× 512px
resolution. During training we render 32 × 32px patches
with stride ranging from zero to three. We discard patches
that only include background. Per training example we
draw random samples for supervision from the surface and
the space region around it. Concretely, we draw each 512
samples from the surface, near the surface and uniformly
distributed over the surrounding space. The samples are
projected onto the feature map using a projective camera
with fixed focal length.

The feature extractor G is a U-Net with 13 encoder-
decoder layers and skip connections. The first layer con-
tains 64 filters and the filter size is doubled in the encoder
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in each layer up to 512 at the maximum. The decoder halves
the filter size at the 11th layer, which effectively means that
G produces features in R256. We use Leaky ReLU activa-
tions and blur-pooling [48] for the encoder and bilinear re-
sizing for the decoder, respectively. The geometry network
f is a MLP with eight 512-dimensional fully-connected lay-
ers with Swish activation [34], an output layer with Sigmoid
activation for the color component, and a skip connection
to the middle layer. The shading network s is conditioned
on a 16-dimensional illumination code and consists of three
256-dimensional fully-connected layers with Swish activa-
tion and an output layer with ReLU activation. Our total
pipeline is relatively small and has only 48.8M trainable
parameters. We train all network components jointly, end-
to-end, for 500k iterations using the Adam optimizer [21],
with learning-rate of 1×10−4, linearly decaying with a fac-
tor of 0.9 over 50k steps. Please refer to our supplementary
material for a list of our loss weights λ∗.

4. Experiments
We present quantitative evaluation results and ablation

studies for geometric and color reconstruction on our own
dataset. We also show qualitative results for real images.

Inference. At inference time, we take as input an RGB
image of a person in a scene. Note that we do not require
the foreground-background mask of the person. However,
in practice we use a bounding box person detector to center
the person and crop the image – a step that can also be per-
formed manually. We use Marching Cubes [23] to generate
our reconstructions by querying points in a 3D bounding
box at a maximum resolution of 5123. We first approximate
the bounding box of the surface by probing at coarse resolu-
tion and use Octree sampling to progressively increase the
resolution as we get closer to the surface. This allows for
very detailed reconstructions of the surface geometry with a
small computational overhead, being made possible by the
use of signed distance functions in our formulation.

Camera Model. Different from other methods in the lit-
erature, we deviate from the standard orthographic camera
model and instead use perspective projection, due to its gen-
eral validity. A model assuming an orthographic camera
would in practice produce incorrect 3D geometry. In fig. 5
one can see the common types of errors for such models.
The reconstructed heads are unnaturally large, as they ex-
tend in depth away from the camera. In contrast, our re-
constructions are more natural, with correct proportions be-
tween the head and the rest of the body.

Competing Methods. We compare against other single-
view 3D reconstructions methods that leverage pixel-
aligned image features. PIFu [36] is the pioneering work
and learns an occupancy field. PIFuHD [37], a very
parameter-heavy model, builds upon PIFu with higher res-

Front side Back side Mean
2.68 2.15 2.42 PIFu [36]
2.51 2.04 2.28 ARCH [19]
2.68 2.26 2.47 ARCH++ [17]
2.88 2.43 2.65 PHORHUM (Ours)

Table 2. Inception Score of renderings of the front and back side
of the 3D reconstructions. Our method produces the most natural
surface colors for both the front and the unseen back.

olution inputs and leverages a multi-level architecture for
coarse and fine grained reconstruction. It also uses of-
fline estimated front and back normal maps as additional
input. GeoPIFu [16] is also a multi-level architecture, but
utilizes latent voxel features as a coarse human shape proxy.
ARCH [19] and ARCH++ [17] transform information into
the canonical space of a statistical body model. This sac-
rifices some of the reconstruction quality for the ability
to produce animation-ready avatars. For PIFu, ARCH,
ARCH++, an off-the-shelf detector [22] is used to seg-
ment the person in the image, whereas PHORHUM (us)
and PIFuHD use the raw image. The results of ARCH and
ARCH++ have been kindly provided by the authors.

Due to the lack of a standard dataset and the non-
availability of training scripts of most methods, all meth-
ods have been trained with similar but different datasets.
All datasets are sufficiently large to enable generalization
across various outfits, body shapes, and poses. Please note
that our dataset is by far the smallest with only 217 scans.
All other methods use > 400 scans.

4.1. Reconstruction Accuracy

To evaluate the geometric reconstruction quality, we re-
port several metrics, namely: bi-directional Chamfer dis-
tance (Ch. ↓), Normal Consistency (NC ↑), and Volumetric
Intersection over Union (IoU ↑). To account for the inher-
ent ambiguity of monocular reconstruction w.r.t. scale, we
first use Iterative Closest Point to align the reconstructions
with the ground truth shapes. Additionally, we evaluate how
well the visible part of the person is reconstructed. This also
mitigates effects caused by camera model assumptions. We
render the reconstruction under the assumed camera model
and compare with the original image, the unshaded albedo
image, and the rendered normals. For image reconstruc-
tion metrics, we use peak signal-to-noise ratio (PSNR ↑),
structural similarity index (SSIM ↑) and learned perceptual
image patch similarity (LPIPS ↓). Finally, we use the Incep-
tion Score (IS ↑) [38] as a perceptual metric. This allows us
to also evaluate non-visible parts where no ground truth is
available, as in the case of the shaded backside view of a
person.

We report the introduced metrics in tables 2 and 3. Our
model produces the most natural surface colors for both the
visible front side and the non-visible back side. Further-

5



Ch. ↓ IoU ↑ NC ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑
3.21 0.61 0.77 0.71 0.17 17.69 0.83 0.16 24.57 – – – PIFu [36]
4.54 0.62 0.78 0.78 0.10 20.15 – – – – – – PIFuHD [37]
4.98 0.54 0.72 0.68 0.18 17.25 – – – – – – Geo-PIFu [16]
3.58 0.57 0.75 0.68 0.20 15.51 0.72 0.23 19.28 – – – ARCH [19]
3.48 0.59 0.77 0.70 0.17 16.24 0.83 0.17 22.69 – – – ARCH++ [17]
1.14 0.73 0.84 0.77 0.12 19.25 – – – 0.82 0.16 20.51 Ours w/o rendering
1.29 0.73 0.85 0.78 0.11 19.67 – – – 0.85 0.13 22.02 Ours w/o shading
1.29 0.73 0.85 0.78 0.11 19.60 0.85 0.13 24.01 0.85 0.12 22.23 PHORHUM (Ours)

Albedo RenderingShaded RenderingRendered Normals3D Metrics

Table 3. Numerical comparisons with other single-view 3D reconstructions methods and ablations of our method. We mark the best and
second best results. All Chamfer metrics are ×10−3.

more, our method produces the most accurate 3D recon-
structions and is the only one that computes the surface
albedo. Our results are on-par with those of PIFuHD in
terms of surface normal reconstruction. In contrast to our
method, PIFuHD specifically targets surface normals with a
dedicated image-translation network. ARCH and ARCH++
also specifically handle surface normals, but in contrast to
all other methods, only compute a normal map and do not
refine the true geometry. Note that we use normal mapping
(not true surface normals) for ARCH and ARCH++ in the
comparison and in all the following figures. For shaded ren-
dering of the front side, the original PIFu is numerically on
par with our method. However, the results are blurry, which
is evident in the lower Inception Score and LPIPS. PIFu and
all other competing methods do not decompose albedo and
shading, which means that they can simply project the orig-
inal image onto the reconstruction. Although our method
performs a harder task, our results are among the best, or
the best, across all metrics.

4.2. Qualitative Results

Quantitative evaluations do not always correlate well
with human perception. To this end, we show qualita-
tive results of our method and results of PIFu, ARCH, and
ARCH++ on real images in fig. 4, and a side-by-side com-
parison with PIFuHD in fig. 5.

In fig. 4, we show the 3D reconstructions with color-
mapped normals, and the colored reconstructions, both
front and back. For our method we render the albedo and
additionally show the shaded reconstruction in the last col-
umn. Our method reliably reconstructs facial detail, hair,
and clothing wrinkles. The albedo features small color
patterns visible in the input image and, at the same time,
does not contain strong shading effects. The reconstructed
non-visible back side is sharp, detailed, and matches our
expectations well. The clothing items are well separated
and small details like hair curls are present. ARCH and
ARCH++ encounter problems reconstructing the red dress
in line two, sometimes produce artifacts, and fail entirely for
the subject in line five. The observed problems are common
for methods that reconstruct relative to, or in the canonical

space, of a body model. In contrast, our method produces
complete, smooth, and detailed reconstructions.

PIFuHD does not compute surface color, thus we only
compare the geometry in fig. 5. We show our shaded re-
sults only for completeness. Consistent with the numerical
results, our results are on par in terms of level of detail.
However, our reconstructions are smoother and contain less
noise – a property of signed distance functions. Our model
is capable of producing these results by using a rather small
network capacity. In contrast PIFuHD is an extremely large
model that is specifically tailored for surface normal esti-
mation.

As mentioned before, our method is the only one that
jointly estimates both albedo and shading. Albedo is a use-
ful property in practice as it allows the usage of our recon-
structions in virtual environments with their own light com-
position. Additionally, as a byproduct of our shading esti-
mation, we can do image compositing [41, 47], one of the
most common photo editing tasks. One example is given
in fig. 7. We first computed the illumination l from a given
target image. We then reconstruct two subjects from studio
photographs and use l to re-shade them. This allows us to
compose a synthesized group picture with matching illumi-
nation for all people in the scene.

4.3. Ablations

We now ablate two main design choices of our method:
first, the rendering losses, and second, shading estimation.
In tab. 3, we report metrics for our method trained without
rendering losses (w/o rendering) and without shading esti-
mation (w/o shading). Furthermore, in fig. 6 we show visual
examples of results produced by our model variant trained
without rendering losses.

While only using 3D sparse supervision produces accu-
rate geometry, the albedo estimation quality is, however,
significantly decreased. As evident in fig. 6 and also nu-
merically in tab. 3, the estimated albedo contains unnatural
color gradient effects. We hypothesize that due to the sparse
supervision, where individual points are projected into the
feature map, the feature extractor network does not learn
to understand structural scene semantics. Here our patch-
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PIFu ARCH ARCH++ PHORHUM

Figure 4. Qualitative comparisons on real images with state-of-the-art methods that produce color. From left to right: Input image, PIFu,
ARCH, ARCH++, PHORHUM (ours), our shaded reconstruction. For each method we show the 3D geometry and the reconstructed color.
Our method produces by far the highest level of detail and the most realistic color estimate for the unseen back side.

based rendering losses help, as they provide gradients for
neighboring pixels. Moreover, our rendering losses could
better connect the zero-level-set of the signed distance func-
tion with the color field, as they supervise the color at the
current zero-level-set and not at the expected surface loca-
tion. We plan to structurally investigate these observations,
and leave these for future work.

Estimating the shading jointly with the 3D surface and
albedo does not impair the reconstruction accuracy. On the
contrary, as evident in tab. 3, this helps improve albedo re-
construction. This is in line with our hypothesis that shad-

ing estimation helps the networks to better decouple shad-
ing effects from albedo. Finally, shading estimating makes
our method a holistic reconstruction pipeline.

5. Discussion and Conclusions

Limitations. The limitations of our method are some-
times apparent when the clothing or pose of the person in
the input image deviates too much from our dataset distribu-
tion, see fig. 8. Loose, oversized, and non-Western clothing
items are not well covered by our training set. The backside
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Figure 5. Qualitative comparisons on real images with the state-of-the-art method PIFuHD. We show front and back geometry produced
by PIFuHD (left) and our results (right). Our reconstructions feature a similar level of detail but contain less noise and body poses
are reconstructed more reliably. Additionally, our method is able to produce albedo and shaded surface color – we show our shaded
reconstructions for reference.

Figure 6. Loss ablation: The usage of our rendering losses (right)
significantly improves albedo estimation. Note the unnatural color
gradients when using sparse 3D supervision only (left).

Figure 7. We can apply the estimated illumination from one image
to another, which allows us to create the group picture (right) by
inserting the reconstructions of the subjects (left) with matching
shaded surface.

of the person sometimes does not semantically match the
front side. A larger, more geographic and culturally diverse
dataset would alleviate these problems, as our method does
not make any assumptions about clothing style or pose.
Application Use Cases and Model Diversity. The con-
struction of our model is motivated by the breadth of trans-
formative, immersive 3D applications, that would become
possible, including clothing virtual apparel try-on, immer-
sive visualisation of photographs, personal AR and VR for
improved communication, special effects, human-computer

Figure 8. Failure cases. Wide clothing is under-represented in
our dataset and this can be addressed with more diverse training.
Complex poses can lead to missing body parts. The back-side
sometimes mismatches the front (subject is wearing a hood).

interaction or gaming, among others. Our models are
trained with a diverse and fair distribution, and as the size
of this set increases, we expect good practical performance.

Conclusions. We have presented a method to reconstruct
the three-dimensional (3D) geometry of a human wearing
clothing given a single photograph of that person. Our
method is the first one to compute the 3D geometry, surface
albedo, and shading, from a single image, jointly, as predic-
tion of a model trained end-to-end. Our method works well
for a wide variation of outfits and for diverse body shapes
and skin tones, and reconstructions capture most of the de-
tail present in the input image. We have shown that while
sparse 3D supervision works well for constraining the ge-
ometry, rendering losses are essential in order to reconstruct
perceptually accurate surface color. In the future, we would
like to further explore weakly supervised differentiable ren-
dering techniques, as they would support, long-term, the
construction of larger and more inclusive models, based on
diverse image datasets of people, where accurate 3D surface
ground truth is unlikely to be available.

8



Supplementary Material

In this supplementary material, we detail our implemen-
tation by listing the values of all hyper-parameters. Further,
we report inference times, demonstrate how we can repose
our reconstructions, conduct further comparisons, and show
additional results.

A. Implementation Details

In this section, we detail our used hyper-parameters
and provide timings for mesh reconstruction via Marching
Cubes [23].

A.1. Hyper-parameters

When training the network, we minimize a weighted
combination of all defined losses:

L = Lg + λeLe + λlLl + La + λrLr

+λcLc + λsLs + λVGGLVGG. (14)

Further, we have defined the weights λg1 , λg2 , λa1 , and λa2

inside the definitions of Lg and La. During all experiments,
we have used the following empirically determined config-
uration:
λe = 0.1, λl = 0.2, λr = 1.0, λc = 1.0, λs = 50.0,
λVGG = 1.0, λg2 = 1.0, λa1 = 0.5, λa2 = 0.3
Additionally we found it beneficial to linearly increase the
surface loss weight λg1 from 1.0 to 15.0 over the duration
of 100k interactions.

A.2. Inference timings

To create a mesh we run Marching Cubes over the dis-
tance field defined by f . We first approximate the bound-
ing box of the surface by probing at coarse resolution and
use Octree sampling to progressively increase the resolu-
tion as we get closer to the surface. This allows us to ex-
tract meshes with high resolution without large computa-
tional overhead. We query f in batches of 643 samples up
to the desired resolution. The reconstruction of a mesh in
a 2563 grid takes on average 1.21s using a single NVIDIA
Tesla V100. Reconstructing a very dense mesh in a 5123

grid takes on average 5.72s. Hereby, a single batch of 643

samples takes 142.1ms. In both cases, we query the features
once which takes 243ms. In practise, we also query f a sec-
ond time for color at the computed vertex positions which
takes 56.5ms for meshes in 2563 and 223.3ms for 5123, re-
spectively. Meshes computed in 2563 and 5123 grids con-
tain about 100k and 400k vertices, respectively. Note that
we can create meshes in arbitrary resolutions and our recon-
structions can be rendered through sphere tracing without
the need to generate an explicit mesh.

B. Additional Results

In the sequel, we show additional results and compar-
isons. First, we demonstrate how we can automatically rig
our reconstructions using a statistical body model. Then we
conduct further comparisons on the PeopleSnapshot Dataset
[1]. Finally, we show additional qualitative results.

B.1. Animating Reconstructions

In fig. 9, we show examples of rigged and animated
meshes created using our method. For rigging, we fit the
statistical body model GHUM [44] to the meshes. To this
end, we first triangulate joint detections produced by an off-
the-shelf 2D human keypoint detector on renderings of the
meshes. We then fit GHUM to the triangulated joints and
the mesh surface using ICP. Finally, we transfer the joints
and blend weights from GHUM to our meshes. We can
now animate our reconstructions using Mocap data or by
sampling GHUM’s latent pose space. By fist reconstruct-
ing a static shape that we then rig in a secondary step, we
avoid reconstruction errors of methods aiming for anima-
tion ready reconstruction in a single step [17, 19].

B.2. Comparisons on the PeopleSnapshot Dataset

We use the public PeopleSnapshot dataset [1, 5] for fur-
ther comparisons. The PeopleSnapshot dataset contains of
people rotating in front of the camera while holding an
A-pose. The dataset is openly available for research pur-
poses. For this comparison we use only the first frame of
each video. We compare once more with PIFuHD [37]
and additionally compare with the model-based approach
Tex2Shape [6]. Tex2Shape does not estimate the pose of
the observed subject but only its shape. The shape is rep-
resented as displacements to the surface of the SMPL body
model [26]. In fig. 10 we show the results of both methods
side-by-side with our method. Also in this comparison our
method produces the most realistic results and additionally
also reconstructs the surface color.

B.3. Qualitative Results

We show further qualitative results in fig. 11. Our meth-
ods performs well on a wide range of subjects, outfits, back-
grounds, and illumination conditions. Further, despite never
being trained on this type of data, our method performs
extremely well on image of people with solid white back-
ground. In fig. 12 we show a number of examples. This
essentially means, matting the image can be performed as a
pre-processing step to boost the performance of our method
in cases where the model has problems identifying fore-
ground regions.
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Figure 9. Examples of reconstructions rigged and animated in a post processing step. We show the input image
(left) and re-posed reconstructions (right). The reconstructions are rendered under a novel illumination.

Figure 10. Qualitative comparison on the PeopleSnapshot dataset [1]. From left to right: Input image, geometry
produced by Tex2Shape [6], PIFuHD [37], and PHORHUM (ours). We additionally show albedo reconstruc-
tions for our method.
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Figure 11. Qualitative results on real images featuring various outfits, backgrounds, and illumination conditions. From
left to right: Input image, 3D geometry (front and back), albedo reconstruction (front and back), and shaded surface.
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Figure 12. Despite never being trained on matted images, our method performs extremely well on images with white
background. From left to right: Input image, 3D geometry (front and back), albedo reconstruction (front and back),
and shaded surface.
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