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Abstract

We propose a novel approach aimed at object and se-
mantic scene completion from a partial scan represented as
a 3D point cloud. Our architecture relies on three novel lay-
ers that are used successively within an encoder-decoder
structure and specifically developed for the task at hand.
The first one carries out feature extraction by matching the
point features to a set of pre-trained local descriptors. Then,
to avoid losing individual descriptors as part of standard
operations such as max-pooling, we propose an alterna-
tive neighbor-pooling operation that relies on adopting the
feature vectors with the highest activations. Finally, up-
sampling in the decoder modifies our feature extraction in
order to increase the output dimension. While this model is
already able to achieve competitive results with the state of
the art, we further propose a way to increase the versatility
of our approach to process point clouds. To this aim, we in-
troduce a second model that assembles our layers within a
transformer architecture. We evaluate both architectures on
object and indoor scene completion tasks, achieving state-
of-the-art performance.

1. Introduction

Understanding the entire 3D space is essential for both
humans and machines to understand how to safely navigate
an environment or how to interact with the objects around
them. However, when we capture the 3D structure of an ob-
ject or scene from a certain viewpoint, a large portion of the
whole geometry is typically missing due to self-occlusion
and/or occlusion from its surrounding. To solve this prob-
lem, geometric completion of scenes [2, 27, 32] and ob-
jects [16, 20, 39, 44, 45] has emerged as a task that takes on
a 2.5D/3D observation and fills out the occluded regions, as
illustrated in Fig. 1.

There are multiple ways to represent 3D shapes. Point
cloud [3, 6], volumetric grid [8, 27], mesh [11] and implicit
surfaces [18, 21, 40] are among the most common data for-
mats. These representations are used for most 3D-related
computer vision tasks such as segmentation, classification
and completion. For what concerns geometric completion,
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Figure 1. From the input partial scan to our object completion, we
visualize the amount of detail in our reconstruction.

most works are focused on either point cloud or volumetric
data. Among them, the characteristic of having an explicitly
defined local neighbourhood makes volumetric data easier
to process with 3D convolutions [7, 41, 42]. One drawback
introduced by the predefined local neighborhood is the inac-
curacy due to the constant resolution of the voxels, meaning
that one voxel can represent several small structures.

On the other hand, point clouds have the advantage of not
limiting the local resolution, although they come with their
own sets of drawbacks. Mainly, there are two problems in
processing point clouds: the undefined local neighborhood
and unorganized feature map. Aiming at solving these is-
sues, PointNet++ [23], PMP-Net [35], PointConv [37] and
PointCNN [13] employ k-nearest neighbor search to de-
fine a local neighborhood, while PointNet [22] and Soft-
PoolNet [33] adopt the pooling operation to achieve per-
mutation invariant features. Notably, point cloud segmenta-
tion and classification were further improved by involving
k-nearest neighbor search to form local features in Point-
Net++ [23] compared to global features in PointNet [22].
Several variations of PointNet [22] also succeeded in im-
proving point cloud completion as demonstrated in Fold-
ingNet [43], PCN [45], MSN [16]. Other methods such as
SoftPoolNet [33] and GRNet [39] explicitly present local
neighbourhood in sorted feature map and voxel space, re-
spectively.

This paper investigates grouping local features to im-
prove the point cloud completion of objects and scenes.
We apply these operation in encoder-decoder architectures
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which iteratively uses a feature extraction operation with
the help of a set of displacement vectors as part of our para-
metric model. In addition, we also introduce a new pool-
ing mechanism called neighbor-pooling, aimed at down-
sampling the data in the encoder while, at the same time,
preserving individual feature descriptors. Finally, we pro-
pose a new loss function that gradually reconstructs the
target from the observable to the occluded regions. The
proposed approach is evaluated on both object completion
dataset with ShapeNet [3], and semantic scene completion
on NYU [25] and CompleteScanNet [36], attaining signif-
icant improvements producing high resolutions reconstruc-
tion with fine-grained details.

2. Related works
This section focuses on the three most related fields –

point cloud completion, point cloud features and semantic
scene completion.

Point cloud completion. Given the partial scan of an ob-
ject similar to Fig. 1, 3D completion aims at estimating the
missing shape. In most cases, the missing region is due
to self-occlusion since the partial scan is captured from a
single view of the object. Particularly for point cloud, Fold-
ingNet [43] and AtlasNet [11] are among the first works to
propose an object completion based on PointNet [22] fea-
tures by deforming one or more 2D grids into the desired
shape. Then, PCN [45] extended their work by deforming a
collection of much smaller 2D grids in order to reconstruct
finer structures.

Through encoder-decoder architectures, ASFM-Net [38]
and VRCNet [20] match the encoded latent feature with a
completion shape prior, which produce good coarse com-
pletion results. To preserve the observed geometry from the
partial scan for the fine reconstruction, MSN [16] and VR-
CNet [20] bypass the observed geometries by using either
the minimum density sampling (MDS) or the farthest point
sampling (FPS) from the observed surface and building skip
connections. By embedding a volumetric sub-architecture,
GRNet [39] preserves the discretized input geometries with
the volumetric U-connection without sampling in the point
cloud space. In more recent works, PMP-Net [35] gradu-
ally reconstructs the entire object from the observed to the
nearest occluded regions. Also focusing on only predicting
the occluded geometries, PoinTr [44] is among the first few
transformer methods targeted on point cloud completion by
translating the partial scan proxies into a set of occluded
proxies to further refine the reconstruction.

Point cloud features. Notably, a large amount of work in
object completion [11,16,33,35,39,43,45] rely on PointNet
features [22]. The main advantage of [22] is its capacity to

be permutation invariant through max-pooling. This is a
crucial characteristic for the input point cloud because its
data is unstructured.

However, the max-pooling operation disassembles the
point-wise features and ignores the local neighborhood in
3D space. This motivated SoftPoolNet [33] to solve this
problem by sorting the feature vectors based on the activa-
tion instead of taking the maximum values for each element.
In effect, they were able to concatenate the features to form
a 2D matrix so that a traditional 2D convolution from CNN
can be applied.

Apart from building feature representation through pool-
ing operations, PointNet++ [23] samples the local subset of
points with the farthest point sampling (FPS) then feeds it
into PointNet [22]. Based on this feature, SA-Net [34] then
groups the features in different resolutions with KNN for
further processing, while PMP-Net [35] uses PointNet++
features to identify the direction to which the object should
be reconstructed. PoinTr [44] also solves the permutational
invariant problem without pooling by adding the positional
coding of the input points into a transformer.

Semantic scene completion. All the point cloud comple-
tion are designed to reconstruct a single object. Extending
these methods from objects to scenes is difficult because of
the difference in size and content. When we tried to train
these methods for objects, we noticed that the level of noise
is significantly increased such that most objects in the scene
are unrecognizable. Evidently, for semantic scene comple-
tion, the objective is not only to build the full reconstruction
of the scene but also to semantically label each component.

On the other hand, there have been a number of meth-
ods for semantic scene completion based on voxel grids
that was initiated by SSCNet [27]. Using a similar volu-
metric data with 3D convolutions [7, 41, 42], VVNet [12]
convolves on the 3D volumes which are back-projected
from the depth images, revealing the camera view instead
of a TSDF volume. Later works such as 3D-RecGAN [42]
and ForkNet [32] use discriminators to optimize the con-
volutional encoder and decoder during training. Since 3D
convolutions are heavy in terms of memory consumption
especially when the input is presented in high resolution,
SketchSSC [4] learns the 3D boundary of all objects in the
scene to quickly estimate the resolution of the invariant fea-
tures.

Although there are quite many methods targeting on vol-
umetric semantic scene completion, there are still no related
works proposed explicitly for point cloud semantic scene
completion which we achieved in this paper.

3. Operators
Whether reconstructing objects or scenes from a single

depth image, the objective is to process the given point
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cloud of the partial scan Pin to reconstruct the complete
structure Pout. Most deep learning solutions [16, 20, 33, 43,
45] solve this problem by building an encoder-decoder ar-
chitecture. The encoder takes the input point cloud to it-
eratively down-sample it into its latent feature. Then, the
decoder iteratively up-sample the latent feature to recon-
struct the object or scene. In this section, we illustrate
our novel down-sampling and up-sampling operations that
cater to point cloud completion. Thereafter, in the follow-
ing sections, we use our operators as building blocks to
assemble two different encoder-decoder architectures that
perform object completion and semantic scene completion.
We also discuss the associated loss functions.

3.1. Down-sampling operation

To formalize the down-sampling operation, we denote
the input as the set of feature vectors Fin = {fi}|Fin|

i=1 where
fi is a feature vector and | · | is the number of elements in the
set. Note that, in the first layer of the encoder, Fin is then set
to the coordinates of the input point cloud. We introduce a
novel down-sampling operation inspired from the Iterative
Closest Point (ICP) algorithm [1, 5]. Taking an arbitrary
anchor f from Fin, we start by defining a vector δ ∈ RDin .
From the trainable variable δ, we find the feature closest to
f+δ and compute the distance. This is formally formulated
as a function

d (f , δ) = min
∀f̃∈Fin

∥(f + δ)− f̃∥ (1)

where δ represents a displacement vector from f . Multiple
displacement vectors are used to describe the local geome-
try, each with a weight σ ∈ R. We then assign the set as
{(δi, σi)}si=1 and aggregate them with the weighted func-
tion

g(f) =

s∑
i=0

σi tanh
α

d(f , δi) + β
(2)

where the constants α and β are added for numerical sta-
bility. Here, the hyperbolic tangent in g(f) produces values
closer to 1 when the distance d(·) is small and closer to 0
when the distance is large. In practice, we can speed-up
(1) with the k-nearest neighbor search for each anchor. A
simple example of this operation is depicted in Fig. 2. This
illustrates the operation in the first layer where we process
the point cloud so that we can geometrically plot a feature
in Fin with respect to {(δi, σi)}si=1.

Furthermore, to enforce the influence of the anchor in
this operation, we also introduce the function

h(f) = ρ · f (3)

that projects f on ρ ∈ RDin , which is a trainable parame-
ter. Note that both functions g(·) and h(·) produce a scalar
value.

(c)

1-1

(a)

(b)

Figure 2. (a) k-nearest neighbor in reference to an anchor f ; (b)
displacement vectors around the anchor f+δi and the correspond-
ing weight σi; and, (c) closest features f̃ to f + δi for all i.

Thus, if we aim at building a set of output feature vectors,
each with a dimension of Dout, we construct the set as

Fout =
{
[gb(fa) + h(fa)]

Dout
b=1

}|Fin|

a=1
(4)

where different sets of trainable parameters {(δi, σi)}si=1

are assigned to each element, while different ρ for each out-
put vector. Moreover, the variables s in (2) and Dout in (4)
are the hyper-parameters. We label this operation as the fea-
ture extraction.

It is noteworthy to mention that the proposed down-
sampling operation is different from 3D-GCN [15], which
only takes the cosine similarity. While still being scale-
invariant, hence suitable for object classification and seg-
mentation, they ignore the metric structure of the local 3D
geometry; consequently, making completion difficult be-
cause the original scale of the local geometry is missing.

Neighbor pooling. The final step in our down-sampling
operation is to reduce the size of Fout with pooling. How-
ever, unlike Graph Max-Pooling (GMP) [15], that takes the
element-wise maximum value of the feature across all the
vectors, we select the subset of feature vectors with the
highest activations. Therefore, while GMP disassembles
their features as part of their pooling operation, we preserve
the feature descriptors from Fout. From the definition of
Fout in (4), we base our activation for each vector fa

Aa =

Dout∑
b=1

tanh |gb(fa)| (5)

on the results of g(·) from (2). Thereafter, we only take the
1
τ of the number of feature vectors with the highest activa-
tions.

3.2. Up-sampling operation

The up-sampling and pooling operations in the encoder
reduce the point cloud to a latent vector. In this case, if we
directly use the operation in (4), the first layer in the decoder
ends up with one vector since |Fin| is one. Subsequently, all
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Figure 3. This architecture is composed of the proposed operators
to build its encoder and decoder.

the other layers in the decoder result in a single vector. To
solve this issue, our up-sampling iteratively runs (4) so that,
denoting Fin as the input to the layer, we build the set of
output feature vectors as

Fup = {Fu
out}

Nup
u=1

=
{
[gub (fa) + hu

b (fa)]
Dout
b=1

}a=|Fin|,u=Nup

a=1,u=1
(6)

which increases the number of vectors by Nup. As a result,
Fup is a set of Nu·|Fin| feature vectors. In addition to the list
of hyper-parameters in Sec. 3.1, our up-sampling operation
also takes Nup as a hyper-parameter.

4. Encoder-decoder architectures

In order to uncover the strengths of our operators in
Sec. 3 (i.e. feature extraction, neighbor pooling and up-
sampling), we used them as building blocks to construct
two different architectures. The first directly implements
our operators to build an encoder-decoder while the second
takes advantage of our operators to improve the transform-
ers derived from PoinTr [44]. We refer the readers to the
Supplementary Materials for the detailed parameters of the
architectures.

4.1. Direct application

The objective of the first architecture is to establish that
building it solely from the proposed operators (with the ad-
ditional max-pooling) can already be competitive in point
cloud completion. We then propose an encoder-decoder ar-
chitecture based on our operators alone as shown in Fig. 3.
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Figure 4. This architecture is derived from the transformers back-
bone, where we use the proposed operators to convert the input 3D
points to tokens and to perform the coarse-to-fine strategy.

The encoder is composed of four alternating layers of fea-
ture extraction and neighbor pooling. As the number of
points from the input is reduced by 128 times, we use a
max-pooling operator to extract a vector as our latent fea-
ture. Taking the latent feature from the encoder, the decoder
is then constructed from a series of up-sampling operators,
resulting in a fine completion of 16,384 points.

4.2. Transformers

The second architecture aims at showing the diver-
sity of the operators to improve the state-of-the-art from
PoinTr [44] that uses transformers. We therefore propose
a transformer-based architecture that is derived from [44]
and our operators as summarized in Fig. 4.

Before computing the attention mechanisms in the trans-
former, the partial scan are subsampled due to the mem-
ory constraint of the GPU. PoinTr [44] implements the Far-
thest Point Sampling (FPS) to reduce the number of points
and MLP to convert the points to features. Conversely,
our architecture applies the proposed operators. Similar
to Sec. 4.1, this involves alternating the features extraction
and neighbor pooling. Since the Fourier feature [28] and
SIRENs [26] have proven that the sinusoidal activation is
helpful in presenting complex signals and their derivatives
in layer-by-layer structures, a positional coding based on the
3D coordinates is then added to the features. In Fig. 4, we
refer this block as points-to-token. Thereafter, we use the
geometry-aware transformers from [44] which produces a
coarse point cloud.

From the coarse point cloud, we then replace their
coarse-to-fine strategy with our operators. This includes a
series of alternating feature extraction and up-sampling op-
erators as shown in Fig. 4.
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(a) Input

(b) Ground Truth

Neighbor Pooling

(e) Our Result(c) PoinTr
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(d) PoinTr + GMP

Graph Max-Pooling

Figure 5. The first row compares the point tokens chosen by Far-
thest Point Sampling (FPS) in PointTr [44], Graph Max-Pooling
(GMP) [15] in PointTr [44] and our proposed neighbor pooling
in our transformer architecture. These tokens are then fed to the
transformer and the coarse-to-fine strategy to produce the recon-
struction shown in the second row.

It it noteworthy to emphasize the difference between our
architecture from PoinTr [44] and to understand the impli-
cation of the changes. The contributions of points-to-tokens
and coarse-to-fine to the overall architecture is illustrated in
Fig. 5. We can observe from this figure that the FPS from
PoinTr [44] only finds the distant points while the results
of our neighbor pooling sketches the contours of the in-
put point cloud to capture the meaningful structures of the
object. Notably, by looking at our sketch, we can already
identify the that the object is a table. This is contrary to
the random points from PoinTr [44]. Moreover, our coarse-
to-fine strategy uniformly reconstructs the planar region on
the table as well as its base. Later, in Sec. 7, we numer-
ically evaluate these advantages in order to show that the
individual components has their own merits.

Since we previously discussed in Sec. 3.1 the difference
of our down-sampling operation against 3D-GMP [15], we
became curious to see the reconstruction in Fig. 5 if we re-
place the FPS in PoinTr [44] with the cosine similarity and
GMP of [15]. Similar to PoinTr, the new combination se-
lects distant points as its tokens while the table in their final
reconstruction increased in size. In contrast, our tokens are
more meaningful and the final results are more accurate.

5. Loss functions

Given the input point cloud Pin (e.g. from a depth im-
age), the objective of completion is to build the set of points
Pout that fills up the missing regions in our input data. Since
we train our architecture in a supervised manner, we denote
Pgt as the ground truth.

Completion. To evaluate the predicted point cloud, we
impose the Earth-moving distance [9]. Comparing the out-
put points to the ground truth and vice-versa, we end up

(a) Input (b) without (c) with (d) Ground 
Truth

First
Last

Figure 6. Compares the order of the point clouds reconstructed in
the object completion with and without Lorder

with

Lout→gt =
∑

p∈Pout

∥p− ϕgt(p)∥2 (7)

Lgt→out =
∑
p∈Pgt

∥p− ϕout(p)∥2 (8)

where ϕi(p) is a bijective function that finds the closest
point in the point cloud Pi to p.

Order of points in Pout. After training with (7) and (8),
we noticed that the points in the output reconstruction are
ordered from left to right as shown in Fig. 6(b). We want
to take advantage of this organization and investigate this
behavior further. Assuming the idea that, among the points
in Pout, we are confident that the input point cloud must be
part of it, we introduce a loss function that enforces that the
first subset in Pout is similar to Pin. We formally write this
loss function as

Lorder =
∑
p∈Pin

S(θout(p)) · ∥p− ϕout(p)∥2 (9)

where θout(p) is the index of the closest point in Pout based
on ϕout(p) while

S(θ) =

{
1, if θ ≤ |Pin|
0, otherwise

(10)

is a step function that returns one if the index is within the
first |Pin| points.

When we plot the results with Lorder in Fig. 6(c), we no-
ticed that the order in Pout moves from the observed to the
occluded. In addition, fine-grained geometrical details such
as the armrest of the chair are visible when training with
Lorder; thus, improving the overall reconstruction.

Semantic scene completion. In addition to the architec-
ture in Sec. 4 and the loss functions in (7), (8) and (9) for
completion, a semantic label is added to each point in the
predicted cloud Pout. Given Nc categories, we denote the
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(b) FoldingNet (d) MSN(c) PCN (g) PoinTr(e) SoftpoolNet (f) VRCNet(a) Input (j) Ground Truth(i) Ours (Trans)(h) Ours (Dir)

Figure 7. Object completion results where we highlight the errors in red points.

label for each point as a one-hot code li = [li,c]
nc
c=1 for the

i-th point in Pout and the c-th category. Since training is su-
pervised, the ground truth point clouds are also labeled with
the semantic category.

After establishing the correspondence between the pre-
dicted point cloud to the ground truth in (7) in training, we
also extract the ground truth semantic label l̂i. It then fol-
lows that the binary cross-entropy of the i-th point is com-
puted

ϵi = − 1

Nc

Ns∑
c=i

l̂i,c log li,c + (1− l̂i,c)(1− log li,c) (11)

and formulate the semantic loss function as

Lsemantic =
γ

|Pin|

|Pin|∑
i=i

ϵi (12)

where the weight

γ =
0.01

Lout→gt + Lgt→out
(13)

triggers to increase the influence of the Lsemantic in training
as the completion starts to converge. Note that γ is an im-
portant factor, since the output point cloud is erratic in the
initial iterations, which means that it can abruptly change
from one iteration to the next before the completion starts
converging.

6. Experiments
To highlight the strengths of the proposed method, this

section focuses on two experiments – object completion and
semantic scene completion.

6.1. Object completion

We evaluate the geometric completion of a single ob-
ject on the ShapeNet [3] database where they have the point
clouds of the partial scans as input and their corresponding

ground truth completed shape. The input scans are com-
posed of 2,048 points while the database provides a low
resolution output of 2,048 points and a high resolution of
16,384 points. We follow the standard evaluation on 8 cat-
egories where all objects are roughly normalized into the
same scale with point coordinates ranging between −1 to 1.

Numerical results. We conduct our experiments based
on three evaluation strategies from Completion3D [29],
PCN [45] and MVP [20]. Evaluating on 8 objects (plane,
cabinet, car, chair, lamp, sofa, table, vessel), they measure
the predicted reconstruction through the L2-Chamfer dis-
tance, L1-Chamfer distance and the F-Score@1%, respec-
tively. Note that, in this paper, we also follow the standard
protocol where the value presented for the Chamfer distance
is multiplied by 103. Although Table 1 only shows the aver-
age results across all categories, we refer the readers to the
supplementary materials for the more detailed comparison.

One of the key observations in this table is the capacity
of our direct architecture to surpass most of the other meth-
ods’ results. Among 11 approaches, our Chamfer distance
is only worse than 3 methods while our F-Score@1% is bet-
ter than all of them. This therefore establishes the strength
of our operators since our first architecture is solely com-
posed of it. Moreover, our second architecture, which com-
bines our operators with the transformer, reduces the error
by 3-5% on the Chamfer distance and increases the accu-
racy by 4.5% on the F-Score@1%.

The table also examines the effects of Lorder to our recon-
struction. Training with Lorder improves our results by 0.12-
0.13 in Chamfer distance and 0.013-0.021 in F-Score@1%,
validating our observations in Fig. 6.

Qualitative results. We compare our object completion
results in Fig. 7 with the recently proposed methods: Fold-
ingNet [43], PCN [45], MSN [16], SoftPoolNet [33], VRC-
Net [20] and PoinTr [44]. The red points in the figure high-
light the errors in the reconstruction. All the approaches re-
constructs a point cloud with 16,384 points with the excep-
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Completion3D PCN MVP
Method L2-Chamfer L1-Chamfer F-Score@1%

FoldingNet [43] 19.07 14.31 –
SoftPoolNet [33] 11.07 9.20 0.666
TopNet [29] 14.25 12.15 0.576
PCN [45] 18.22 9.64 0.614
MSN [16] – 9.97 0.690
GRNet [39] 10.64 8.83 0.677
ECG [19] – – 0.736
NSFA [48] – – 0.770
CRN [30] 9.21 8.51 0.724
SCRN [31] 9.13 8.29 –
VRCNet [20] 8.12 – 0.781
PoinTr [44] 9.22 8.38 0.741
ASFM-Net [38] 6.68 – –

Ours (Direct) 8.35 8.46 0.801
–without Lorder 8.47 8.59 0.788
–input Pgt 5.11 5.37 0.923

Ours (Transformer) 6.64 7.96 0.816
–without Lorder 6.74 8.09 0.795
–input Pgt 4.46 4.95 0.962

Table 1. Evaluation on Completion3D [29], PCN [45] and
MVP [20] datasets with their corresponding metrics for the object
completion task.

tion for FoldingNet with 2,048 points and MSN with 8,192.
Since FoldingNet and PCN take advantage of their math-

ematical assumption where they rely on deforming one or
more planar grids, they tend to over-smooth their recon-
struction where finer details such as the boat is flattened. In
contrast, our method can perform better on the smooth re-
gions as well as the finer structures. Nevertheless, the more
recent approaches like [16,20,33,44] can also produce more
descriptive reconstruction on the boat. However, they pro-
duce more errors which is highlighted in the unconventional
lamp or chair. Overall, our reconstructions are closer to the
ground truth.

Failure cases. In addition to the qualitative results, we
also examine the failure cases in Fig. 8. Most of them
are objects with unusual structures like the car without
the wheels. Another issue is when there is an insufficient
amount of input point cloud to describe the object such as

(e) Ground Truth(a) Input (d) Ours (Trans)(b) PoinTr (c) Ours (Dir)

Figure 8. Examples of the failure cases in object completion.

Method Resolution Average IoU

Lin et al. [14] 60 12.0
Geiger and Wang [10] 60 19.6
SSCNet [27] 60 30.5
VVNet [12] 60 32.9
SaTNet [17] 60 34.4
ForkNet [32] 80 37.1
CCPNet [47] 240 38.5
SketchSSC [4] 60 41.1
SISNet [2] 60 52.4

Ours (Direct) 60 40.0
–with γ = 1 in Lsemantic 60 37.2

Ours (Transformer) 60 42.4
–with γ = 1 in Lsemantic 60 38.9

Table 2. Semantic scene completion on NYU [25] dataset. The
value in resolution (x) is the output volumetric resolution which is
x× 0.6x× x.

the chair. Notably, compared to the state-of-the-art, our re-
constructions are still better in these situations.

6.2. Semantic scene completion

This evaluation aims at reconstructing the scene from a
single depth image through a point cloud or an SDF vol-
ume where each point or voxel is categorized with a se-
mantic class. Originally introduced for 2.5D semantic seg-
mentation, NYU [25] and ScanNet [6], which were later
annotated for semantic completion by [27, 36], are among
the most relevant benchmark datasets in this field. These
datasets include pairs of depth image and the corresponding
semantically labeled 3D reconstruction.

Semantic scene completion with voxels. NYU are pro-
vided with real scans for indoor scenes which are acquired
with a Kinect depth sensor. Following SSCNet [27], the se-
mantic categories include 12 classes of varying shapes and
sizes: empty space, ceiling, floor, wall, window, chair, bed,
sofa, table, tvs, furniture and other objects.

Since the other point cloud completion do not handle
semantic segmentation, we start our evaluation by com-
paring with the voxel-based approaches which perform the
both the completion and the semantic segmentation such
as [2, 4, 10, 12, 14, 17, 27, 32, 47]. Considering that the vol-
umetric data evaluates through the IoU, we need to convert
our point clouds to voxel grids to make the comparison.

One of the significant advantage of point clouds over
voxels is that we are not constrained to a specific resolu-
tion. Since most method evaluate on 60 × 36 × 60, we
converted our point cloud to this resolution. Our approach
achieves competitive average IoU of 42.4% which is better
than all the other methods except for SISNet [2]. However,
it is noteworthy to mention that our method faces additional
errors associated to the conversion from point cloud to vox-
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Method CompleteScanNet NYU

FoldingNet [43] 11.25 14.66
AtlasNet [11] 8.92 10.12
PCN [45] 8.19 9.98
MSN [16] 7.28 8.65
SoftPoolNet [33] 8.27 9.29
GRNet [39] 4.56 5.80
VRCNet [20] 4.29 5.45
PoinTr [44] 5.08 5.92

Ours (Direct) 3.17 4.72
Ours (Transformer) 3.04 4.38

Table 3. Evaluation on CompleteScanNet [36] and NYU [25]
dataset for scene completion, measuring the average Chamfer dis-
tance trained with L2 distance (multiplied by 103) with the output
resolution of 16,384.

els. In addition, the ground truth voxels for the furnitures in
the NYU dataset is a solid volume which is not a plausible
format for point cloud approaches which focuses more on
the surface reconstruction. This in effect decreases the IoU
of our method.

Moreover, Table 10 includes a small ablation study to
verify the contribution of γ from (13) in Lsemantic. If we
discard (13) by setting γ to one, the IoU for our models de-
crease by 7.5-9%; thus, proving the advantage in adaptively
weighing the semantic loss function.

Point cloud scene completion. Another relevant dataset
is from ScanNet [6] which was supplemented with
the ground truth semantic completion by CompleteScan-
Net [36]. This include a total of 45,451 paired partial scan
and semantic completion for training. Our evaluation in Ta-
ble 3 takes 2,048 points as input and reconstructs the scene
with 16,384 points. Since there is no previous work that fo-
cused on point cloud scene completion, we compare against
methods that were designed for a single object completion
such as PCN [45], MSN [16], SoftPoolNet [33] and GR-
Net [39]. Based on our evaluation in Table 3, both versions
of our architectures attain the best results. Notably, we also
compared these methods on the NYU dataset in Table 3.
Similarly, the proposed architectures also achieve the state-
of-the-art in point cloud scene completion.

7. Ablation study
This section focuses on the strengths of our operator in

our transformer architecture. Although we adapt the trans-
former from PoinTr [44], we argue that every component we
added is significant to the overall performance. To evaluate
this, we disentangle the points-to-tokens and coarse-to-fine
blocks. In practice, we separate the backbone, which takes
points in the partial scan as input and outputs a coarse point
cloud, from the coarse-to-fine strategy. Evidently, in our ap-
proach, the points-to-tokens block is part of the backbone.

Since most methods can also be separated in this manner,

we then compose Table 4 to mix-and-match different back-
bones with different coarse-to-fine methods for object and
scene completion. In both tables, we classified the other
coarse-to-fine methods as: (1) deform which includes the
operation in deforming 3D grids; (2) deconv which pro-
cesses with MLP, 1D or 2D deconvolutions; and, (3) Edge-
aware Feature Expansion (EFE) [19]. We then highlight the
originally proposed architectures in yellow.

For any given backbone in every row, our coarse-to-fine
method produces the best results. Moreover, for any given
coarse-to-fine strategy in every column, our backbone per-
forms the best. Therefore, this study essentially proves that
each of the proposed components in our transformer archi-
tecture has a significant role in the overall performance.

8. Conclusion

We propose three novel operators for point cloud pro-
cessing. To bring out the value of these operators, we apply
them on two novel architectures that are designed for ob-
ject completion and semantic scene completion. The first
assembles together the proposed operators in an encoder-
decoder fashion, while the second incorporates them in the
context of transformers. Notably, both architectures pro-
duce highly competitive results, with the latter achieving
the state of the art in point cloud completion for both ob-
jects and scenes.

OBJECT COMPLETION

Coarse-to-Fine

Backbone deform deconv EFE Ours

MSN [16] 7.28 9.34 7.15 6.91
PoinTr [44] 5.48 5.71 4.91 3.76
SoftPoolNet [33] 10.08 8.27 7.65 7.63
GRNet [39] 9.25 5.61 5.26 4.90
VRCNet [20] 8.09 8.88 5.08 4.21

Ours 4.93 4.99 4.12 3.04

SCENE COMPLETION

Coarse-to-Fine

Backbone deform deconv EFE Ours

MSN [16] 9.97 12.31 9.26 9.08
PoinTr [44] 8.38 8.49 8.31 8.13
TreeGAN [24] 14.26 9.72 9.12 9.05
SoftPoolNet [33] 11.73 9.20 8.75 8.64
GRNet [39] 9.12 8.83 8.73 8.51
VRCNet [20] 10.03 10.20 8.52 8.26

Ours 8.19 8.30 8.07 7.96

Table 4. Mix-and-match evaluation on different backbone attached
to different coarse-to-fine methods for object and scene comple-
tion. The originally proposed combinations are marked in yellow.
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9. Supplementary materials
As we discussed in the paper, this document aims at

showing the detailed parameters of our architectures and
more comprehensive results for both object completion and
semantic scene completion. It also includes additional qual-
itative results that compares different methods against the
proposed.

9.1. Parameters in architectures

This work introduces two architectures to highlight the
benefits of the proposed layers. We list the parameters set
in every layer of our direct architecture in Table 5 and our
transformer architecture in Table 6.

9.2. Object completion

We exhibit a more detailed comparison on the object
completion evaluation in Table 7, Table 8 and Table 9 for
the Completion3D [29], PCN [45] and MVP [20] datasets,
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Table 5. Parameters in each layer of our direct architecture.

respectively. While we only show the average results in the
paper, these tables show the per-category evaluation. Based
on these results, our architectures are better in most cate-
gories when evaluating the Chamfer distance in Table 7 and
Table 8; while, better in all categories when evaluating the
F-Score in Table 9.

9.3. Semantic scene completion with voxels

Since most of the point cloud approaches only perform
completion, we compared our semantic scene completion
results to the voxel-based approaches in Table 10. In order
to do this, we converted our high resolution point cloud to
a lower resolution 60 × 36 × 60 voxels. Table 10 shows
the per-category comparison against the voxel-based ap-
proaches. Notably, although downsizing our point cloud in-
troduces errors and difference (e.g. the objects in the point
cloud are hollow while in the voxels are solid), we still
achieve competitive IoU results.

9.4. Semantic scene completion with point clouds

We illustrate the semantic scene completion results in
Fig. 9, evaluated on CompleteScanNet [36]. Since there
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Table 6. Parameters in each layer of our transformer architecture.
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is no other point cloud completion approach that explic-
itly claim that they can reconstruct scenes, we utilize the
architectures that were designed for object completion:
PCN [45], MSN [16], PoinTr [44] and VRCNet [20]. Due
to this, in Fig. 9, we perform the more complicated seman-
tic completion while the other methods carry out the simpler
completion task.

We observe from the other methods [16, 20, 44, 45] that
their results show a high level of noise such that the objects
in the scenes are no longer comprehensible. In comparison,
our results have significantly less noise and produce recon-
structions that are very similar to the ground truth. More-
over, a particular attention is given to PoinTr [44] since we
derived our transformer architecture from them. Compar-
ing our results against [44], our reconstructions are signifi-
cantly more accurate. This in effect demonstrate the impor-
tant contribution of our proposed layers to our transformer
architecture.
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Output Resolution = 2,048, L2 metric, Completion3D [29] benchmark

Method plane cabinet car chair lamp sofa table vessel Avg.

FoldingNet [43] 12.83 23.01 14.88 25.69 21.79 21.31 20.71 11.51 19.07
PointSetVoting [46] 6.88 21.18 15.78 22.54 18.78 28.39 19.96 11.16 18.18
AtlasNet [11] 10.36 23.40 13.40 24.16 20.24 20.82 17.52 11.62 17.77
PCN [45] 9.79 22.70 12.43 25.14 22.72 20.26 20.27 11.73 18.22
TopNet [29] 7.32 18.77 12.88 19.82 14.60 16.29 14.89 8.82 14.25
SA-Net [34] 5.27 14.45 7.78 13.67 13.53 14.22 11.75 8.84 11.22
SoftPoolNet [33] 6.39 17.26 8.72 13.16 10.78 14.95 11.01 6.26 11.07
GRNet [39] 6.13 16.90 8.27 12.23 10.22 14.93 10.08 5.86 10.64
PMP-Net [35] 3.99 14.70 8.55 10.21 9.27 12.43 8.51 5.77 9.23
CRN [30] 3.38 13.17 8.31 10.62 10.00 12.86 9.16 5.80 9.21
SCRN [31] 3.35 12.81 7.78 9.88 10.12 12.95 9.77 6.10 9.13
VRCNet [20] 3.94 10.93 6.44 9.32 8.32 11.35 8.60 5.78 8.12
ASFM-Net [38] 2.38 9.68 5.84 7.47 7.11 9.65 6.25 4.84 6.68

Ours (direct) 3.52 12.72 7.37 9.21 8.57 11.66 8.77 4.97 8.35
–without Lorder 3.64 12.83 7.48 9.34 8.70 11.79 8.88 5.07 8.47
Ours (transformer) 2.41 9.54 4.99 7.89 6.89 9.92 7.20 4.29 6.64
–without Lorder 2.48 9.62 5.10 7.99 7.01 10.04 7.29 4.39 6.74

Table 7. Evaluation on the object completion on Completion3D [29] benchmark based on the Chamfer distance trained with L2 distance
(multiplied by 104) with the output resolution of 2,048.

Output Resolution = 16,384, L1 metric, PCN [45] dataset

Method plane cabinet car chair lamp sofa table vessel Avg.

3D-EPN [7] 13.16 21.80 20.31 18.81 25.75 21.09 21.72 18.54 20.15
ForkNet [32] 9.08 14.22 11.65 12.18 17.24 14.22 11.51 12.66 12.85

PointNet++ [23] 10.30 14.74 12.19 15.78 17.62 16.18 11.68 13.52 14.00
FoldingNet [43] 9.49 15.80 12.61 15.55 16.41 15.97 13.65 14.99 14.31
AtlasNet [11] 6.37 11.94 10.11 12.06 12.37 12.99 10.33 10.61 10.85
TopNet [29] 7.61 13.31 10.90 13.82 14.44 14.78 11.22 11.12 12.15
PCN [45] 5.50 10.63 8.70 11.00 11.34 11.68 8.59 9.67 9.64
MSN [16] 5.60 11.96 10.78 10.62 10.71 11.90 8.70 9.49 9.97
SoftPoolNet [33] 6.93 10.91 9.78 9.56 8.59 11.22 8.51 8.14 9.20
GRNet [39] 6.45 10.37 9.45 9.41 7.96 10.51 8.44 8.04 8.83
PMP-Net [35] 5.65 11.24 9.64 9.51 6.95 10.83 8.72 7.25 8.73
CRN [30] 4.79 9.97 8.31 9.49 8.94 10.69 7.81 8.05 8.51
SCRN [31] 4.80 9.94 9.31 8.78 8.66 9.74 7.20 7.91 8.29
PoinTr [44] 4.75 10.47 8.68 9.39 7.75 10.93 7.78 7.29 8.38

Ours (direct) 5.34 9.20 8.26 8.96 9.40 10.46 7.54 8.56 8.47
–without Lorder 5.47 9.34 8.37 9.09 9.54 10.59 7.69 8.66 8.59
Ours (transformer) 4.43 10.03 8.28 8.96 7.29 10.55 7.31 6.85 7.96
–without Lorder 4.56 10.17 8.42 9.10 7.41 10.66 7.41 6.96 8.09

Table 8. Evaluation on the object completion on PCN [45] dataset based on the Chamfer distance trained with L1 distance (multiplied by
103) with the output resolution of 16,384.
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(c) MSN (d) PoinTr(a) Input (h) Ground Truth(b) PCN (e) VRCNet (g) Ours (Trans) (f) Ours (Dir)

Completion Semantic Completion

Figure 9. Semantic scene completion results on the CompleteScanNet [36] dataset

Output Resolution = 16,384, F-Score@1%, MVP [20] dataset

Method plane cabinet car chair lamp sofa table vessel Avg.

TopNet [29] 0.789 0.621 0.612 0.443 0.387 0.506 0.639 0.609 0.576
PCN [45] 0.816 0.614 0.686 0.517 0.455 0.552 0.646 0.628 0.614
MSN [16] 0.879 0.692 0.693 0.599 0.604 0.627 0.730 0.696 0.690
SoftPoolNet [33] 0.843 0.568 0.636 0.623 0.698 0.568 0.680 0.71 0.666
GRNet [39] 0.853 0.578 0.646 0.635 0.710 0.580 0.690 0.723 0.677
ECG [19] 0.906 0.680 0.716 0.683 0.734 0.651 0.766 0.753 0.736
NSFA [48] 0.903 0.694 0.721 0.737 0.783 0.705 0.817 0.799 0.770
CRN [30] 0.898 0.688 0.725 0.670 0.681 0.641 0.748 0.742 0.724
VRCNet [20] 0.928 0.721 0.756 0.743 0.789 0.696 0.813 0.800 0.781
PoinTr [44] 0.888 0.681 0.716 0.703 0.749 0.656 0.773 0.760 0.741

Ours (direct) 0.926 0.738 0.766 0.783 0.837 0.709 0.829 0.821 0.801
–without Lorder 0.910 0.750 0.741 0.734 0.835 0.715 0.839 0.783 0.788
Ours (transformer) 0.942 0.753 0.780 0.799 0.851 0.725 0.844 0.836 0.816
–without Lorder 0.922 0.731 0.759 0.776 0.831 0.703 0.824 0.813 0.795

Table 9. Evaluation on the object completion on MVP [20] dataset based on the F-Score@1% trained with L2 Chamfer distance and the
output resolution of 16,384.

Method res. whole ceil. floor wall win. chair bed sofa table tvs furn. objs Avg.

Lin et al. [14] 60 36.4 0.0 11.7 13.3 14.1 9.4 29.0 24.0 6.0 7.0 16.2 1.1 12.0
Geiger and Wang [10] 60 44.4 10.2 62.5 19.1 5.8 8.5 40.6 27.7 7.0 6.0 22.6 5.9 19.6
SSCNet [27] 60 55.1 15.1 94.6 24.7 10.8 17.3 53.2 45.9 15.9 13.9 31.1 12.6 30.5
VVNet [12] 60 61.1 19.3 94.8 28.0 12.2 19.6 57.0 50.5 17.6 11.9 35.6 15.3 32.9
SaTNet [17] 60 60.6 17.3 92.1 28.0 16.6 19.3 57.5 53.8 17.7 18.5 38.4 18.9 34.4
ForkNet [32] 80 37.1 36.2 93.8 29.2 18.9 17.7 61.6 52.9 23.3 19.5 45.4 20.0 37.1
CCPNet [47] 240 63.5 23.5 96.3 35.7 20.2 25.8 61.4 56.1 18.1 28.1 37.8 20.1 38.5
SketchSSC [4] 60 71.3 43.1 93.6 40.5 24.3 30.0 57.1 49.3 29.2 14.3 42.5 28.6 41.1
SISNet [2] 60 78.2 54.7 93.8 53.2 41.9 43.6 66.2 61.4 38.1 29.8 53.9 40.3 52.4

Ours (direct) 60 63.7 38.1 97.1 37.0 15.5 18.7 55.2 54.9 29.6 21.4 49.2 23.7 40.0
–with γ = 1 in Lsemantic 60 58.2 35.1 94.3 34.0 12.7 15.8 52.3 52.0 26.7 18.4 46.3 20.9 37.2
Ours (transformer) 60 66.1 40.4 98.6 39.6 18.1 21.2 57.5 57.0 31.9 23.5 51.3 26.4 42.4
–with γ = 1 in Lsemantic 60 63.4 36.6 95.0 36.6 14.8 18.1 53.9 53.4 28.8 20.1 47.8 22.5 38.9

Table 10. Semantic completion on NYU dataset. The value in res. (x) is the output volumetric resolution which is x× 0.6x× x.
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