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Figure 1. To handle severe person-person occlusion, our proposed method OCHMR conditions the deep network on image spatial context
using predicted body centermaps. OCHMR is trained using multi-person mesh interpenetration and depth ordering losses. In comparison to
bottom-up ROMP [58], top-down OCHMR outputs pixel aligned mesh estimates for each individual under occlusion.

Abstract
Top-down methods for monocular human mesh recovery

have two stages: (1) detect human bounding boxes; (2) treat
each bounding box as an independent single-human mesh
recovery task. Unfortunately, the single-human assumption
does not hold in images with multi-human occlusion and
crowding. Consequently, top-down methods have difficul-
ties in recovering accurate 3D human meshes under severe
person-person occlusion. To address this, we present Oc-
cluded Human Mesh Recovery (OCHMR) - a novel top-down
mesh recovery approach that incorporates image spatial
context to overcome the limitations of the single-human as-
sumption. The approach is conceptually simple and can
be applied to any existing top-down architecture. Along
with the input image, we condition the top-down model on
spatial context from the image in the form of body-center
heatmaps. To reason from the predicted body centermaps,
we introduce Contextual Normalization (CoNorm) blocks to
adaptively modulate intermediate features of the top-down
model. The contextual conditioning helps our model disam-
biguate between two severely overlapping human bounding-
boxes, making it robust to multi-person occlusion. Compared
with state-of-the-art methods, OCHMR achieves superior
performance on challenging multi-person benchmarks like
3DPW, CrowdPose and OCHuman. Specifically, our pro-
posed contextual reasoning architecture applied to the SPIN
model with ResNet-50 backbone results in 75.2 PMPJPE on

3DPW-PC, 23.6 AP on CrowdPose and 37.7 AP on OCHu-
man datasets, a significant improvement of 6.9 mm, 6.4 AP
and 20.8 AP respectively over the baseline. Code and models
will be released.

1. Introduction
Estimating accurate 3D human meshes from single im-

ages has diverse applications in modeling human-scene in-
teractions, understanding human behaviour, AR/VR and
robotics. While recent approaches [4, 11, 25, 32, 43, 48, 50,
66] perform particularly well in images containing a single
person, human mesh recovery for complex real-world scenes
with multiple occluded people remains a challenging task.
This can be attributed in part to simplifying assumptions
made by existing methods. For instance, most top-down
approaches expect a single subject in the input image, which
affects robustness under in-the-wild scenarios containing
severe person-person occlusion, such as crowding. In this
paper, we address human mesh recovery in multi-person
scenarios by mitigating the limitations of the single-person
assumption of top-down approaches.

Current human mesh recovery methods can be catego-
rized into top-down and bottom-up methods. Top-down
methods [7, 10, 12, 24, 31, 35–37, 67] reduce the problem
to a simpler task of single human mesh recovery by rely-
ing on a person detector to detect individual bounding box
for each person in the image. Since each bounding box is
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scaled to the same size, top-down methods are less sensitive
to scale variations among subjects and can achieve pixel
accurate mesh alignment [10, 67]. In contrast, bottom-up
methods [58, 64, 68] simultaneously predict meshes for all
subjects in the input image but are limited to a fixed input
resolution due to computational constraints. e.g. ROMP [58],
a bottom-up method, recovers a limited number of human
meshes from a resized 512× 512 input whereas SPIN [32],
a top-down method, scales each bounding box to 224× 224,
retaining higher input resolution per person(see Fig. 1).
This observation has also been discussed by Cheng et al. [6]
albeit in the context of 2D human pose estimation. Thus, top-
down methods are currently the best performers on various
multi-human benchmarks [18, 21, 23, 46, 55, 61]. Despite
the advantages, due to the single-human assumption, when
presented with multi-human inputs like crowded scenes, top-
down methods are forced to select a single plausible mesh
per detection bounding box. Bottom-up methods do not have
this limitation and typically perform better under occlusion.

A general method should have both traits – be robust to
scale variations and person-person occlusions. To this end,
we rethink top-down human mesh recovery by predicting
multiple meshes from the input bounding box. We condition
the top-down model on image spatial-context in the form of
body-center maps, refer Fig. 2. Our choice of using center
maps for representing humans under occlusion is inspired
by crowd-counting literature [44, 56, 62] and recent works
in detection [8, 71, 72]. Our method, OCHMR, predicts
the output mesh from the input image for the person of
interest in the subject-specific local center-map. Similar to
bottom-up methods, we also use information from the global
center-map for understanding overall scene context, which is
helpful for occlusion reasoning. With this strategy, we obtain
the best of both worlds – OCHMR achieves pixel accurate
mesh alignment similar to top-down methods and is robust
to occlusions similar to bottom-up methods (See Fig. 1).

To design a top-down architecture capable of contextual
conditioning using centermaps, we adopt the mechanism of
feature normalization [9, 16, 51] and propose a novel Con-
text Normalization (CoNorm) block to process the global
and local centermaps. The CoNorm blocks are used to inject
contextual information at multiple depths in the deep feature
backbone network. The spatial context is necessary for 3D
occlusion reasoning, and the CoNorm block allows for adap-
tive normalization of intermediate features of the network
without changing the backbone. We show that unlike early
fusion (e.g. channel-wise concatenation) of centermaps with
input image I, CoNorm can effectively utilize the contextual
information from the image. OCHMR is general and can be
extended to other top-down human mesh recovery methods
with minimal effort.

While the use of spatial-context allows our method to rea-
son about occlusions, our method must also reason about the

Image Local Center Map A Human Mesh A

Global Center Map Local Center Map B Human Mesh B

Figure 2. OCHMR leverages image spatial-context for occlusion
reasoning by predicting body centermaps. The deep network pre-
dicts the mesh output using input image, the subject-specific local
centermap and the scene-specific global centermap.

intersection of a set of 3D human meshes. To address this,
following CRMH [19], we use an interpenetration loss to
penalize intersections among reconstructed meshes and a dif-
ferentiable depth-ordering loss for depth-consistent human
mesh recovery. Furthermore, we make use of training-time
data augmentation like scaling and cropping, which affords
OCHMR the ability to predict meshes from a variety of
body-center locations. We show that our proposed method is
also robust to errors in estimated body-centers under severe-
occlusion. Our empirical results show that OCHMR does
not require precise centermaps that correspond to actual
body-centers but can also work with any point in its vicinity.

Overall, OCHMR outperforms both top-down and
bottom-up methods on various datasets. For challenging
datasets such as 3DPW-PC [70], CrowdPose [34] and OCHu-
man [69], containing a larger proportion of cluttered scenes
(with multiple overlapping people), OCHMR sets a new
state-of-the-art for 3D reconstruction error (PMPJPE) and
2D keypoint average precision (AP) achieving 77.1 PM-
PJPE, 21.4 AP and 24.8 AP respectively on the val sets
outperforming bottom-up methods (Tab. 1). Further, when
evaluating using ground-truth bounding boxes, OCHMR
dramatically improves SPIN [32] by 20.8 AP and 6.4 AP
on the OCHuman and CrowdPose dataset respectively. In
summary:

• OCHMR advances top-down human mesh recovery
methods by addressing limitations caused by the single-
human assumption. Our method leverages spatial-
context in the form of centermaps to predict multiple



mesh outputs from an input image.

• We introduce novel Context Normalization (CoNorm)
blocks to inject global and local centermap information
at multiple depths of the top-down network.

• Our approach achieves state-of-the-art results on the oc-
cluded 3DPW-PC, CrowdPose and OCHuman datasets.
Empirically, we also show that OCHMR is resilient to
noisy body center estimates and demonstrates robust
3D reasoning using multi-person losses.

2. Related Work

Deep learning has significantly advanced 3D human mesh
recovery [7, 10, 12, 24, 29–32, 35–37, 60, 67], facilitating
the more challenging task of mesh recovery under severe
multi-person occlusion [19, 34, 58, 69, 70], which is the
main focus of this work.

Biased Human Mesh Recovery Benchmarks. Most
benchmark datasets [18, 21, 23, 46, 55, 61, 63] used for
learning human mesh recovery focus on a single person
and do not accurately represent the distribution of possi-
ble occlusions present in the real world. Human3.6M [18],
HumanEva [55] and TotalCapture [23] are popular datasets
collected using motion capture (mocap) systems using op-
tical markers. While providing accurate annotations, they
only have a single subject in the image with limited image
complexity due to the lack of background variation. In con-
trast, datasets like MPI-INF-3DHP [46], PanopticStudio [21]
and 3DPW [61] contain multi-person annotations but have
limited person-person occlusion – less than 27% of all an-
notations have crowding (at IoU 0.5). Although previous
methods [24, 29, 30, 32, 35, 36, 67] leverage 2D keypoint
annotations from datasets like COCO [39], MPII [1], LSP-
Extended [20], the 2D datasets are also known to contain
similar biases [28, 53, 69]. These biases have affected criti-
cal design decisions in state-of-the-art methods which lead
to poor generalization under heavy occlusion [19, 58]. Re-
cently, challenging datasets such as OCHuman [69], Crowd-
Pose [34] and 3DPW-PC [70] containing heavy occlusion
have been proposed to capture these biases. OCHMR shows
a significant improvement over existing works under such
challenging conditions.

Top-Down Human Mesh Recovery. Top-down meth-
ods [7, 10, 12, 24, 31, 35–37, 67] estimate 3D human mesh
of a single person within a person bounding box. The
bounding box is usually generated using a person detec-
tor [3, 5, 14, 38, 41, 52]. As the input bounding boxes are
cropped and scaled to the same size, top-down methods are
less sensitive to person scale variations in the image. In con-
trast, bottom-up methods have to deal with scale variations
which compromises pixel alignment in the reconstruction
results. For these reasons [6], most state-of-the-art 2D pose

estimation methods [40, 45, 57, 65] are also top-down. How-
ever, top-down methods inherently assume a single person
in the input image and often fail under occlusions in multi-
person scenarios. Recent works like [4, 7, 22, 47, 54, 60] use
2D/3D poses as input along with bounding boxes for human
mesh recovery. However, obtaining accurate 2D poses under
occlusion is difficult and pose errors like joint swaps [53] are
magnified during the 3D reconstruction [22]. CRMH [19]
handles multi-person scenarios by using RoI-aligned [14]
features of each person to predict the SMPL [43] parameters.
However, the reliance on bounding-box-level features makes
it hard to effectively differentiate between two overlapping
bounding boxes. OCHMR resolves these issues by condi-
tioning the top-down model on image context in the form
of body-centers – a representation which helps in resolving
ambiguity under multi-person occlusion.

Bottom-Up Human Mesh Recovery. Unlike top-down
methods, only few methods exist which use the bottom-up
paradigm for human mesh recovery. Zanfir et al. [64] uses in-
termediate 3D poses to estimate the 3D mesh of each person
in a bottom-up fashion. ROMP [58] uses a fixed resolution
body-center map to disambiguate between multiple persons
under occlusion. Due to the fixed input size, 512 × 512,
ROMP is limited to predicting a small numbers of meshes.
In contrast, OCHMR is top-down and can leverage input
resizing of subject bounding box to a higher resolution for
pixel accurate shape estimation. Being top-down, OCHMR
can be applied to all detected persons in the input image.

3. Method
OCHMR leverages the strengths of both top-down and

bottom-up methods for multi-person mesh recovery under
severe person-person occlusion/crowding. In this section,
we briefly describe the top-down method used as baseline
architecture in our approach. Then we provide details of our
contextual representations i.e. local and global centermaps
and the context estimation network. Finally, we describe the
proposed architectural improvements in the form of Context
Normalization (CoNorm) blocks and multi-person losses
used in training.

Top-down Human Mesh Recovery. Top-down human
mesh recovery aims to predict a 3D human mesh from an
input image I ∈ RH×W×3. Most top-down methods trans-
form this problem to estimating the parameters of a hu-
man body model like SMPL [43] and the camera parame-
ters. We represent body pose, shape and camera parame-
ters by Θ = [θpose,θshape,θcamera], θpose ∈ R24×6,θshape ∈
R10,θcamera ∈ R3. The pose parameters θpose are the 6D rep-
resentation of the joint rotations [73] of the 24 body joints
and include the global root orientation of the SMPL body.
The shape parameters θshape represent the first 10 coefficients
of the PCA shape space. The camera parameters θcamera de-
scribe the 2D scale s and translation t = (tx, ty). SMPL is
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Figure 3. Context Normalization (CoNorm) Block (in blue) learns scale σ and bias β parameters for spatial affine transformation of
intermediate features X (in red) from the image context. Left: We concatenate 2D global and local center maps channel-wise to represent
image context. Right: We insert multiple CoNorm blocks at various depths in the deep neural architecture - injection of high resolution
contextual information throughout the network is critical for predicting accurate 3D meshes under occlusion.

linear and fully differentiable, making it a suitable represen-
tation for learning based methods.

Similar to [26, 32], we define a deep regression model
P as our baseline top-down architecture for human mesh
recovery. The bounding box at training and inference is
scaled to H × W and is provided as an input to P . Let
Θgt denote the ground-truth SMPL and camera parameters
corresponding to the human in the input image I. The deep
regression model P transforms input I to a single 3D mesh
M , such that Θ = P (I). P is trained to minimize the sum
of various 2D/3D pose and shape losses (using 2D pose
annotations and segmentations masks if available) denoted
by L(Θgt,Θ) [32].

3.1. Occluded Human Mesh Recovery

We propose to modify the top-down deep regression
model P to predict multiple meshes as follows. Let N be
the number of ground-truth subjects present in the image
I. N is set to the total number of subjects with atleast 5
visible 2D keypoints in the image. Let Θgt

0 ,Θ
gt
1 , . . . ,Θ

gt
N−1

be the corresponding ground-truth mesh parameters. Our
modified deep regression model P predicts N instances,
Θ0,Θ1, . . . ,ΘN−1 for an input I. This is achieved by con-
ditioning the network P on the spatial-context Ci individu-
ally for each subject. P accepts both I and Ci as input and
predicts Θi = P (I,Ci) where i ∈ {0, 1, . . . , N − 1}. We
define the OCHMR’s single person loss Lsingle as follows,

Lsingle =
1

N

N−1∑
i=0

L(Θgt
i ,Θi) (1)

During inference, we vary the spatial-context Ci to ex-
tract multiple mesh predictions from the same input image
I. In cases of severely overlapping people, it is hard for the
baseline top-down method to estimate diverse body meshes
M from similar image patches I. OCHMR uses spatial-

context C to resolve the implicit ambiguity of the bounding-
box input representation in such multi-person cases.

3.2. Global and Local Center Map Estimation

Our top-down framework relies heavily on the represen-
tation of the spatial-context C. It is crucial to define a repre-
sentation which is explicit and robust to occlusion. Inspired
by [8, 58], we choose body centers to encode the spatial
context C of the image. Specifically, we represent the con-
textual information of ith instance as Ci = (Cglobal,Clocal-i)
where Cglobal is the body-center heatmap of all the N in-
stances present in the image I and Clocal-i is the body-center
heatmap of the ith instance (see Fig. 2). Clocal-i is calculated
by thresholding and iterating over pixel locations in Cglobal.
While Clocal-i informs the network about the subject of inter-
est, Cglobal places the subject in the context of its neighbors,
thereby helping the network disambiguate between occlud-
ing persons.

The body center is defined as the center of visible torso
joints (neck, left/right shoulders, pelvis, and left/right hips).
When all torso joints are invisible, the center is the aver-
age of the visible joints. Following [58], we calculate the
ground-truth body center from the ground-truth 2D pose. All
the ground-truth 2D body center locations are converted into
Cgt

global which is a heatmap of size H×W indicating the prob-
ability of the body centers at any spatial location [57]. At in-
ference, we use a fully-convolutional [42] neural network F
to predict Cglobal from the input image I. F is trained to min-
imize the mean squared loss Lcontext = MSE(Cgt

global,Cglobal).
Finally, the context of the ith instance Ci is the channel-wise
concatenation of Cglobal and Clocal-i i.e. Ci ∈ RH×W×2.

3.3. Context Normalization Block

A key challenge is to design an architecture that incorpo-
rates spatial-context as a conditioning input. A naı̈ve early
fusion approach would be to simply concatenate the input im-



age I with the spatial-context C. Similarly, late fusion would
concatenate feature maps from later layers within the net-
work with appropriately down-sampled context C. However,
both of these approaches fail to improve performance.

We describe the Context Normalization (CoNorm) block
that can be easily introduced in any existing feature extrac-
tion backbone to overcome this issue (see Fig. 3). The key
intuition is that CoNorm allows normalization of intermedi-
ate feature maps using the conditioning input C. The deep
regression model P uses CoNorm blocks to leverage con-
textual information for predicting multiple meshes from the
input image I. Similar to Batch Normalization [17], CoNorm
learns to influence the output of the neural network by apply-
ing an affine transformation to the network’s intermediate
features based on C.

Let X ∈ RH′×W ′×D be an intermediate feature in the
deep network P . The CoNorm block consists of operations
Φlatent, Φscale and Φbias on the context C. C is spatially
downsampled to the same 2D resolution H ′ ×W ′ as X.

λ = Φlatent(C), (2)
σ = Φscale(λ), (3)
β = Φbias(λ), (4)

X′ = σ ∗X + β. (5)

Φlatent maps Ci to λ which is in a V dimensional la-
tent space i.e. λ ∈ RH′×W ′×V . Φscale and Φbias use the
latent vector λ to predict σ and β respectively. σ,β ∈
RH′×W ′×D. We use the predicted σ and β to normalize
the intermediate feature X using element-wise operations to
output X′.

3.4. Multi-Person Losses

In multi-person scenarios, the regression model P can of-
ten predict meshes that are intersecting and have incoherent
depth ordering. Following [19], we adopt two multi-person
losses – i) interpenetration and ii) depth-ordering loss, refer
Fig. 4. We briefly describe the losses here for completeness
but refer to [19] for more details.

Interpenetration Loss. Let Ω be the modified Signed
Distance Field (SDF) [13] over the 3D space. Ω takes a

Interpenetration Loss Depth Ordering Loss

Figure 4. Interpenetration loss prevents mesh intersections. Depth
ordering loss is useful for depth-consistent mesh outputs.

positive value for all the points inside the 3D human mesh
M, proportional to the distance from the mesh surface and is
0 everywhere else. We compute a separate distance field Ωi

for each human mesh Mi ∈ {0, 1, . . . , N} in the image I.
We define the pairwise interpenetration lossLij

collision between
mesh Mi and mesh Mj as follows,

Ω(x, y, z) = −min(SDF(x, y, z), 0), (6)

Lij
collision =

∑
v∈Mj

Ωi(v), (7)

Lcollision =

N∑
i=1

N∑
j=1

i 6=j

Lij
collision. (8)

Lcollision is the sum of valid pairwise mesh collisions (Fig.4).
Depth-ordering Loss. We now define the depth-ordering

loss Ldepth. The key idea is to leverage the ground-
truth instance segmentation maps available in the COCO
datasets [39]. We render all the meshes and the correspond-
ing depth maps onto the image plane using a differentiable
renderer [27] and optimize the vertex locations based on the
agreement with the ground-truth instance segmentation map
of the image I (Fig.4).

Finally, we train the network P to minimize the loss L
where wsingle, wcollision and wdepth are loss weights,

L = wsingleLsingle + wcollisionLcollision + wdepthLdepth (9)

4. Experiments
4.1. Implementation Details

OCHMR. For a fair comparison with other ap-
proaches [32, 58], we use ResNet-50 [15] as the default
backbone for the mesh regression model P and HRNet-
W32 [57] as the backbone for the context estimator F . We
insert CoNorm blocks after each of the 4 ResNet block in
the backbone. We set the CoNorm’s latent space dimension-
ality K as 128 for all our experiments. The input images
are resized to 224× 224, keeping the same aspect ratio and
padding with zeros. Following [57], gaussians of size 6
pixels is used to generate the local/global centermaps. The
train-time data-augmentation, training schedule and all other
hyper-parameters are set similar to [32]. The loss weights
are set to wsingle = 1, wcollision = 0.2, wdepth = 0.4 to ensure
that the weighted loss items are of the same magnitude. The
threshold of the local/global center heatmaps is set to 0.3.

Training Datasets. Similar to [32], we use MPI-INF-
3DHP [46], COCO [39], MPII [1], LSP-Extended [20] for
training (we do not use Human3.6M [18] due to licensing
issues). Only the training sets are used, following the stan-
dard split protocols. We use ground-truth SMPL annota-
tions from MPI-INF-3DHP and 2D annotations from COCO,
MPII and LSP-Extended. The instance segmentation masks
from COCO are used to compute Ldepth.



Method
Extra 3DPW-PC ↓ OCHuman↑ CrowdPose↑
Data MPJPE PMPJPE PVE AP AP50 AP75 APM APL AP AP50 AP75

SPIN [32] 3 129.6 82.6 157.6 12.7 46.8 19.4 17.8 26.2 16.4 40.1 10.6
PyMaf [67] 3 126.7 81.3 154.3 14.3 48.7 21.5 18.0 28.7 17.4 42.7 13.0
ROMP? [58] 3 115.6 75.8 147.5 19.8 56.2 25.0 19.3 32.9 28.5 58.8 24.7

SPIN [32] 7 132.7 83.7 162.3 11.1 41.4 18.6 15.6 25.9 14.8 38.5 9.5
ROMP [58] 7 119.7 79.7 152.8 15.6 55.0 23.6 18.7 30.0 18.9 44.6 13.8
OCHMR (Ours) 7 117.5 (-2.2) 77.1 149.6 24.8 (+9.2) 60.7 28.6 22.3 34.2 21.4 (+2.5) 48.3 16.5

Using ground-truth bounding boxes

SPIN [32] 7 128.4 82.1 155.7 16.9 56.1 25.4 20.0 31.4 17.2 42.4 11.2
OCHMR (Ours) 7 112.2 (-16.2) 75.2 145.9 37.7 (+20.8) 76.4 33.0 25.0 37.7 23.6 (+6.4) 51.1 18.7

Table 1. Comparisons to the state-of-the-art methods under severe occlusion using FasterRCNN [52] and ground-truth bounding boxes.
OCHMR significantly outperforms top-down as well as bottom-up approaches across all benchmarks. ROMP? trains on CrowdPose.

Evaluation Benchmarks. 3DPW-PC [70] is employed
as the main benchmark for evaluating 3D mesh/joint error
since it contains in-the-wild multi-person videos with abun-
dant 2D/3D annotations. 3DPW-PC is the person-occluded
subset of 3DPW [61]. We also evaluate OCHMR under
severe occlusion on Crowdpose [34] and OCHuman [69]
which are crowded-in-the-wild 2D pose benchmarks. For
completeness, we also benchmark our approach on the gen-
eral datasets like 3DPW and COCO.

Evaluation Metrics. We report mean per joint position
error (MPJPE), Procrustes-aligned MPJPE (PMPJPE) and
per-vertex error (PVE) on the 3D datasets. MPJPE and
PMPJPE evaluates the 3D joint rotation accuracy and PVE
evaluates the 3D surface error. Also, to evaluate the pose
accuracy under occlusion, we report standard metrics such as
AP,AP50,AP75,APM,APL,AR at various Object Keypoint
Similarity [34, 39]. We also report results using bounding
boxes obtained via Faster R-CNN [52] detector.

4.2. Comparison to the State-of-the-Art

Occlusion benchmarks. To validate the stability un-
der occlusion, we evaluate OCHMR on multiple occlusion
benchmarks. Firstly, on the person-occluded 3DPW-PC,
OCHuman and Crowdpose, results in Tab. 1 show that
OCHMR significantly outperforms previous state-of-the-art
methods [32, 58, 67]. Additionally, in Fig. 5, we qualita-
tively demonstrate the robustness of OCHMR under severe
occlusion in comparison to top-down SPIN [32] and bottom-
up ROMP [58]. Further, when using ground-truth bounding
boxes, the gains of OCHMR are significant in comparison
to baselines. These results show that using high-resolution
input images along with global/local centermaps is key for
occlusion reasoning.

General benchmarks. We also compare OCHMR with
other approaches on general benchmarks like 3DPW (Tab. 2)
and COCO (Tab. 3). OCHMR undergoes no performance
degradation on non-occlusion cases. Infact, OCHMR im-
proves baseline SPIN’s MPJPE error by 5mm on 3DPW.

Without using extra supervision, our method achieves com-
parable performance to ROMP with ResNet-50 backbone.
We also outperform other methods on the COCO dataset.

Method H3.6M MPJPE↓ PMPJPE↓ PVE↓
HMR [25] 3 130.0 76.7 -
Kanazawa et al. [26] 3 116.5 72.6 139.3
Arnab et al. [2] 3 - 72.2 -
GCMR [33] 3 - 70.2 -
DSD-SATN [59] 3 - 69.5 -
SPIN [32] 3 96.9 59.2 116.4
ROMP (ResNet-50) [58] 3 91.3 54.9 108.3

I2L-MeshNet* [47] 3 93.2 58.6 -
EFT* [22] 3 - 54.2 -
VIBE* [30] 3 93.5 56.5 113.4
PyMaf* [67] 3 92.8 58.9 110.1
ROMP (ResNet-50)* [58] 3 89.3 53.5 105.6
SPIN [32] 7 94.7 60.2 111.4
OCHMR (Ours) 7 89.7 (-5.0) 58.3 (-1.9) 107.1 (-4.3)

Table 2. Comparisons to the state-of-the-art methods on 3DPW
test set using Protocol 2 [58]. * denotes extra training data in
comparison to SPIN [32]. OCHMR does not use Human3.6M [18]
for training and achieves comparable results to prior art that uses
extra supervision.

Method AP↑ AP50↑ AP75↑ APM↑ APL↑ AR↑
SPIN [32] 11.3 28.6 5.8 10.2 11.4 22.8
CRMH? [19] 12.6 33.8 7.6 13.2 12.8 25.0
PyMaf? [67] 13.8 35.8 9.7 14.8 14.2 28.9
ROMP [58] 14.7 36.7 9.8 15.3 14.8 29.0
OCHMR (ours) 15.3 (+0.6) 38.7 10.2 16.7 15.9 29.4

Using ground-truth bounding boxes

SPIN [32] 13.0 33.8 7.0 13.6 12.9 26.8
OCHMR (Ours) 17.4 (+4.4) 41.9 11.8 18.2 17.4 32.4

Table 3. Comparisons to the state-of-the-art methods on COCO
val set evaluated for 2D keypoint projection. ? denotes extra
training data compared to OCHMR.



4.3. Analysis

We perform all our analysis on the 3DPW-PC dataset
with ground-truth boxes for evaluations.
CoNorm Block Architecture. We compare CoNorm blocks
against early and late fusion in Tab. 4. In early fusion, we
perform channel-wise concatenation of input image, global
centermap and local centermap. In late fusion we concate-
nate the intermediate feature after the third ResNet block
with the downsampled context information. We observe that
injection of high-resolution context information at multiple-
depths in the form of CoNorm blocks is important for accu-
rate human mesh recovery under occlusion. Further, we vary
the dimension K of the latent space of the four CoNorm
blocks in the OCHMR backbone. We show that increasing
K improves performance under occlusion in comparison to
baseline SPIN, with K = 128 achieving the optimal bal-
ance between the parameter overhead and human recovery
performance.
Effect of Multi-Person losses. To understand the effect of
multi-person losses like interpenetration loss Lcollision and
depth-ordering loss Ldepth, we perform an ablative study us-
ing the loss weights in the OCHMR framework in Tab. 5. We
achieve the best performance when using both losses, how-
ever the use of supervised Ldepth loss gives better gains than
self-supervised Lcollision. Note, OCHMR still significantly
outperforms baseline SPIN when only using Lsingle.
Choice of Context. CoNorm blocks allow conditioning the
network P with various representations of the spatial-context
C. Tab. 6 shows the effect of using ground-truth and pre-
dicted (using F) Local and Local + Global Centermaps along
with 2D keypoints as C. We use offshelf pose-estimation
network HRNet-W48 [57] trained on COCO dataset as our
F . In case of 2D keypoints, C is a 17-channel heatmap
corresponding to keypoint locations. In comparison to local
centermaps, the addition of global centermaps helps improve
performance under occlusion. Interestingly, conditioning us-

Method MPJPE ↓ PMPJPE↓ PVE↓
SPIN 128.4 82.1 155.7
OCHMR, early-fusion 115.8 76.4 150.1
OCHMR, late-fusion 119.8 80.2 151.8

OCHMR, K = 16 116.8 76.9 150.2
OCHMR, K = 32 114.2 76.2 148.6
OCHMR, K = 64 113.0 75.0 146.4
OCHMR, K = 128 112.2 75.2 145.9
OCHMR, K = 256 113.1 74.7 146.1

Table 4. Comparison of CoNorm block with early and late fusion
of context along with variation of CoNorm block’s latent space di-
mension K. Injection of contextual information at multiple depths
outperforms early/late fusion. Increase in K results in better con-
text normalization with better performance under occlusion.

Lsingle Lcollision Ldepth MPJPE ↓ PMPJPE↓ PVE↓
3 7 7 116.9 77.1 149.2
3 3 7 115.3 76.2 148.7
3 7 3 113.6 75.6 147.0
3 3 3 112.2 75.2 145.9

Table 5. Ablation of multi-person losses in OCHMR. We default
wsingle to 1 to ensure model convergence. We found the relative
importance of Ldepth to be greater than Lcollision.

ing ground-truth 2D keypoints outperforms all other choices.
However, when ground-truth keypoints are unavailable, body
centers outperform estimated 2D keypoints as estimating ac-
curate 2D pose under occlusion is more challenging than
estimating body centers.

Context C
Ground-Truth Estimated by F

MPJPE ↓ PMPJPE↓ MPJPE ↓ PMPJPE↓
Local Center 113.0 76.4 114.8 77.1
Local + Global Center 111.4 74.7 112.2 75.2
2D Keypoints 109.5 73.9 116.8 78.9

Table 6. Comparison of various choices of contexts in OCHMR
conditioning. Local + Global centermaps performs better than other
conditioning choices when being estimated by the network F .

Limitations. OCHMR is a multi-stage top-down method
and is, therefore, not real-time during inference. Though
OCHMR improves performance under multi-person occlu-
sion, it is still susceptible to failure under truncation and ex-
treme cropping due to object occlusion. Moreover, OCHMR
fails to handle extreme poses and shapes due to the lack
of training data, as shown in the Sup. Mat. In the future,
OCHMR can be extended and incorporated with the recent
progress to handle various kinds of occlusions [31, 49, 70].

5. Conclusion

Most top-down methods for human mesh recovery as-
sume a single subject in the input, causing them to fail
under severe person-person occlusion. In this work, we
introduce OCHMR, a novel top-down method to handle mul-
tiple occluded people in crowded scenes. Our key idea is
conditioning top-down models on spatial-context from the
image, in the form of local and global centermaps which
allows OCHMR to effectively disambiguate between over-
lapping humans. We propose Contextual Normalization
(CoNorm) blocks, a novel architectural improvement which
can be easily extended to any existing top-down method.
While OCHMR draws inspiration from bottom-up methods,
we retain the advantages of both bottom-up and top-down
methods, resulting in a method that can handle multi-person
occlusion and achieve pixel-aligned reconstruction results.



Figure 5. Qualitative results on the OCHuman val set. Each image (left to right) shows RGB image, SPIN [32] predictions, ROMP [58]
predictions and OCHMR predictions. Due to occlusions, SPIN often misses the person in the background which is recovered by OCHMR.
In comparison to ROMP, OCHMR outputs pixel aligned meshes with correct depth-ordering. Please see additional results in Sup. Mat.
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