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Abstract

Prevailing video frame interpolation algorithms, that
generate the intermediate frames from consecutive inputs,
typically rely on complex model architectures with heavy
parameters or large delay, hindering them from diverse
real-time applications. In this work, we devise an efficient
encoder-decoder based network, termed IFRNet, for fast in-
termediate frame synthesizing. It first extracts pyramid fea-
tures from given inputs, and then refines the bilateral in-
termediate flow fields together with a powerful intermedi-
ate feature until generating the desired output. The gradu-
ally refined intermediate feature can not only facilitate in-
termediate flow estimation, but also compensate for con-
textual details, making IFRNet do not need additional syn-
thesis or refinement module. To fully release its potential,
we further propose a novel task-oriented optical flow dis-
tillation loss to focus on learning the useful teacher knowl-
edge towards frame synthesizing. Meanwhile, a new ge-
ometry consistency regularization term is imposed on the
gradually refined intermediate features to keep better struc-
ture layout. Experiments on various benchmarks demon-
strate the excellent performance and fast inference speed
of proposed approaches. Code is available at https:
//github.com/ltkong218/IFRNet.

1. Introduction
Video frame interpolation (VFI), that converts low frame

rate (LFR) image sequences to high frame rate (HFR)
videos is an important low-level computer vision task. Re-
lated techniques are widely applied to various practical ap-
plications, such as slow-motion generation [22], novel view
synthesis [58] and cartoon creation [44]. Although it has
been studied by a large number of researches, there are still
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Figure 1. Speed, accuracy and parameters comparison. Pro-
posed IFRNet achieves state-of-the-art frame interpolation accu-
racy with fast inference speed and lightweight model size.

great challenges when dealing with complicated dynamic
scenes, which include large displacement, severe occlusion,
motion blur and abrupt brightness change.

Recently, with the development of optical flow net-
works [13, 25, 48, 49], significant progress has been made
by flow-based VFI approaches [22, 35, 39, 52], since op-
tical flow can provide an explicit correspondence to reg-
ister frames in a video sequence. Successful flow-based
approaches usually follow a three-step pipeline: 1) Esti-
mate optical flow between target frame and input frames.
2) Warp input frames or context features by predicted flow
fields for spatial alignment. 3) Refine warped frames or fea-
tures and generate the target frame by a synthesis network.
Denoting input frames and target frame to be I0, I1 and
It (0 < t < 1), existing methods either first estimate optical
flow F0→1, F1→0 [3,22,34,35,38], and then approximate or
refine bilateral intermediate flow Ft→0, Ft→1 [9, 22, 42, 52]
as shown in Figure 2 (a), or throw the intractable intermedi-
ate flow estimation sub-task to a learnable flow network for
end-to-end training [20, 53, 57] as depicted in Figure 2 (b).
Their common step is to further employ an image synthesis
network to encode spatial aligned context feature [34] for
target frame generation or refinement.
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Figure 2. Different flow-based VFI paradigms. We roughly classify existing flow-based VFI methods based on encoder-decoders with
specific function. In (a) [3,22,34,35,38,39,42,52], FlowNet estimates conventional optical flow F0→1, F1→0, the middle part approximates
or further refines flow fields Ft→0, Ft→1. In (b) [20, 53, 57], the Intermediate FlowNet directly predicts intermediate flow of Ft→0, Ft→1.
Both (a) and (b) contain a separate synthesis network for target frame generation. In (c), proposed IFRNet jointly refines the intermediate
flow Ft→0, Ft→1 together with a powerful intermediate feature φ̂t to generate the target frame in a single encoder-decoder.

Although above pipeline that first estimates intermediate
flow and then context feature has become the most popular
paradigm for flow-based VFI approaches [9,34,35,39,42], it
suffers from several defects. First, they divide intermediate
flow and context feature refinement into separate encoder-
decoders, which ignores the mutual promotion of these two
crucial elements for frame interpolation. Second, their cas-
caded architecture based on above design concept can sub-
stantially increase the inference delay and model parame-
ters, blocking them from mobile and real-time applications.

In this paper, we propose a novel Intermediate Fea-
ture Refine Network (IFRNet) for VFI to overcome the
above limitations. For the first time, we merge above sep-
arated flow estimation and feature refinement into a single
encoder-decoder based model for compactness and fast in-
ference, abstracted in Figure 2 (c). It first extracts pyramid
features from given inputs by the encoder, and then jointly
refines the bilateral intermediate flow fields together with
a powerful intermediate feature through coarse-to-fine de-
coders. The improved architecture can benefit intermediate
flow and intermediate feature with each other, endowing our
model with the ability to not only generate sharper moving
objects but also capture better texture details.

For better supervision, we propose task-oriented flow
distillation loss and feature space geometry consistency
loss to effectively guide the multi-scale motion estimation
and intermediate feature refinement. Specifically, our flow
distillation approach adjusts the robustness of distillation
loss adaptively in space and focuses on learning the useful
teacher knowledge for frame synthesizing. Besides, pro-
posed geometry consistency loss can employ the extracted
intermediate features from ground truth to constrain the re-
constructed intermediate features for keeping better struc-
ture layout. Figure 1 gives a speed, accuracy and parameters
comparison among advanced VFI methods, demonstrating
the state-of-the-art performance of our approaches. In sum-
mary, our main contributions are listed as follows:

• We devise a novel IFRNet to jointly perform interme-
diate flow estimation and intermediate feature refine-
ment for efficient video frame interpolation.

• Task-oriented flow distillation loss and feature space
geometry consistency loss are newly proposed to pro-
mote intermediate motion estimation and intermediate
feature reconstruction of IFRNet, respectively.

• Benchmark results demonstrate that our IFRNet not
only achieves state-of-the-art VFI accuracy, but also
enjoys fast inference speed and lightweight model size.

2. Related Work
Video Frame Interpolation. The mainstream VFI meth-
ods can be classified into flow-based [3, 22, 30, 34, 35, 38,
39, 42, 52–54, 57], kernel-based [7, 8, 12, 26, 36, 37, 40]
and hallucination-based approaches [10, 16, 24]. Differ-
ent VFI paradigms have their own merits and flaws due
to the substantial frame synthesizing manner. For exam-
ple, kernel-based methods are good at handling motion
blur by convolving over local patches [36, 37], succes-
sive works mainly extend it to deal with high resolution
videos [40], increase the degrees of freedom for convolu-
tion kernel [7,8,26], or combine them with other paradigms
for compensation [4, 12]. However, they are typically com-
putationally expensive and short of dealing with occlusion.
In another way, hallucination-based methods directly syn-
thesize frames from the feature domain by blending field-
of-view features generated by deformable convolution [11]
or PixelShuffle operations [10]. They can naturally generate
complex contextual details, while the predicted frames tend
to be blurry when fast-moving objects exist.

Recently, significant progress has been made by flow-
based VFI approaches, since optical flow can provide an
explicit correspondence for frame registration. These so-
lutions either employ an off-the-shelf flow model [34, 52]
or estimate task-specific flow [22, 30, 39, 42, 53] as a guid-
ance for pixel-level motion. Common subsequent step is to
forward [14] or backward [51] warp input images to target
frame, and finally refine warped frames by an image syn-
thesis network [12, 34, 35, 39], often instantiated as a Grid-
Net [15]. For achieving better image interpolation quality,
more complicated deep models are devised to estimate in-
termediate flow fields [9, 52] and refine the generated tar-
get frame [22, 35, 38, 39]. However, the heavy computation
cost and large inference delay make them unsuitable for re-
source limited devices. To take a breath from above module
cascading competition, and reconsider the improvement of
prior efficient flow-based VFI paradigm, e.g. DVF [30], we
propose a novel single encoder-decoder based IFRNet, that
can perform real-time inference with excellent accuracy.
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Figure 3. Architecture overview and loss functions of IFRNet. Our model is an efficient encoder-decoder based network, which first
extracts pyramid context features from input frames with a shared encoder, and then gradually refines bilateral intermediate flow fields
Ft→0, Ft→1 together with reconstructed intermediate feature φ̂t through coarse-to-fine decoders, until yielding the final output. Besides
the common image reconstruction loss Lr , task-oriented flow distillation loss Ld and feature space geometry consistency loss Lg are newly
devised to guide the feature alignment procedure more effectively towards intermediate frame synthesizing.

Optical Flow Estimation. Finding dense correspondence
between adjacent frames, namely optical flow estima-
tion [19], has been studied for decades for its fundamen-
tal role in many downstream video processing tasks [5, 55].
FlowNet [13] is the first attempt to apply deep learn-
ing for optical flow estimation based on the encoder-
decoder U-shape network. Inspired by traditional coarse-
to-fine paradigm, SPyNet [41], PWC-Net [48] and Fast-
FlowNet [25] integrate pyramid feature, backward warp-
ing and achieve impressive real-time performance. Knowl-
edge distillation [18] also plays an important role in optical
flow prediction, usually embodied as generating pseudo la-
bel in unsupervised optical flow learning [27, 28] or related
tasks [1, 43]. A recent VFI method [20] also uses a distil-
lation strategy to promote motion prediction. Beyond the
difference of architecture design, our distillation approach
can focus on the useful knowledge for intermediate frame
synthesizing in a task adaptative manner.

3. Proposed Approach

In this section, we first introduce the IFRNet architec-
ture built on the principle of joint refinement of interme-
diate flow and intermediate feature, to obtain an efficient
encoder-decoder based framework for VFI. Then two novel
objective functions, i.e., task-oriented flow distillation loss
and feature space geometry consistency loss are introduced
to help our model achieve excellent performance.

3.1. IFRNet

Given two input frames I0 and I1 at adjacent time in-
stances, video frame interpolation aims to synthesize an in-
termediate frame It, where 0 < t < 1. To achieve this
goal, proposed model performs a first extraction phase so
as to retrieve a pyramid of features from each frame, then
in a coarse-to-fine manner it progressively refines bilateral
intermediate flow fields together with reconstructed inter-
mediate feature until reaching the highest level of the pyra-
mid to obtain the final output. Figure 3 sketches the overall
architecture of proposed IFRNet.
Pyramid Encoder. To obtain contextual representation
from each input frame, we design a compact encoder E
to extract a pyramid of features. Purposely, the parame-
ter shared encoder is built of a block of two 3×3 convo-
lutions in each pyramid level, respectively with strides 2
and 1. As shown in Figure 3, IFRNet extracts 4 levels of
pyramid features, counting 8 convolution layers, each fol-
lowed by a PReLU activation [17]. By gradually decimat-
ing the spatial size, it increases the feature channels to 32,
48, 72 and 96, generating pyramid features φk0 , φ

k
1 in level

k (k ∈ {1, 2, 3, 4}) for frames I0 and I1, respectively.
Coarse-to-Fine Decoders. After extracting meaningful hi-
erarchical representations, we then gradually refine inter-
mediate flow fields through multiple decoders by backward
warping pyramid features φk0 , φ

k
1 to generate φ̃k0 , φ̃

k
1 accord-

ing to F kt→0 and F kt→1, respectively. The main advantage of
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Figure 4. Details of the decoder in each pyramid level.

coarse-to-fine warping strategy consists of computing eas-
ier residual flow at each scale. Different from previous VFI
approaches containing post-refinement [12, 20, 35, 39], we
explore to improve the bilateral flow prediction during its
coarse-to-fine procedure for higher efficiency. Specifically,
we make each decoder Dk+1 output a higher level recon-
structed intermediate feature φ̂kt besides bilateral flow fields
F kt→0, F

k
t→1, which can fill up the missing reference infor-

mation to facilitate motion estimation. On the other hand,
better predicted flow fields F kt→0, F

k
t→1 will align source

pyramid features to the target position more precisely, thus,
generating better φ̃k0 , φ̃

k
1 , which can in turn improve higher

level intermediate feature reconstruction. Therefore, de-
coders in proposed IFRNet can jointly refine bilateral inter-
mediate flow fields together with reconstructed intermediate
feature, benefitting each other until reaching desired output.
Moreover, the gradually refined intermediate feature, con-
taining bilateral occlusion and global context information,
can finally generate fusion mask and compensate for mo-
tion details, that are often missing by flow-based methods,
enabling IFRNet a powerful encoder-decoder VFI architec-
ture without additional refinement [35, 39].

Concretely, in each pyramid level, we stack correspond-
ing input features into a holistic volume that is forwarded
by a compact decoder network Dk, consisting of a block
of six 3×3 convolutions and one 4×4 deconvolution, with
strides 1 and 1/2, respectively. A PReLU [17] follows each
convolution layer. Details of each decoder is shown in Fig-
ure 4. In order to keep relative large receptive field and
channel numbers for motion estimation and feature encod-
ing while maintaining efficiency, we modify the third and
the fifth convolution to update only partial channels of pre-
vious output tensor. Furthermore, residual connection and
interlaced placement can promote information propagation
and joint refinement. More details are shown in supplemen-
tary. Note that inputs of D4 and outputs of D1 are different
from other decoders due to the task-related characteristics.
In summary, features among decoders can be computed by

[F 3
t→0, F

3
t→1, φ̂

3
t ] = D4([φ40, φ

4
1, T ]), (1)

[F k−1t→0 , F
k−1
t→1 , φ̂

k−1
t ] = Dk([F kt→0, F

k
t→1, φ̂

k
t , φ̃

k
0 , φ̃

k
1 ]),

(2)

[Ft→0, Ft→1,M,R] = D1([F 1
t→0, F

1
t→1, φ̂

1
t , φ̃

1
0, φ̃

1
1]), (3)

where Dk(k = 2, 3) stand for decoders at middle pyra-
mid levels, [·] denotes concatenation operation. T is a one-
channel conditional input for arbitrary time interpolation,

whose values are all the same and set to t. M is a one-
channel merge mask exported by a sigmoid layer whose el-
ements range from 0 to 1, and R is a three-channel image
residual that can compensate for details. Finally, we can
synthesize the desired frame Ît by following formulation

Ît =M � Ĩ0 + (1−M)� Ĩ1 +R, (4)

Ĩ0 = w(I0, Ft→0), Ĩ1 = w(I1, Ft→1), (5)

where w means backward warping, � is element-wise mul-
tiplication. M adjusts the mixing ratio according to bidi-
rectional occlusion information, while R compensates for
some details when flow-based generation is unreliable, such
as regions of target frame are occluded in both views.
Discussion with Optical Flow Networks. Different from
the coarse-to-fine pipeline in real-time optical flow [25, 48]
which mainly deals with large displacement matching chal-
lenge, in video interpolation, since the target frame is miss-
ing, its motion estimation becomes a “chicken-and-egg”
problem. Therefore, decoders of IFRNet reconstruct inter-
mediate feature besides intermediate flow fields, performing
spatio-temporal feature aggregation and intermediate mo-
tion refinement jointly to benefit from each other.
Image Reconstruction Loss. According to above analy-
sis, an efficient IFRNet has been designed for VFI, which
is end-to-end trainable. For the purpose of generating inter-
mediate frame, we employ the same image reconstruction
loss Lr as [39] between network output Ît and ground truth
frame Igtt , which is the sum of two terms and denoted by

Lr = ρ(Ît − Igtt ) + Lcen(Ît, Igtt ), (6)

where ρ(x) = (x2 + ε2)α with α = 0.5, ε = 10−3 is the
Charbonnier loss [6] severing as a surrogate for the L1 loss.
While Lcen is the census loss, which calculates the soft
Hamming distance between census-transformed [32] image
patches of size 7×7.

3.2. Task-Oriented Flow Distillation Loss

Training IFRNet with above reconstruction loss Lr can
already perform intermediate frame synthesizing. However,
the simple optimization target usually drops into local mini-
mum, since illuminance cases are often challenging, i.e., ex-
treme brightness and repetitive texture regions. To deal with
this problem, we try to adopt the knowledge distillation [18]
strategy to guide multi-scale intermediate flow estimation of
IFRNet by an off-the-shelf teacher flow network, that helps
to align multi-scale pyramid features explicitly. In practice,
the pre-trained teacher is only used during training, and we
calculate its flow prediction as pseudo label F pt→0, F

p
t→1 in

advance for efficiency. Note that RIFE [20] also uses flow
distillation. However, their indiscriminate distillation man-
ner usually learns undesired noise existed in pseudo label.
Even if ground truth is available, optical flow itself is often



a sub-optimal representation for specific video task [53]. To
overcome above limitations, we propose task-oriented flow
distillation loss that can decrease the adverse impacts while
focusing on the useful knowledge for better VFI.

Observing that Ft→0, Ft→1 which directly control frame
synthesis are sensitive to harmful information in pseudo la-
bel. Therefore, we impose multi-scale flow distillation ex-
cept for the decoderD1, and leave its flow prediction totally
constrained by the reconstruction loss Lr in a task-oriented
manner [53]. Furthermore, we can compare above relaxed
flow prediction Ft→0, Ft→1 with pseudo label F pt→0, F

p
t→1

to calculate robustness masks P0, P1, and use them to adjust
the robustness of distillation loss spatially in lower multiple
scales for better task-oriented flow distillation, whose pro-
cedure is depicted in Figure 3. Specifically, we can obtain
Pl(l ∈ {0, 1}) by the following formulation

Pl = exp(−β|Ft→l − F pt→l|epe), (7)

where | · |epe calculates per-pixel end-point-error, the coef-
ficient β controlling sensibility for robustness is set to 0.3
according to grid search. Foundation of above operations
is based on the assumption that task-oriented flow generally
agrees with true optical flow but differs in some details.

Following previous experience [21, 47], our task-
oriented flow distillation employs the generalized Charbon-
nier loss ρ(x) = (x2 + ε2)α for better robust learning of
intermediate flow, where parameters ε and α control the ro-
bustness of this loss. Formally, it can be written as

Ld =
3∑
k=1

1∑
l=0

ρ(U2k(F kt→l)− F
p
t→l), (8)

where Us is the bilinear upsampling operation with scale
factor s. However, different from the fixed format like pre-
vious methods [21, 47], we make it adjustable about VFI
task by letting ε and α be functions of the robustness pa-
rameter p, where p ∈ (0, 1] means the robustness value of
any position in aforementioned robustness masks P0, P1. In
general, we employ the linear and exponential linear func-
tions to generate α and ε separately as follows

α = p/2, ε = 10−(10p−1)/3. (9)

The coefficients are selected based on two typical cases. For
example, when p = 1.0, ρ(x) becomes the surrogateL1 loss
in Eq. 6. And when p = 0.4, it turns to be the robust loss
used in LiteFlowNet [21]. Figure 5 gives some intuitive
examples of this adaptive robust loss. Comprehensively
speaking, in each spatial location, if the task-oriented flow
prediction of decoder D1 is consistent with that in pseudo
label, the gradient of the adaptive distillation loss is rela-
tively steep, which tends to distill this helpful information
to the bottom three decoders by common gradient descent
optimizer. On the other hand, the loss will become more ro-
bust to downgrade this relatively harmful flow knowledge.
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Figure 5. Task-oriented flow distillation loss. It takes the format
of generalized Charbonnier loss, while the concrete form in each
location is controlled by the corresponding robustness parameter
p, which is determined by Eq. 7 to acquire task adaptive ability.

3.3. Feature Space Geometry Consistency Loss

Besides above task-oriented flow distillation loss for fa-
cilitating multi-scale intermediate flow estimation, better
supervision of intermediate feature is preferred for further
improvement. Observing that extracted pyramid features
φk0 , φ

k
1 by the encoder E , in a sense, play an equivalent role

as the reconstructed intermediate feature φ̂kt from the de-
coder Dk+1, we try to employ the same parameter shared
encoder E to extract a pyramid of features φkt from ground
truth frame Igtt , and use φkt to regularize the reconstructed
intermediate feature φ̂kt in multi-scale feature domain.

Intuitively, we can adopt the commonly used L1 loss
to restrict φ̂kt to be close to φkt . However, the overtighten
constraint will harm the global context and occlusion infor-
mation contained in reconstructed intermediate feature φ̂kt .
To relax it and inspired by the local geometry alignment
property of census transform [56], we extend the census
loss Lcen [32] into multi-scale feature space for progres-
sive supervision, where the soft Hamming distance is cal-
culated between census-transformed corresponding feature
maps with 3×3 patches in a channel-by-channel manner.
Formally, this loss can be written as

Lg =
3∑
k=1

Lcen(φ̂kt , φkt ). (10)

Our motivation is that the extracted pyramid feature, con-
taining useful low-level structure information for frame syn-
thesizing, can regularize the reconstructed intermediate fea-
ture to keep better geometry layout. For each spatial loca-
tion, Lg only constrain the geometry of its neighbor local
patch in every feature map. Consequently, there is no re-
striction on the channel-wise representation for φ̂kt to en-
code bilateral occlusion and residual information.

Based on above analysis, our final loss function, contain-
ing three parts for joint optimization, is formulated as

L = Lr + λLd + ηLg, (11)

where weighting parameters are set to λ = 0.01, η = 0.01.



Method Vimeo90K UCF101
SNU-FILM Time

(s)
Params

(M)
FLOPs

(T)Easy Medium Hard Extreme

SepConv [37] 33.79/0.9702 34.78/0.9669 39.41/0.9900 34.97/0.9762 29.36/0.9253 24.31/0.8448 0.065 21.7 0.36
CAIN [10] 34.65/0.9730 34.91/0.9690 39.89/0.9900 35.61/0.9776 29.90/0.9292 24.78/0.8507 0.069 42.8 1.29
AdaCoF [26] 34.47/0.9730 34.90/0.9680 39.80/0.9900 35.05/0.9754 29.46/0.9244 24.31/0.8439 0.054 21.8 0.36
RIFE [20] 35.62/0.9780 35.28/0.9690 40.06/0.9907 35.75/0.9789 30.10/0.9330 24.84/0.8534 0.026 9.8 0.20
IFRNet 35.80/0.9794 35.29/0.9693 40.03/0.9905 35.94/0.9793 30.41/0.9358 25.05/0.8587 0.025 5.0 0.21
IFRNet small 35.59/0.9786 35.28/0.9691 39.96/0.9905 35.92/0.9792 30.36/0.9357 25.05/0.8582 0.019 2.8 0.12
ToFlow [53] 33.73/0.9682 34.58/0.9667 39.08/0.9890 34.39/0.9740 28.44/0.9180 23.39/0.8310 0.152 1.4 0.62
CyclicGen [29] 32.09/0.9490 35.11/0.9684 37.72/0.9840 32.47/0.9554 26.95/0.8871 22.70/0.8083 0.161 19.8 1.77
DAIN [3] 34.71/0.9756 34.99/0.9683 39.73/0.9902 35.46/0.9780 30.17/0.9335 25.09/0.8584 1.033 24.0 5.51
SoftSplat [35] 36.10/0.9700 35.39/0.9520 - - - - 0.195 12.2 0.90
BMBC [38] 35.01/0.9764 35.15/0.9689 39.90/0.9902 35.31/0.9774 29.33/0.9270 23.92/0.8432 3.845 11.0 2.50
CDFI full [12] 35.17/0.9640 35.21/0.9500 40.12/0.9906 35.51/0.9778 29.73/0.9277 24.53/0.8476 0.380 5.0 0.82
ABME [39] 36.18/0.9805 35.38/0.9698 39.59/0.9901 35.77/0.9789 30.58/0.9364 25.42/0.8639 0.905 18.1 1.30
IFRNet large 36.20/0.9808 35.42/0.9698 40.10/0.9906 36.12/0.9797 30.63/0.9368 25.27/0.8609 0.079 19.7 0.79

Table 1. Quantitative comparison (PSNR/SSIM) of VFI results on the Vimeo90K, UCF101 and SNU-FILM datasets. For each item,
the best result is boldfaced, and the second best is underlined. Top and bottom parts are divided by running time.

4. Experiments

In this section, we first introduce implementation details
and datasets used in this paper. Then, we quantitatively and
qualitatively compare IFRNet with recent state-of-the-arts
on various benchmarks. Finally, ablation studies are carried
out to analyze the contribution of proposed approaches. Ex-
periments in the main paper follow a common practice of
t = 0.5, that is synthesizing the single middle frame. IFR-
Net also supports multi-frame interpolation with temporal
encoding T , whose results are presented in supplementary.

4.1. Implementation Details

We implement proposed algorithm in PyTorch, and use
Vimeo90K [53] training set to train IFRNet from scratch.
Our model is optimized by AdamW [31] algorithm for 300
epochs with total batch size 24 on four NVIDIA Tesla V100
GPUs. The learning rate is initially set to 1 × 10−4, and
gradually decays to 1 × 10−5 following a cosine attenua-
tion schedule. During training, we augment the samples
by random flipping, rotating, reversing sequence order and
random cropping patches with size 224 × 224. For optical
flow distillation, we extract pseudo label of bilateral inter-
mediate flow fields with the pre-trained LiteFlowNet [21] in
advance, and perform consistent augmentation operations
with frame triplets during the whole training process.

4.2. Evaluation Metrics and Datasets

We evaluate our method on various datasets covering di-
verse motion scenes for comprehensive comparison. Com-
mon metrics, such as PSNR and SSIM [50] are adopted for
quantitative evaluation. For Middlebury, we use the official
IE and NIE indices. Now, we briefly introduce the used test
datasets to assess our approaches.
Vimeo90K [53]: It contains frame triplets of 448×256 res-
olution. There are 3,782 triplets consisted in the test part.

UCF101 [45]: We adopt the test set selected in DVF [30],
which includes 379 triplets of 256×256 frame size.
SNU-FILM [10]: SNU-FILM contains 1,240 frame triplets
of approximate 1280×720 resolution. According to motion
magnitude, it is divided into four different parts, namely,
Easy, Medium, Hard, and Extreme for detailed comparison.
Middlebury [2]: The Middlebury benchmark is a widely
used dataset to evaluate optical flow and VFI methods. Im-
age resolution in this dataset is around 640×480. In this
paper, we test on the Evaluation set without using Other set.

4.3. Comparison with the State-of-the-Arts

We compare IFRNet with state-of-the-art VFI meth-
ods, including kernel-based SepConv [37], AdaCoF [26]
and CDFI [12], flow-based ToFlow [53], DAIN [3], Soft-
Splat [35], BMBC [38], RIFE [20] and ABME [39], and
hallucination-based CAIN [10] and FeFlow [16]. For re-
sults on SNU-FILM, we execute the released codes of CDFI
and RIFE and refer to the other results tested in ABME. For
Middlebury, we directly test on the Evaluation part and sub-
mit interpolation results to the online benchmark. To mea-
sure the inference speed and computation complexity, we
run all methods on one Tesla V100 GPU under 1280×720
resolution and average the running time with 100 iterations.
For fair comparison, we further build a large and a small
version of IFRNet by scaling feature channels with 2.0 and
0.75, respectively, and separate above methods into two
classes, i.e., fast and slow, according to their inference time.
Quantitative Evaluation. Table 1 and Table 2 summarize
quantitative results on diverse benchmarks. On Vimeo90K
and UCF101 test datasets, IFRNet large achieves the best
results on both PSNR and SSIM metrics. A recent method
ABME [39] also gets similar accuracy. However, our model
runs 11.5× faster with similar amount of parameters due to
the efficiency of single encoder-decoder based architecture.
Our large model also obtains leading results on the Easy,



(a) Ground Truth (b) Overlaid (c) SepConv [37] (d) DAIN [3] (e) CAIN [10] (f) AdaCoF [26] (g) CDFI [12] (h) ABME [39] (i) Ours

Figure 6. Qualitative comparison of different VFI methods on SNU-FILM (Hard) dataset. Proposed IFRNet algorithm can synthesize
fast moving objects with sharp boundary while maintaining distinct contextual details. Zoom in for best view.

Method
Average Mequon Schefflera Urban Teddy Backyard Basketball Dumptruck Evergreen

IE NIE IE NIE IE NIE IE NIE IE NIE IE NIE IE NIE IE NIE IE NIE

SuperSlomo [22] 5.310 0.778 2.51 0.59 3.66 0.72 2.91 0.74 5.05 0.98 9.56 0.94 5.37 0.96 6.69 0.60 6.73 0.69
ToFlow [53] 5.490 0.840 2.54 0.55 3.70 0.72 3.43 0.92 5.05 0.96 9.84 0.97 5.34 0.98 6.88 0.72 7.14 0.90
DAIN [3] 4.856 0.713 2.38 0.58 3.28 0.60 3.32 0.69 4.65 0.86 7.88 0.87 4.73 0.85 6.36 0.59 6.25 0.66
FeFlow [16] 4.820 0.719 2.28 0.51 3.50 0.66 2.82 0.70 4.75 0.87 7.62 0.84 4.74 0.86 6.07 0.64 6.78 0.67
AdaCoF [26] 4.751 0.730 2.41 0.60 3.10 0.59 3.48 0.84 4.84 0.92 8.68 0.90 4.13 0.84 5.77 0.58 5.60 0.57
BMBC [38] 4.479 0.696 2.30 0.57 3.07 0.58 3.17 0.77 4.24 0.84 7.79 0.85 4.08 0.82 5.63 0.58 5.55 0.56
SoftSplat [35] 4.223 0.645 2.06 0.53 2.80 0.52 1.99 0.52 3.84 0.80 8.10 0.85 4.10 0.81 5.49 0.56 5.40 0.57
IFRNet large 4.216 0.644 2.08 0.53 2.78 0.51 1.74 0.43 3.96 0.83 7.55 0.87 4.42 0.84 5.56 0.56 5.64 0.58

Table 2. Evaluation results on the Middlebury benchmark. For each item, the best result is boldfaced, and the second best is underlined.

Medium and Hard parts of SNU-FILM datasets, while only
falls behind ABME on the Extreme part. We attribute the
reason to be that the bilateral cost volume constructed by
ABME is good at estimating large displacement motion. In
Table 2, IFRNet large achieves top-performing VFI accu-
racy in most of the eight Middlebury test sequences, and
outperforms the previous state-of-the-art SoftSplat [35] on
both average IE and NIE metrics. Although the improve-
ment is limited, our approach runs 2.5 × faster than Soft-
Splat which takes cascaded VFI architecture. For FLOPs
in convolution layers, IFRNet large also consumes signifi-
cantly less computation than other VFI architectures.

In regard to real-time and lightweight VFI approaches,
IFRNet yields about 0.2 dB better result than RIFE [20] on
Vimeo90K, and the margin is more distinct on large mo-
tion cases in SNU-FILM dataset. It is worth noting that
IFRNet only contains half parameters to achieve better re-
sults than RIFE thanks to the superiority of joint refinement
of intermediate flow and context feature. Compared with
CDFI full [12], IFRNet has the same 5M parameters, while
achieving 0.63 dB higher PSNR on Vimeo90K with 15.2 ×
faster inference speed. Moreover, IFRNet small can further

improve speed by 31% and reduce parameters and computa-
tion complexity by 44% than IFRNet while with only slight
frame interpolation accuracy decrease.
Qualitative Evaluation. Figure 6 visually compares well-
behaved VFI methods on SNU-FILM (Hard) dataset which
contains large and complex motion scenes. It can be seen
that kernel-based [12, 26, 37] and hallucination-based [10]
methods fail to synthesize sharp motion boundary, contain-
ing ghost and blur artifacts. Compared with flow-based al-
gorithms [3, 39], our approach can generate texture details
faithfully thanks to the powerfulness of gradually refined
intermediate feature. In short, IFRNet can synthesize pleas-
ing target frame with more comfortable visual experience.
More qualitative results can be found in our supplementary.

4.4. Ablation Study

To verify the effectiveness of proposed approaches, we
carry out ablation study in terms of network architecture and
loss function on Vimeo90K and SNU-FILM Hard datasets.
Intermediate Feature. To ablate the effectiveness of inter-
mediate feature φ̂kt in IFRNet, we build a model by remov-
ing φ̂kt from the input and output of multiple decoders, while



Architecture Vimeo90K Hard

IF R PSNR PSNR

7 7 34.83 29.96
3 7 35.22 30.22
7 3 35.11 30.06
3 3 35.51 30.27

Table 3. Ablation study on different architecture variants. ‘IF’
means intermediate feature φ̂k

t and ‘R’ stands for residual R.
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Method
Average Mequon Schefflera Urban Teddy Backyard Basketball Dumptruck Evergreen

IE NIE IE NIE IE NIE IE NIE IE NIE IE NIE IE NIE IE NIE IE NIE

SuperSlomo [23] 5.310 0.778 2.51 0.59 3.66 0.72 2.91 0.74 5.05 0.98 9.56 0.94 5.37 0.96 6.69 0.60 6.73 0.69
ToFlow [50] 5.490 0.840 2.54 0.55 3.70 0.72 3.43 0.92 5.05 0.96 9.84 0.97 5.34 0.98 6.88 0.72 7.14 0.90
DAIN [3] 4.856 0.713 2.38 0.58 3.28 0.60 3.32 0.69 4.65 0.86 7.88 0.87 4.73 0.85 6.36 0.59 6.25 0.66
FeFlow [17] 4.820 0.719 2.28 0.51 3.50 0.66 2.82 0.70 4.75 0.87 7.62 0.84 4.74 0.86 6.07 0.64 6.78 0.67
AdaCoF [25] 4.751 0.730 2.41 0.60 3.10 0.59 3.48 0.84 4.84 0.92 8.68 0.90 4.13 0.84 5.77 0.58 5.60 0.57
BMBC [36] 4.479 0.696 2.30 0.57 3.07 0.58 3.17 0.77 4.24 0.84 7.79 0.85 4.08 0.82 5.63 0.58 5.55 0.56
SoftSplat [33] 4.223 0.645 2.06 0.53 2.80 0.52 1.99 0.52 3.84 0.80 8.10 0.85 4.10 0.81 5.49 0.56 5.40 0.57
IFRNet large 4.216 0.644 2.08 0.53 2.78 0.51 1.74 0.43 3.96 0.83 7.55 0.87 4.42 0.84 5.56 0.56 5.64 0.58

Table 2. Evaluation results on the Middlebury benchmark. For each item, the best result is boldfaced, and the second best is underlined.

Architecture Vimeo90K Hard
IF R PSNR SSIM PSNR SSIM

7 7 34.83 0.9749 29.96 0.9339
3 7 35.22 0.9766 30.22 0.9351
7 3 35.11 0.9762 30.06 0.9341
3 3 35.51 0.9779 30.27 0.9352

Table 3. Ablation study on different architecture variants. ‘IF’
means intermediate feature φ̂k

t , while ‘R’ stands for residual R.

Loss Function Vimeo90K Hard
Lr Ld Lg PSNR SSIM PSNR SSIM

3 7 7 35.51 0.9779 30.27 0.9352
3 3 7 35.72 0.9792 30.38 0.9357
3 7 3 35.61 0.9783 30.30 0.9354
3 3 3 35.80 0.9794 30.41 0.9358

Table 4. Ablation study on different loss functions.
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Figure 7. Ablation study on different flow distillation losses.

(a) Overlaid (b) GT (c) Ft→0 (d) Pred (e) Ft→0 (f) Pred

Figure 8. Visual comparison of intermediate flow and pre-
dicted frame of IFRNet w/ and w/o intermediate feature.
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Figure 7. Visual comparison of intermediate flow and pre-
dicted frame of IFRNet w/o and w/ intermediate feature.

keeping feature channels of middle parts of decoders un-
changed. Also, we selectively remove residual R in Eq. 4 to
isolate the improvement from intermediate flow and resid-
ual. We train them with only the reconstruction loss Lr
under the same learning schedule as before. As listed in
Table 3, from the first two rows, we can observe that in-
termediate feature can provide reference anchor informa-
tion to promote intermediate flow estimation. Figure 7 also
presents some visual examples to confirm the conclusion.
Compared with the last and the second rows in Table 3,
it demonstrates that gradually refined intermediate feature,
containing global context information, can compensate bet-
ter scene details. Conclusively, residual compensation from
the intermediate context feature is necessary for IFRNet to
achieve advanced VFI performance, since intermediate flow
prediction is substantively unreliable. Overall, the two-fold
benefits from intermediate feature greatly improves VFI ac-
curacy of IFRNet with relatively small additional cost.

Task-Oriented Flow Distillation. Table 4 compares VFI
accuracy under different combinations of proposed loss
functions quantitatively. It can be seen that adding task-
oriented flow distillation loss Ld consistently improves
PSNR of 0.2 dB on Vimeo90K. To verify the superiority
of its task adaptive ability, we also perform flow distillation
with generalized Charbonnier loss under different robust-
ness shown in Figure 5, whose results are summarized in
Figure 8. It turns out that robustness parameter p = 0.3
achieves best VFI accuracy in the fixed robustness setting.
On the other hand, flow distillation can damage frame qual-
ity when p approaches to 1.0 due to the harmful knowledge
in pseudo label. In a word, proposed task-oriented approach
achieves the best accuracy thanks to its spatial adaptive abil-

Loss Function Vimeo90K Hard

Lr Ld Lg PSNR PSNR

3 7 7 35.51 30.27
3 3 7 35.72 30.38
3 7 3 35.61 30.30
3 3 3 35.80 30.41

Table 4. Ablation study on different loss functions.
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Figure 8. Ablation study on different flow distillation losses.
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Method
Average Mequon Schefflera Urban Teddy Backyard Basketball Dumptruck Evergreen

IE NIE IE NIE IE NIE IE NIE IE NIE IE NIE IE NIE IE NIE IE NIE

SuperSlomo [23] 5.310 0.778 2.51 0.59 3.66 0.72 2.91 0.74 5.05 0.98 9.56 0.94 5.37 0.96 6.69 0.60 6.73 0.69
ToFlow [50] 5.490 0.840 2.54 0.55 3.70 0.72 3.43 0.92 5.05 0.96 9.84 0.97 5.34 0.98 6.88 0.72 7.14 0.90
DAIN [3] 4.856 0.713 2.38 0.58 3.28 0.60 3.32 0.69 4.65 0.86 7.88 0.87 4.73 0.85 6.36 0.59 6.25 0.66
FeFlow [17] 4.820 0.719 2.28 0.51 3.50 0.66 2.82 0.70 4.75 0.87 7.62 0.84 4.74 0.86 6.07 0.64 6.78 0.67
AdaCoF [25] 4.751 0.730 2.41 0.60 3.10 0.59 3.48 0.84 4.84 0.92 8.68 0.90 4.13 0.84 5.77 0.58 5.60 0.57
BMBC [36] 4.479 0.696 2.30 0.57 3.07 0.58 3.17 0.77 4.24 0.84 7.79 0.85 4.08 0.82 5.63 0.58 5.55 0.56
SoftSplat [33] 4.223 0.645 2.06 0.53 2.80 0.52 1.99 0.52 3.84 0.80 8.10 0.85 4.10 0.81 5.49 0.56 5.40 0.57
IFRNet large 4.216 0.644 2.08 0.53 2.78 0.51 1.74 0.43 3.96 0.83 7.55 0.87 4.42 0.84 5.56 0.56 5.64 0.58

Table 2. Evaluation results on the Middlebury benchmark. For each item, the best result is boldfaced, and the second best is underlined.

Architecture Vimeo90K Hard
IF R PSNR SSIM PSNR SSIM

7 7 34.83 0.9749 29.96 0.9339
3 7 35.22 0.9766 30.22 0.9351
7 3 35.11 0.9762 30.06 0.9341
3 3 35.51 0.9779 30.27 0.9352

Table 3. Ablation study on different architecture variants. ‘IF’
means intermediate feature φ̂k

t , while ‘R’ stands for residual R.

Loss Function Vimeo90K Hard
Lr Ld Lg PSNR SSIM PSNR SSIM

3 7 7 35.51 0.9779 30.27 0.9352
3 3 7 35.72 0.9792 30.38 0.9357
3 7 3 35.61 0.9783 30.30 0.9354
3 3 3 35.80 0.9794 30.41 0.9358

Table 4. Ablation study on different loss functions.
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Figure 7. Ablation study on different flow distillation losses.
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Method
Average Mequon Schefflera Urban Teddy Backyard Basketball Dumptruck Evergreen

IE NIE IE NIE IE NIE IE NIE IE NIE IE NIE IE NIE IE NIE IE NIE

SuperSlomo [23] 5.310 0.778 2.51 0.59 3.66 0.72 2.91 0.74 5.05 0.98 9.56 0.94 5.37 0.96 6.69 0.60 6.73 0.69
ToFlow [50] 5.490 0.840 2.54 0.55 3.70 0.72 3.43 0.92 5.05 0.96 9.84 0.97 5.34 0.98 6.88 0.72 7.14 0.90
DAIN [3] 4.856 0.713 2.38 0.58 3.28 0.60 3.32 0.69 4.65 0.86 7.88 0.87 4.73 0.85 6.36 0.59 6.25 0.66
FeFlow [17] 4.820 0.719 2.28 0.51 3.50 0.66 2.82 0.70 4.75 0.87 7.62 0.84 4.74 0.86 6.07 0.64 6.78 0.67
AdaCoF [25] 4.751 0.730 2.41 0.60 3.10 0.59 3.48 0.84 4.84 0.92 8.68 0.90 4.13 0.84 5.77 0.58 5.60 0.57
BMBC [36] 4.479 0.696 2.30 0.57 3.07 0.58 3.17 0.77 4.24 0.84 7.79 0.85 4.08 0.82 5.63 0.58 5.55 0.56
SoftSplat [33] 4.223 0.645 2.06 0.53 2.80 0.52 1.99 0.52 3.84 0.80 8.10 0.85 4.10 0.81 5.49 0.56 5.40 0.57
IFRNet large 4.216 0.644 2.08 0.53 2.78 0.51 1.74 0.43 3.96 0.83 7.55 0.87 4.42 0.84 5.56 0.56 5.64 0.58

Table 2. Evaluation results on the Middlebury benchmark. For each item, the best result is boldfaced, and the second best is underlined.

Architecture Vimeo90K Hard
IF R PSNR SSIM PSNR SSIM

7 7 34.83 0.9749 29.96 0.9339
3 7 35.22 0.9766 30.22 0.9351
7 3 35.11 0.9762 30.06 0.9341
3 3 35.51 0.9779 30.27 0.9352

Table 3. Ablation study on different architecture variants. ‘IF’
means intermediate feature φ̂k

t , while ‘R’ stands for residual R.

Loss Function Vimeo90K Hard
Lr Ld Lg PSNR SSIM PSNR SSIM

3 7 7 35.51 0.9779 30.27 0.9352
3 3 7 35.72 0.9792 30.38 0.9357
3 7 3 35.61 0.9783 30.30 0.9354
3 3 3 35.80 0.9794 30.41 0.9358

Table 4. Ablation study on different loss functions.
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ity for adjusting robustness loss during flow distillation.
Feature Space Geometry Consistency. As shown in Ta-
ble 4, adding proposed feature space geometry consistency
loss Lg based on above contributions, we can obtain a fur-
ther improvement, that confirms the complementary effect
of Lg in regard to Ld. Figure 9 visually compares mean
feature maps of intermediate feature φ̂1t w/o and w/ Lg . It
shows that Lg can regularize the reconstructed intermediate
feature to keep better geometry layout in multi-scale feature
space, resulting in better VFI performance.

5. Conclusion
In this paper, we have devised an efficient deep architec-

ture, termed IFRNet, for video frame interpolation, without
any cascaded synthesis or refinement module. It gradually
refines intermediate flow together with a powerful interme-
diate feature, that can not only boost intermediate flow es-
timation to synthesize sharp motion boundary but also pro-
vide global context representation to generate vivid motion
details. Moreover, we have presented task-oriented flow
distillation loss and feature space geometry consistency loss
to fully release its potential. Experiments on various bench-
marks demonstrate the state-of-the-art performance and fast
inference speed of proposed approaches. We expect pro-
posed single encoder-decoder joint refinement based IFR-
Net to be a useful component for many frame rate up-
conversion and intermediate view synthesis systems.
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Figure 10. Qualitative results of IFRNet for 8× interpolation on GoPro [33] and Adobe240 [46] test datasets. Please watch the video
with Adobe Reader. Each video has 9 frames where the first and the last frames are input, and the middle 7 frames are predicted by IFRNet.

In the supplementary, we first present multi-frame inter-
polation experiments of IFRNet. Second, qualitative video
comparisions with other advanced VFI approaches are dis-
played. Third, we depict structure details of IFRNet and
its variants. Fourth, we provide more visual examples and
analysis of middle components for better understanding the
workflow of IFRNet. Finally, we show the screenshot of
VFI results on the Middlebury benchmark. Please note
that the numbering within this supplementary has manually
been adjusted to continue the ones in our main paper.

6. Multi-Frame Interpolation
Different from other multi-frame interpolation methods

which scales optical flow [3, 22] or interpolates middle
frames recursively [10,26], IFRNet can predict multiple in-
termediate frames by proposed one-channel temporal en-
coding mask T , which is one of the input of the coars-

∗ Equal contribution. This work was done when Lingtong Kong was
an intern at Tencent Youtu Lab. Code is available at https://github.
com/ltkong218/IFRNet.
† Corresponding author: Jie Yang (jieyang@sjtu.edu.cn). This re-

search is partly supported by NSFC, China (No: 61876107, U1803261).

Method
GoPro [33] Adobe240 [46] Time

PSNR SSIM PSNR SSIM (s)

DVF [30] 21.94 0.776 28.23 0.896 0.87
SuperSloMo [22] 28.52 0.891 30.66 0.931 0.44

DAIN [3] 29.00 0.910 29.50 0.910 4.10
IFRNet (Ours) 29.84 0.920 31.93 0.943 0.16

Table 5. Quantitative comparison for 8× interpolation.

est decoder D4. The temporal encoding is a conditional
input signal whose values are all the same and set to t,
where t ∈ {1/8, 2/8, . . . , 7/8} in 8× interpolation set-
ting. Also, proposed task-oriented flow distillation loss and
feature space geometry consistency loss still work for any
intermediate time instance t. To evaluate IFRNet for 8×
interpolation, we use the train/test split of FLAVR [23],
where we train IFRNet on GoPro [33] training set with the
same learning schedule and loss functions as our main pa-
per. Then we test the pre-trained model on GoPro testing
and Adobe240 [46] datasets whose results are listed in Ta-
ble 5.

IFRNet outperforms all of the other SOTA methods
with 2 input frames on both GoPro and Adobe240 datasets

https://github.com/ltkong218/IFRNet
https://github.com/ltkong218/IFRNet
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Figure 11. Video comparison on SNU-FILM [10] dataset. Please watch the video with Adobe Reader and zoom in for best view.

in both PSNR and SSIM metrics. For example, IFRNet
achieves 0.84 dB better results than DAIN [3] on GoPro
and exceeds SuperSloMo [22] by 1.27 dB on Adobe240.

Thanks to the modularity character of IFRNet, the encoder
only needs a single forward pass, while the decoders infer 7
times with different temporal embedding to convert videos



from 30 fps into 240 fps. Therefore, the speed advantage of
IFRNet is still or even more obvious than other approaches.
Figure 10 gives some qualitative results of IFRNet for 8×
interpolation, demonstrating its superior ability for frame
rate up-conversion and slow motion generation.

7. Video Comparison
In this part, we qualitatively compare interpolated videos

by proposed IFRNet against other open source VFI methods
on SNU-FILM [10] dataset, whose results are shown in Fig-
ure 11. As can be seen, our approach can generate motion
boundary and texture details faithfully thanks to the power-
fulness of gradually refined intermediate feature.

8. Network Architecture
In this section, we present the structure details of five

sub-networks of IFRNet, i.e., pyramid encoder E and
coarse-to-fine decoders D4,D3,D2,D1. In each follow-
ing figure, arguments of ‘Conv’ and ‘Deconv’ from left to
right are input channels, output channels, kernel size, stride
and padding, respectively. Dimensions of input and output
tensors from left to right stand for feature channels, height
and width, separately. A PReLU [17] follows each ‘Conv’
layer, while there is no activation after each ‘Deconv’ layer.
In practice, the intermediate flow fields are estimated in
a residual manner, which is not reflected in the figures to
emphasize the primary network structure. We take input
frames with spatial size of 640×480 as example.

Conv(3, 32, 3, 2, 1)
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Figure 12. Details of the pyramid encoder E . The two input
frames Il, l ∈ {0, 1} are encoded by the same Siamese network.

As for IFRNet large and IFRNet small, feature channels
from the first to the fourth pyramid levels are set to 64, 96,
144, 192 and 24, 36, 54, 72, respectively. Correspondingly,
channel numbers in multiple decoders are adjusted. Also,
feature channels of the third and the fifth convolution lay-
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Figure 13. Details of the bottom decoder D4.
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Figure 14. Details of the middle decoder D3.

ers in coarse-to-fine decoders of IFRNet large and IFRNet
small are set to 64 and 24, separately.
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Figure 15. Details of the middle decoder D2.
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Figure 16. Details of the top decoder D1.

9. Visualization and Discussion

Figure 17 presents some visual examples to show the ro-
bustness masks in proposed task-oriented flow distillation

Figure 17. Illustration of task-oriented flow distillation. From
top to bottom rows are ground truth frame Igtt , pseudo label of
intermediate flow fields F p

t→0, F
p
t→1, predicted intermediate flow

fields Ft→0, Ft→1, task-oriented robustness masks P0, P1. Darker
color in P0, P1 approaches to 1, while brighter color tends to 0.
Each column represents a separate example on Vimeo90K [53]
dataset. Zoom in for best view.

loss, which can decrease the adverse impacts while focusing
on the useful knowledge for better frame interpolation. It
seems that intermediate flow prediction of IFRNet behaves
smoother and contains less artifacts than flow prediction of
pseudo label, that helps to achieve better VFI accuracy.

Figure 18. Illustration of mean feature map of intermediate
feature φ̂1

t w/o and w/ Lg . From top to bottom rows are ground
truth frame Igtt , mean feature map of φ̂1

t w/o Lg , mean feature
map of φ̂1

t w/ Lg . Each column represents a separate example on
Vimeo90K [53] dataset. Zoom in for best view.

Figure 18 depicts more visual results of mean feature
maps of intermediate feature w/o and w/ proposed geome-
try consistency loss, demonstrating its effect on regularizing
refined intermediate feature to keep better structure layout.

Figure 19 gives visual understanding of frame interpola-



Figure 19. Illustration of intermediate components of IFRNet. From top to bottom rows are input frames I0, I1, predicted intermediate
flow fields Ft→0, Ft→1, warped input frames Ĩ0, Ĩ1, merge maskM , merged frame Î

′
t , residualR, final prediction Ît and ground truth Igtt ,

where merged frame is calculated by Î
′
t =M � Ĩ0 + (1−M)� Ĩ1. For better visualization of residual R, we multiply it by 10 and add a

bias of 0.5. Each column represents a separate example on Vimeo90K [53] dataset. Zoom in for best view.

tion process of IFRNet. Thanks to the reference anchor in-
formation offered by intermediate feature together with ef-
fective supervision provided by geometry consistency loss
and task-oriented flow distillation loss, IFRNet can estimate
relatively good intermediate flow with clear motion bound-
ary. Further, we can see that merge mask M can identify
occluded regions of warped frames by adjusting the mix-
ing weight, where it tends to average the candidate regions
when both views are visible. Finally, residual R can com-
pensate for some contextual details, which usually response
at motion boundary and image edges. Different from other
flow-based VFI methods that take cascaded structure de-
sign, merge mask M and residual R in IFRNet share the
same encoder-decoder with intermediate optical flow, mak-
ing proposed architecture achieve better VFI accuracy while

being more lightweight and fast.

Readers may think our IFRNet is similar with PWC-
Net [48] which is designed for optical flow. However, It is
non-trivial to adapt PWC-Net for frame interpolation, since
previous related works employ it as one of many compo-
nents. We summarize their difference in several aspects:
1) Anchor feature in PWC-Net is extracted by the encoder,
while in IFRNet, it is reconstructed by the decoder. 2) Be-
sides motion information in intermediate feature, there are
occlusion, texture and temporal information in it. 3) PWC-
Net designed for motion estimation, is optimized only by
flow regression loss with strong augmentation. However,
IFRNet designed for frame synthesizing, is optimized in a
multi-target manner with weak data augmentation.



Figure 20. Screenshot of our IE-ranking on the Middlebury benchmark (taken on the November 16th, 2021).

Figure 21. Screenshot of our NIE-ranking on the Middlebury benchmark (taken on the November 16th, 2021).

10. Screenshots of the Middlebury Benchmark

We take screenshots of the online Middlebury bench-
mark for VFI on the November 16th, 2021, whose results
are shown in Figure 20 and Figure 21. Since the average
rank is a relative indicator, previous methods [3, 16, 35, 38]
usually report average IE (interpolation error) and aver-
age NIE (normalized interpolation error) for comparison.
As summarized in Table 2 in our main paper, proposed
IFRNet large model achieves best results on both IE and
NIE metrics among all published VFI methods that are
trained on Vimeo90K [53] dataset. Moreover, IFRNet large
runs several times faster than previous state-of-the-art al-
gorithms [35, 39], demonstrating the superior VFI accuracy
and fast inference speed of proposed approaches.
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[15] Damien Fourure, Rémi Emonet, Elisa Fromont, Damien
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