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Abstract

Affordance grounding, a task to ground (i.e., localize)
action possibility region in objects, which faces the chal-
lenge of establishing an explicit link with object parts due to
the diversity of interactive affordance. Human has the abil-
ity that transform the various exocentric interactions to in-
variant egocentric affordance so as to counter the impact of
interactive diversity. To empower an agent with such ability,
this paper proposes a task of affordance grounding from ex-
ocentric view, i.e., given exocentric human-object interac-
tion and egocentric object images, learning the affordance
knowledge of the object and transferring it to the egocentric
image using only the affordance label as supervision. To
this end, we devise a cross-view knowledge transfer frame-
work that extracts affordance-specific features from exocen-
tric interactions and enhances the perception of affordance
regions by preserving affordance correlation. Specifically,
an Affordance Invariance Mining module is devised to ex-
tract specific clues by minimizing the intra-class differences
originated from interaction habits in exocentric images.
Besides, an Affordance Co-relation Preserving strategy is
presented to perceive and localize affordance by aligning
the co-relation matrix of predicted results between the two
views. Particularly, an affordance grounding dataset named
AGD20K is constructed by collecting and labeling over 20K
images from 36 affordance categories. Experimental results
demonstrate that our method outperforms the representa-
tive models in terms of objective metrics and visual quality.
Code: github.com/lhc1224/Cross-View-AG.

1. Introduction
The goal of affordance grounding is to locate the region

of “action possibilities” of an object. For an intelligent
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Figure 1. Observation. By observing the exocentric diverse inter-
actions, the human learns affordance knowledge determined by the
object’s intrinsic properties and transfer it to the egocentric view.

agent, it is necessary to know not only what the object is
but also to understand how it can be used [11]. Perceiving
and reasoning about possible interactions in local regions of
objects is the key to the shift from passive perception sys-
tems to embodied intelligence systems that actively interact
with and perceive their environment [1, 33, 34, 38]. It has a
wide range of applications for robot grasping, scene under-
standing, action prediction [12, 13, 19, 23, 28, 31, 47, 49].

As affordance is a dynamic property closely related to
the interaction between humans and environment [13], it is
difficult to understand how to interact with objects and es-
tablish an explicit link between the objects’ intrinsic prop-
erties and affordances [29]. However, humans can easily
perceive the object’s affordance region by observing exo-
centric human-object interactions, and give an egocentric
definition. As shown in Fig. 1, although different persons
hold the racket in different positions due to their individual
habits, the human observer can perceive swingable regions
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https://github.com/lhc1224/Cross-view-affordance-grounding
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Figure 2. Motivation. (a) Exocentric interactions can be decomposed into affordance-specific features M and differences in individual
habits E. (b) There are co-relations between affordances, e.g.“Cut with” inevitably accompanies “Hold” and is independent of the object
category (knife and scissors). Such co-relation is common between objects. In this paper, we mainly consider extracting affordance-specific
cues M from diverse interactions while preserving the affordance co-relations to enhance the perceptual capability of the network.

determined by the intrinsic properties (e.g., the long handle
structure) of the racket from a group of interacting images,
despite the effect of individual differences, and transfer the
knowledge to the egocentric view, thereby constructing a
bridge between the object part and the affordance category.

To empower an agent with this ability to perceive the in-
variant egocentric affordance from various exocentric inter-
actions, this paper proposes a task of affordance grounding
from exocentric view, i.e., given exocentric human-object
interactions and egocentric object images, learning affor-
dance knowledge and transferring it to object images by
only using affordance labels as supervision. And in the test-
ing stage, the output is the prediction of the affordance re-
gion for a specific object with the input of an egocentric
object image and a particular affordance label.

To address this problem, we propose a cross-view knowl-
edge transfer framework to extract affordance-specific fea-
tures from exocentric interactions and transfer them to ego-
centric view. Specifically, we first devise an Affordance
Invariance Mining (AIM) module to decompose the exo-
centric human-object interactions into the affordance rep-
resentations determined by objects’ intrinsic properties and
the differences originated from individual habits (as shown
in Fig. 2 (a)). We use low rank matrix decomposition
[10,18,22,24] to minimize the intra-class differences caused
by diverse interactions to obtain affordance-specific cues.
Furthermore, there is a correlation between the object af-
fordances (as shown in Fig. 2 (b)), which can be adopted
to establish the link between different affordances to reduce
the uncertainty caused by multiple affordances regions on
the object. Therefore, we present a novel Affordance Co-
relation Preserving (ACP) strategy to perceive and localize
the affordance region by aligning the co-relation matrix of

prediction results from two views.
Despite the advances in affordance learning, the existing

datasets [8, 29, 32, 35, 43] still bear limitations in terms of
affordance/object category, image quality, and scene com-
plexity. To carry out a comprehensive study, this paper
proposes an affordance grounding dataset named AGD20K,
consisting of 20, 061 exocentric images and 3, 755 egocen-
tric images from 36 affordance categories. The contrastive
experiments against several representative methods are per-
formed on the AGD20K dataset. The results demonstrate
the superiority of our proposed method in capturing the in-
trinsic property of objects and suppressing the interactive
diversity of affordance.
Contributions: (1) We present a new affordance ground-
ing from exocentric view task and establish a large-scale
AGD20K benchmark to facilitate the research for empow-
ering the agent to capture affordance knowledge from exo-
centric human-object interactions. (2) We propose a novel
cross-view knowledge transfer framework for affordance
grounding in which the affordance knowledge is acquired
from exocentric human-object interactions and transferred
to egocentric views while preserving the correlation be-
tween affordances, thereby achieving better perception and
localization of interactive affordance. (3) Experiments on
the AGD20K dataset demonstrate that our method outper-
forms state-of-the-art methods and can serve as a strong
baseline for future research.

2. Related Works
2.1. Visual Affordance Grounding

The goal of affordance grounding is to locate the re-
gion of “action possibilities” of an object. Numerous
works [4, 7, 8, 20, 27, 35, 48, 50] mainly build upon super-



vised approaches to establish mapping relations between
local regions of objects and affordance. Sawatzky et al.
[42, 43] adopt an Expectation-Maximization algorithm [6]
to achieve weakly supervised affordance detection using
only a few key points. Nagarajan et al. [33] exploit only af-
fordance labels to ground the interactions from the videos.
In contrast to [33], our goal is to empower the agent to
learn affordance knowledge from exocentric human-object
interactions. To this end, we propose an explicit cross-
view knowledge transfer framework that extracts affordance
knowledge determined by the intrinsic properties of objects
from multiple exocentric interactions and transfers it into
egocentric images.

2.2. Visual Affordance Dataset

The emergence of the relevant datasets drives the de-
velopment of affordance grounding, as shown in Table 1.
For example, Sawatzky et al. [43] select video frames from
CAD120 [19] to construct a weakly supervised affordance
detection dataset, using only cropped out object regions but
in inferior image quality. Other affordance-related datasets
[4,8,32,35,41] face the problems of small scale and low af-
fordance/object category diversity and do not consider hu-
man actions to reason about the affordance regions. PAD
dataset [29] considers the inference of human purpose from
support images of human-object interactions and transfers
to a group of query images but does not provide part-level
affordance labels. In contrast to the above works, we ex-
plicitly consider exocentric-to-egocentric viewpoint trans-
formations and collect a much larger scale of images, with
richer affordance/object categories and part-level annota-
tions, which are more useful and applicable to real-world
application domains.

2.3. Learning View Transformations

The existing learning-view transformation works start
from the theory of mirror neurons [40], which adopts em-
bedding learning to generate perspective invariant represen-
tations from paired data, and leverage it for tasks such as ac-
tion recognition and video summarization under egocentric
view [16, 39, 44, 45]. For example, Li et al. [25] extract key
egocentric signals from the exocentric view dataset during
pre-training and distill them to the backbone to guide fea-
ture learning in the egocentric video task. In contrast to the
above works, we aim to extract affordance knowledge from
the diverse exocentric human-object interactions and trans-
fer it to the egocentric view, which is challenging due to the
uncertainty caused by various interactions and the multiple
affordance regions that objects contain.

3. Method
Our goal is to ground the object affordance regions in

egocentric images. During training, given a group of ex-

Table 1. Statistics of related datasets and the proposed
AGD20K dataset. Part: part-level annotation. HQ: high-quality
annotation. ]Obj: number of object classes. ]Aff: number of af-
fordance classes. ]Img: number of images.

Dataset Year HQ Part ]Obj. ]Aff. ]Img.
UMD [32] 2015 7 3 17 7 30,000

[43] 2017 7 3 17 7 3,090
IIT-AFF [35] 2017 7 3 10 9 8,835
ADE-Aff [4] 2018 3 3 150 7 10,000

PAD [29] 2021 3 7 72 31 4,002
AGD20k (Ours) 2021 3 3 50 36 23,816

ocentric images Iexo = {I1, ..., IN} (N is the number of
exocentric images) and an egocentric object image Iego, the
network uses only affordance labels as supervision, so as
to learn affordance knowledge from exocentric images and
transfer it to egocentric images. During testing, only given
an egocentric image Iego and the affordance label Ca, the
network outputs the affordance region on the object.

Our proposed cross-view knowledge transfer framework
for affordance grounding is shown in Fig. 3. During
training, we first use Resnet50 [14] to extract the features
of exocentric and egocentric images to obtain Zexo =
{Z1, ..., ZN} and Zego, respectively. We then present the
Affordance Invariance Mining (AIM) module (see in Sec.
3.1) to extract affordance-specific clues (Fexo) from the ex-
ocentric features. Meanwhile, we use two convolutional
layers to map the egocentric feature to the embedding space
consistent with the exocentric view: Fego = Conv(Zego).
Subsequently, the features of the two branches (Fexo and
Fego) are fed into the same convolution layer to obtain fea-
tures Dexo and Dego respectively. To ensure the affordance
knowledge can be transferred to the egocentric view, we av-
erage the Dexo through the global average pooling (GAP)
layer to obtain the fexo and pass the Dego through the GAP
layer to get the fego, and align fexo and fego using L2 loss
LKT . Then, fexo and fego are fed into the same fully con-
nected layer to obtain the affordance prediction. Finally, we
propose an Affordance Co-relation Preserving (ACP) strat-
egy (see in Sec. 3.2) to enhance the network’s perception of
affordance by aligning the co-relation matrix of the outputs
of the two views. During testing, we feed the egocentric
object images into the network only through the egocentric
branch, and then use the CAM [51] technique to obtain the
affordance regions of the object (see in Sec. 3.3).

3.1. Affordance Invariance Mining Module

As shown in Fig. 3, we decompose the interactions in
exocentric images into affordance-specific features M and
individual differences E. Inspired by low-rank matrix de-
composition [10,18,22], we represent theM as the multipli-
cation of a dictionary matrixW and a corresponding matrix
H , where the dictionary bases represent the sub-features of
human-object interaction, and minimize E by iterative op-
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Figure 3. Overview of the proposed cross-view knowledge transfer affordance grounding framework. It mainly consists of an
Affordance Invariance Mining (AIM) module and an Affordance Co-relation Preservation (ACP) strategy. The AIM module (see in Sec.
3.1) aims to obtain invariant affordance representations from diverse exocentric interactions. The ACP strategy (see in Sec. 3.2) enhances
the network’s affordance perception by aligning the co-relation of the outputs of the two views.

timization to obtain a reconstructed affordance representa-
tion M . Specifically, for the input Zi, we first reduce its
dimensionality with a convolution layer and a ReLU layer
to ensure the non-negativity of the input, and then reshape
them into Xi ∈ Rc×hw (c, h and w are the channels,
length, and width of the feature maps respectively). We use
non-negative matrix factorization (NMF) [22] to update the
dictionary and the coefficient matrices. Consequently, Xi

is decomposed into two non-negative matrices W and Hi.
Here W ∈ Rc×r is the dictionary matrix shared by all exo-
centric features, whileHi ∈ Rr×hw is the coefficient matrix
of each exocentric feature, and r is the rank of the low-rank
matrix W . To update Hi and W in parallel, we concatenate
Xexo = {X1, ..., XN} and H = {H1, ...,HN} to obtain
X ∈ Rc×Nhw and H ∈ Rr×Nhw. Mathematically, the
optimization process can be formulated as follows:

min
W,H
||X −WH||, s.t. Wab ≥ 0, Hbk ≥ 0. (1)

W and H are updated according to the following rules:

Hab ← Hab
(WTX)ab

(WTWH)ab
,Wab ←Wab

(XHT )ab
(WHHT )ab

. (2)

After several iterations, we get the output M = WH ,
and reshpae it toMexo = {M1, ...,MN},Mi ∈ Rc×h×w.
Finally, we use a convolution layer to map it to the residual
space and sum it with the Z to get the final output Fexo:

Fi = Zi + Conv(Mi), i ∈ [1, N ]. (3)

In each batch of training, we update the initial dictionary
matrix W (0) such that it can contain the statistical prior of
the common subfeature of human-object interaction, i.e.,

W (0) ← αW (0) + (1− α)W̄ , (4)

where W̄ is the average over each mini-batch.
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Figure 4. The properties of the AGD20K dataset. (a) Some examples from the dataset. (b) The distribution of categories in AGD20K.
(c) The word cloud distribution of affordances in AGD20K. (d) Confusion matrix between the affordance category and the object category
in AGD20K, where the horizontal axis denotes the object category and the vertical axis denotes the affordance category.

3.2. Affordance Co-relation Preserving Strategy

As shown in Fig. 3, we feed the feature representations
of the two branches (fexo and fego) into the same fully con-
nected layer respectively to obtain the affordance category
prediction scores s and g:

s = FC(fexo), g = FC(fego). (5)

Then, we align the affordance co-relation between the ex-
ocentric and egocentric views by calculating the cross-
entropy loss [15] LACP of the co-relation matrix of the pre-
diction scores of the two branches:

pj =
exp(sj/T )∑Nc
k exp(sk/T )

, qj =
exp(gj/T )∑Nc
k exp(gk/T )

, (6)

P = ppT , Q = qqT , (7)

LACP = −
Nc∑
j

Nc∑
k

Pjklog(Qjk), (8)

where T is used to control the degree of attention paid to the
correlations between negative labels. Pjk and Qjk denote
the correlation between classes j and k in the prediction
results. Finally, the total loss can be calculated as:

L = λ1Lcls + λ2LACP + λ3LKT , (9)

where λ1, λ2 and λ3 are hyper-parameters to balance the
classification loss, ACP loss and LKT loss. Lcls is the sum
of the cross-entropy losses of the classification results of
the two branches, and LKT is loss of cross-view affordance
knowledge transfer: LKT = ||fexo − fego||.

3.3. Inference

Our test procedure only requires an egocentric object im-
age and an affordance label as input to predict the affor-
dance region. We utilize the class activation mapping [51]
by computing a weighted sum of the feature maps Di of
the last convolutional layer to obtain the affordance region
heatmap: Y Ca =

∑
i w

Ca
i Di, where Ca is the affordance



Table 2. The results of different methods on AGD20k. The best results are in bold. “Seen” means that the training set and the test set
contain the same object categories, while “Unseen” means that the object categories in the training set and the test set do not overlap. The
� defines the relative improvement of our method over other methods. “Dark red”, “Orange” and “Purple” represent saliency detection,
weakly supervised object localization and affordance grounding models, respectively.

Seen Unseen
Methods KLD ↓ SIM ↑ NSS ↑ KLD ↓ SIM ↑ NSS ↑
Mlnet [5] 5.197 �70.4% 0.280 �19.3% 0.596 �55.5% 5.012 �64.3% 0.263 �8.4% 0.595 �39.3%

DeepGazeII [21] 1.858 �17.2% 0.280 �19.3% 0.623 �48.8% 1.990 �10.2% 0.256 �11.3% 0.597 �38.9%
EgoGaze [17] 4.185 �63.2% 0.227 �47.1% 0.333 �178.% 4.285 �58.3% 0.211 �35.1% 0.350 �137.%

EIL [30] 1.931 �20.4% 0.285 �17.2% 0.522 �77.6% 2.167 �17.5% 0.227 �25.6% 0.330 �151.%
SPA [36] 5.528 �72.2% 0.221 �51.1% 0.357 �160.% 7.425 �75.9% 0.169 �68.6% 0.262 �216.%

TS-CAM [9] 1.842 �16.5% 0.260 �28.5% 0.336 �176.% 2.104 �15.1% 0.201 �41.8% 0.151 �449.%
Hotspots [33] 1.773 �13.3% 0.278 �20.1% 0.615 �50.7% 1.994 �10.4% 0.237 �20.3% 0.577 �43.7%

Ours 1.538±0.017 0.334±0.001 0.927±0.007 1.787±0.017 0.285±0.002 0.829±0.014

Table 3. Ablation study. We investigate the influence of the AIM
module, ACP strategy and LKT on model performance.

AIM ACP LKT KLD ↓ SIM ↑ NSS ↑

Se
en

1.985 0.238 0.302
X 1.750 0.280 0.674

X 1.810 0.257 0.687
X 1.933 0.241 0.344

X X 1.749 0.286 0.735
X X 1.664 0.309 0.818

X X 1.741 0.299 0.679
X X X 1.538 0.334 0.927

U
ns

ee
n

2.059 0.228 0.445
X 1.933 0.261 0.682

X 1.920 0.250 0.666
X 1.967 0.265 0.622

X X 1.926 0.269 0.696
X X 1.916 0.272 0.679

X X 1.922 0.267 0.640
X X X 1.787 0.285 0.829

class,Di is the i-th layer feature map, andwCa
i is the weight

corresponding to the i-th neuron under the Ca category.

4. Dataset

Dataset Collection. The exocentric images are mainly
obtained from HICO [3] and COCO [26]. We select images
from the HICO dataset according to the verb category and
the COCO dataset according to the object category. Then,
we manually remove images with ambiguous interactions.
To enrich the diversity of the dataset, we further collect
2, 112 exocentric images from free-license websites. Mean-
while, We collect 3, 755 egocentric images from the Internet
with free use license according to object categories. Some
examples are shown in Fig. 4 (a).

Dataset Annotation. We select 36 affordance classes
commonly used in real-world application scenarios and as-
sign labels to each image based on the interaction between
human and object in each exocentric image. Given the
object class contained in each affordance class, we assign
affordance labels based on the object class in the egocen-

tric images. The testing process requires pixel-level labels
to calculate objective metrics. As the annotation approach
in [8], we take the form of points for regions of interaction,
in which the dense points are for regions of frequent interac-
tion and vice versa. Then, heatmaps of affordance regions
can be obtained from the points as [8]. Some annotation
examples are shown in Fig. 4 (a).

Statistic Analysis. To obtain deeper insights into our
AGD20K dataset, we show its important features from the
following aspects. The distribution of categories in the
dataset is shown in Fig. 4 (b), which shows that the dataset
contains a wide range of affordance/object categories in di-
verse scenarios. The affordance word cloud is shown in Fig.
4 (c). The confusion matrix of affordance and object cate-
gories is shown in Fig. 4 (d). It shows a multi-to-multi rela-
tionship between affordance and object categories, posing a
significant challenge for the affordance grounding task. See
supplementary materials for more details.

5. Experiments
5.1. Benchmark Setting

To provide a comprehensive evaluation, we choose
three commonly used metrics Kullback-Leibler Divergence
(KLD) [2], SIMilarity (SIM) [46] and Normalized
Scanpath Saliency (NSS) [37], see supplementary material
for details of each metric. Our model is implemented in
PyTorch and trained with the SGD optimizer. The input im-
ages are randomly clipped from 256 × 256 to 224 × 224
with random horizontal flipping. We train the model for
35 epochs on a single NVIDIA 1080ti GPU with an initial
learning rate of 1e-3. The hyper-parameters λ1, λ2 and λ3
are set to 1, 0.5 and 0.5 respectively. The hyper-parameter
T in the ACP is set to 1. The rank r of the dictionary matrix
W and the number of iterations in the AIM are set to 64 and
6 respectively. The number of exocentric images N is set
to 3. Besides, three saliency detection models (Mlnet [5],
DeepGazeII [21], EgoGaze [17]), three weakly supervised
object localization models (EIL [30], SPA [36], TS-CAM



Sit on Sit on Open Hold Type onOpen Cut with Hold

G
T

O
ur

s
[3

3]
[3

0]
[2

1]

Seen Unseen

Figure 5. Visual affordance heatmaps on the AGD20K dataset. We select the prediction results of representative methods of affordance
grounding (Hotspots [33]), weakly supervised object localization (EIL [30]), and saliency detection (DeepGazeII [21]) for presentation.

1.685
1.538

1.623 1.672 1.737

0.335 0.334 0.328 0.318 0.282

0.837 0.927 0.845 0.81

0.765

0.15

0.45

0.75

1.05

1.35

1.65

1.95

0.5 1 2 3 4

1.642 1.598 1.538 1.66 1.647

0.322 0.329 0.334 0.336 0.314

0.832 0.874 0.927 0.843

0.803

0.15

0.45

0.75

1.05

1.35

1.65

1.95

16 32 64 128 256

1.704 1.623 1.538 1.558 1.617

0.287 0.313 0.334 0.335 0.322

0.811 0.909 0.927 0.896

0.823

0.15

0.45

0.75

1.05

1.35

1.65

1.95

1 2 3 4 5

1.981
1.787

1.903 1.969
2.043

0.272 0.285 0.263 0.252
0.23

0.645
0.829

0.692 0.603
0.519

0.15

0.45

0.75

1.05

1.35

1.65

1.95

0.5 1 2 3 4

T

1.873 1.827 1.787 1.886

1.866

0.28 0.277 0.285 0.279 0.276

0.721 0.782 0.829 0.732

0.719

0.15

0.45

0.75

1.05

1.35

1.65

1.95

16 32 64 128 256

r

1.926 1.871
1.787

1.835 1.846

0.257 0.277 0.285 0.282 0.263

0.693 0.693
0.829 0.764

0.749

0.15

0.45

0.75

1.05

1.35

1.65

1.95

1 2 3 4 5

N
Figure 6. Hyper-parameter study. We investigate the influence of T in the ACP, the rank r of the W in the AIM, and the number of
exocentrice images N , respectively. The top and bottom columns represent the “Seen” and ”Unseen” experimental settings, respectively.

[9]) and one affordance grounding model (Hotspots [33])
are chosen for comparison. We design two different set-
tings: 1) “Seen”, i.e., the training set and the test set contain
the same object categories, and 2) “Unseen”, i.e., the object
categories in the training set and the test set do not overlap.

5.2. Quantitative and Qualitative Comparisons

The experimental results are shown in Table 2. Our
method achieves the best results in both “Seen” and “Un-
seen” settings. Taking KLD as the metric, our method im-
proves 17.2% compared to the best saliency model, 16.5%
over the best weakly supervised object localization (WSOL)
model, and 13.3% over the affordance grounding model in

the “Seen” setting. Our method with the “Unseen” setting
improves 10.2% compared to the best saliency model, sur-
passes the best WSOL model by 15.1%, and exceeds the
affordance grounding model by 10.4%. It indicates that our
method can effectively transfer the affordance knowledge
from the exocentric view to the object in the egocentric view
and has a good generalization ability for unseen objects.

In addition, we visualize the affordance maps in “Seen”
and “Unseen” settings, as shown in Fig. 5. It shows that
our method can obtain more accurate prediction results for
affordance grounding. While “Sit on” contains objects with
different appearances (“bed” and “chair”), our method can
capture the common features of the affordance region and



Table 4. Different classes. The KLD results of different methods
on some representative affordance categories.

Classes Hold Swing Drink with Lie on Brush with
Mlnet [5] 6.762 9.248 4.497 4.767 6.215

DeepGazeII [21] 2.071 2.478 2.067 1.602 2.385
EgoGaze [17] 4.671 6.723 4.268 2.921 5.135

EIL [30] 2.008 2.486 2.254 1.377 3.003
SPA [36] 3.006 6.720 7.683 4.006 8.043

TS-CAM [9] 1.628 2.420 2.300 1.370 2.642
Hotspots [33] 1.770 2.178 1.942 1.566 2.154

Ours 1.594 2.161 1.748 1.039 2.040
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Figure 7. Different scales. We split the test set into three subsets
of “Big”, “Middle” and “Small” according to the ratio of mask to
the whole image, and show the results of the NSS metrics.

obtain better prediction results. Since “bottle” has two dif-
ferent affordances, “Open” and “Hold”, the network pre-
dicts different affordance regions. In the “Unseen” setting,
the “knife” has two different affordances, “Hold” and “Cut
with”. Our method can locate different affordance regions
based on the learned affordance knowledge, demonstrating
its superior generalization capability.

5.3. Ablation Study

The ablation study results are shown in Table 3. It con-
firms the ability of the AIM module to learn affordance-
specific features from diverse exocentric interactions, which
play a significant role in improving network performance.
The ACP strategy improves more obviously than LKT , in-
dicating that the preservation of affordance co-relation can
more effectively improve the network’s ability to perceive
and locate affordance regions. In addition, we investigate
the influence of different hyper-parameter settings of T in
the ACP strategy (shown in Fig. 6 (left)), the rank r of
the dictionary matrix W in the AIM module (shown in Fig.
6 (middle)), and different exocentric images N (see Fig. 6
(right)). It can be seen that the performance of the model
is more influenced by T , while the rank r does not have a
significant impact on the results. The number of exocentric
images taken from 2 to 3 has a larger impact on the model.
For N = 1, our model still outperforms most contenders.

Table 5. Different sources. “Exo” means that training only uses
exocentric images, “Exo&Ego” means that training uses both ex-
ocentric and egocentric images.

Method Source KLD ↓ SIM ↑ NSS ↑

Se
en

EIL [30]
Exo 1.931 0.285 0.522

Exo&Ego 2.156 0.321 0.747

SPA [36]
Exo 5.528 0.221 0.357

Exo&Ego 4.312 0.252 0.494

TS-CAM [9]
Exo 1.842 0.260 0.336

Exo&Ego 1.707 0.290 0.622
Ours Exo&Ego 1.538 0.334 0.927

U
ns

ee
n

EIL [30]
Exo 2.167 0.227 0.330

Exo&Ego 2.029 0.256 0.529

SPA [36]
Exo 7.425 0.169 0.262

Exo&Ego 6.174 0.209 0.433

TS-CAM [9]
Exo 2.104 0.201 0.151

Exo&Ego 2.002 0.228 0.305
Ours Exo&Ego 1.787 0.285 0.829

5.4. Performance Analysis

Different Classes. The KLD metrics on some represen-
tative categories are shown in Table 4. “Hold” and “Swing”
both contain diverse object categories with different appear-
ances. “Drink with” and “Hold” contain overlapped object
categories but have completely different affordance regions.
Objects of “Lie on” are generally labeled with a larger re-
gion, while those of “Brush with” are generally smaller.
Our model exceeds others regarding different aspects of the
challenge, which confirms its robustness. See supplemen-
tary material for the KLD metrics for each category.

Different Scales. We divide the test set into “big”,
“middle” and “small” splits according to the proportion of
mask to the whole image (see supplementary material for
details). The test results are shown in Fig. 7. Our model
outperforms all other methods in all splits on both set-
tings, showing its ability to capture the intrinsic affordance
properties of objects, even in more challenging cases. The
performance of the experimental results on all metrics are
shown in the supplementary material.

Different Sources. The results for different sources
are shown in Table 5. It shows that using both exocentric
and egocentric images improves most methods, but the im-
provement is limited. Our method still surpasses all models,
showing that the knowledge transfer from explicitly cross-
views is effective in learning from exocentric diverse in-
teractions to egocentric invariant affordance representation.
The performance of the experimental results on all metrics
are shown in the supplementary material.

Limitations. Our method still has limitations, e.g., the
predicted affordance maps may contain intermediate back-
ground regions when multiple objects appear and irrelevant
background regions may be activated for slender object. In



the future, we will refer to [36] to refine the generated re-
sults to obtain more accurate results.

6. Conclusion
In this paper, we make an attempt to address a new chal-

lenging task named affordance grounding from exocentric
view. Specifically, we propose a novel cross-view knowl-
edge transfer framework that can extract invariant affor-
dance from diverse exocentric interactions and transfer it to
egocentric view. We establish a large affordance ground-
ing dataset named AGD20K, which contains 20K well-
annotated images, serving as a pioneer testbed for the task.
Our model outperforms representative models from related
areas and can serve as a strong baseline for future research.

Broader Impacts. The research on affordance ground-
ing from exocentric view will advance the realization of em-
bodied intelligence. However, harmful human demonstra-
tions (risky behaviors) may lead to negative guidance for
the agent, which should be prohibited by strict legislation.
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