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Abstract

We propose Clustering Mask Transformer (CMT-
DeepLab), a transformer-based framework for panoptic
segmentation designed around clustering. It rethinks the ex-
isting transformer architectures used in segmentation and
detection; CMT-DeepLab considers the object queries as
cluster centers, which fill the role of grouping the pixels
when applied to segmentation. The clustering is computed
with an alternating procedure, by first assigning pixels to
the clusters by their feature affinity, and then updating the
cluster centers and pixel features. Together, these oper-
ations comprise the Clustering Mask Transformer (CMT)
layer, which produces cross-attention that is denser and
more consistent with the final segmentation task. CMT-
DeepLab improves the performance over prior art signif-
icantly by 4.4% PQ, achieving a new state-of-the-art of
55.7% PQ on the COCO test-dev set.

1. Introduction

Panoptic segmentation [47], a recently proposed chal-
lenging segmentation task, aims to unify semantic seg-
mentation [34] and instance segmentation [31]. Due to
its complicated nature, most panoptic segmentation frame-
works [18,47,90] decompose the problem into several man-
ageable proxy tasks, such as box detection [73], box-based
segmentation [32], and semantic segmentation [65].

Recently, the paradigm has shifted from the proxy-based
approaches to end-to-end systems, since the pioneering
work DETR [10], which introduces the first end-to-end
object detection method with transformers [81]. In their
framework, the image features, extracted by a convolutional
network [50], are enhanced by transformer encoders. After-
wards, a set of fixed size of positional embeddings, named
object queries, interact with the extracted image features
through several transformer decoders, consisting of cross-
attention and self-attention modules [3]. The object queries,
transformed into output embeddings by the decoders, are
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Figure 1. Our CMT-DeepLab generates denser cross-attention
maps than MaX-DeepLab [83]. The visualization is based on the
last transformer layer with averaged multi-head attentions.

then directly used for bounding box predictions.
Along the same direction, end-to-end panoptic segmen-

tation framework [83] has been proposed to simplify the
panoptic segmentation procedure, avoiding manually de-
signed modules. The core idea is to exploit a set of ob-
ject queries conditioned on the inputs to predict a set of
pairs, each containing a class prediction and a mask em-
bedding vector. The mask embedding vector, multiplied by
the image features, yields a binary mask prediction. No-
tably, unlike the box detection task, where the prediction
is based on object queries themselves, segmentation mask
prediction requires both object queries and pixel features to
interact with each other to obtain the results, which con-
sequently incurs different needs when updating the object
queries. To have a deeper understanding towards the role
that object queries play, we particularly look into the cross-
attention module in the mask transformer decoder, where
object queries interact with image features.

Our investigation finds that the update and usage of ob-
ject queries are performed differently in the transformer-
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based method for segmentation tasks [83]. Specifically,
when updating the object queries, a softmax operation is
applied to the image dimension, allowing each query to
identify its most similar pixels. On the other hand, when
computing the segmentation output, a softmax is performed
among the object queries so that each pixel finds its most
similar object queries. The formulation may potentially
cause two issues: sparse query updates and infrequent pixel-
query communication. First, the object queries are only
sparsely updated due to the softmax being applied to a large
image resolution, so it tends to focus on only a few locations
(top row in Fig. 1). Second, the pixels only have one chance
to communicate with the object queries in the final output.
The first issue is particularly undesired, since segmentation
tasks require dense predictions, and ideally a query should
densely activate all the pixels that belong to the same target.
This is different from the box detection task, where object
extremities are sufficient (see Fig. 6 of DETR paper [10]).

To alleviate the issues, we draw inspiration from the tra-
ditional clustering algorithms [1, 64]. In the current end-to-
end panoptic segmentation system [83], the final segmenta-
tion output is obtained by assigning each pixel to the object
queries based on the feature affinity, similar to pixel-cluster
assignment step in [1, 64]. The observation motivates us
to rethink the transformer-based methods from the cluster-
ing perspective by considering the object queries as clus-
ter centers. We therefore propose to additionally perform
the cluster-update step, where the centers are updated by
pooling pixel features based on the clustering assignment,
when updating the cluster centers (i.e., object queries) in
the cross-attention module. As a result, our model gen-
erates denser attention maps (bottom row in Fig. 1). We
also utilize the pixel-cluster assignment to update the pixel
features within each transformer decoder, enabling frequent
communication between pixel features and cluster centers.

Additionally, we notice that in the cross-attention mod-
ule, pixel features are treated as in “bag of words” [49],
while the location information is not well utilized. To re-
solve the issue, we propose to adopt a dynamic position en-
coding conditioned on the inputs for location-sensitive clus-
tering. We explicitly predict a reference mask consisting of
a few points for each cluster center. The location-sensitive
clustering is then achieved by adding location information
to pixel features and cluster centers via the coordinate con-
volution [59] at the beginning of each transformer decoder.

Combining all the proposed components results in our
CMT-DeepLab, which reformulates and further improves
the previous end-to-end panoptic segmentation system [83]
from the traditional clustering perspective. The panop-
tic segmentation result is naturally obtained by assigning
each pixel to its most similar cluster center based on the
feature affinity (Fig. 2). In the Clustering Mask Trans-
former (CMT) module, the pixel features, cluster centers,
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Figure 2. Panoptic segmentation from a clustering perspective. In
the proposed Clustering Mask Transformer (CMT) layer, pixels
are assigned to cluster centers based on the feature affinity, and
the clustering results are used to update both pixel features and
cluster centers. After several CMT layers, a refined pixel-cluster
assignment is obtained, resulting in the final panoptic mask.

and pixel-cluster assignments are updated in a manner sim-
ilar to the clustering algorithms [1,64]. As a result, without
bells and whistles, our proposed CMT-DeepLab surpasses
its baseline MaX-DeepLab [83] by 4.4% PQ and achieves
55.7% PQ on COCO panoptic test-dev set [58].

2. Related Works
Transformers. Transformer [81] variants [2, 7, 22, 30,
48, 66, 85, 93] have advanced the state-of-the-art in many
natural language processing tasks [25, 26, 75] by captur-
ing relations across modalities [3] or in a single context
(self-attention) [21, 81]. In computer vision, transformers
are either combined with CNNs [9, 86] or used as stan-
dalone models [27, 38, 62, 72, 84]. Both classes of methods
have boosted various vision tasks, such as image classifica-
tion [6,17,27,38,55,62,72,84], object detection [10,37,72,
76, 86, 99], semantic segmentation [15, 28, 40, 95, 98, 100],
video recognition [17, 45, 86], image generation [36, 69],
and panoptic segmentation [84].

Proxy-based Panoptic Segmentation. Most panoptic seg-
mentation methods rely on proxy tasks, such as object
bounding box detection. For example, Panoptic FPN [47]
follows a box-based approach that detects object bounding
boxes and predicts a mask for each box, usually with a Mask
R-CNN [32] and FPN [57]. Then, the instance segments
(‘thing’) and semantic segments (‘stuff’) [12] are fused by
merging modules [52–54, 63, 70, 90, 92] to generate panop-
tic segmentation. Other proxy-based methods typically start
with semantic segments [11,13,16] and group ‘thing’ pixels
into instance segments with various proxy tasks, such as in-
stance center regression [19,42,56,67,80,84,91], Watershed
transform [4, 8, 82], Hough-voting [5, 8, 51], or pixel affin-
ity [8, 29, 43, 61, 77]. DetectoRS [71] achieved the state-of-
the-art in this category with recursive feature pyramid and
switchable atrous convolution. Recently, DETR [10] ex-
tended the proxy-based methods with its transformer-based
end-to-end detector.
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End-to-end Panoptic Segmentation. Along the same di-
rection, MaX-DeepLab [83] proposed an end-to-end strat-
egy, in which class-labeled object masks are directly pre-
dicted and are trained by Hungarian matching the predicted
masks with ground truth masks. In this work, we improve
over MaX-DeepLab by approaching the pixel assignment
task from a clustering perspective. Concurrent with our
work, Segmenter [78] and MaskFormer [20] formulated an
end-to-end strategy from a mask classification perspective,
same as MaX-DeepLab [83], but extends from panoptic
segmentation to semantic segmentation.

3. Method

Herein, we firstly introduce recent transformer-based
methods [83] for end-to-end panoptic segmentation. Our
observation reveals a difference between the cross-attention
and final segmentation output regarding the way that they
utilize object queries. We then propose to resolve it with
a clustering approach, resulting in our proposed Clustering
Mask Transformer (CMT-DeepLab), as shown in Fig. 3 and
Fig. 4. In the following parts, object queries and cluster
centers refer to the same learnable embedding vectors and
we use them interchangeably for clearer representation.

3.1. Transformers for Panoptic Segmentation

Problem Statement. Panoptic segmentation aims to seg-
ment the input image I ∈ RH×W×3 into a set of non-
overlapping masks as well as the semantic labels for the
corresponding masks:

{yi}Ki=1 = {(mi, ci)}Ki=1 . (1)

TheK ground truth masksmi ∈ {0, 1}H×W do not overlap
with each other, i.e.,

∑K
i=1mi ≤ 1H×W , and ci denotes the

ground truth class label of mask mi.
Inspired by DETR [10], several transformer-based end-

to-end panoptic segmentation methods [83] have been pro-
posed recently, which directly predict N masks and their
semantic classes. N is a fixed number and N ≥ K.

{ŷi}Ni=1 = {(m̂i, p̂i(c))}Ni=1, (2)

where p̂i(c) denotes the predicted semantic class confi-
dence for the corresponding mask, including ‘thing’ classes,
‘stuff’ classes, and the void class ∅.

To predict these N masks, N object queries are utilized
to aggregate information from the image features through
a transformer decoder, which consists of self-attention and
cross-attention modules. The object queries and image fea-
tures interact with each other in the cross-attention module:

Ĉ = C+ softmax
HW

(Qc × (Kp)T)×Vp, (3)
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Figure 3. A visual illustration of Clustering Mask Transformer
layer, where three variables are updated in a dynamic manner
based on the clustering results: pixel features, cluster centers, and
pixel-cluster affinity. Details of assignment and update steps are
illustrated in Fig. 4.

where C ∈ RN×D refers to object queries withD channels,
and Ĉ denotes the updated object queries. We use the un-
derscript to represent the axis for softmax, and superscripts
p and c to indicate the feature projected from the image fea-
tures and object queries, respectively. Qc ∈ RN×D,Kp ∈
RHW×D,Vp ∈ RHW×D stand for the linearly projected
features for query, key, and value. For simplicity, we ignore
multi-head attention and feed-forward network (FFN) in the
equation.

The object queries, updated by multiple transformer de-
coders, are employed as dynamic convolution weights (with
kernel size 1 × 1) [41, 79, 87] to obtain the prediction
Z ∈ RHW×N that consists of N binary masks. That is,

Z = softmax
N

(F×CT), (4)

where F ∈ RHW×D refers to the extracted image features.

3.2. Current Issues and New Clustering Perspective

Even though effective, the transformer-based architec-
tures were originally designed for object detection [10] and
thus they do not naturally deal with segmentation masks.
Specifically, they use different formulations for the object
query updates and the segmentation specific output head.
To be precise, both the update of object queries (Eq. (3))
and final output (Eq. (4)) are based on their corresponding
feature affinity (i.e., Qc × (Kp)T and F ×CT). However,
the following softmax operations are applied along differ-
ent dimensions. To update the object queries, the softmax
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is applied to the image spatial dimension (HW ) with the
goal to identify the most similar pixels for each query. On
the other hand, to obtain the final output, the softmax is
performed among the object queries (N ) so that each pixel
finds its most similar object queries. The inconsistency po-
tentially causes two issues. First, the object queries are only
sparsely updated due to the softmax operated along a large
spatial dimension, tending to focus on only a few locations
(Fig. 1). Second, the output update is only performed once
in the end, and therefore the pixels only have one chance to
receive the information passed from the object queries.

To alleviate the issues, we take a closer look at Eq. (4),
which assigns each pixel to the object queries based on
the feature affinity. This is, in fact, very similar to typi-
cal clustering methods [1,64] (particularly, the pixel-cluster
assignment step). This observation motivates us to rethink
the transformer-based methods from the typical clustering
perspective [1, 97] by considering the object queries C as
cluster centers. With the clustering perspective in mind, we
re-interpret Eq. (4) as the pixel-cluster assignment. This
interpretation naturally inspires us to perform a cluster-
update step where the cluster centers are updated by pool-
ing pixel features based on the clustering assignment, i.e.,
ZT × F = (softmaxN (F×CT))T × F.

We propose to extend the formulation to a transformer
decoder module, whose query, key, and value are obtained
by linearly projecting the image features and cluster centers:

Ĉ = C+ (softmax
N

(K̃p × (Q̃c)T))T ×Vp. (5)

Comparing Eq. (3) and Eq. (5), we have the query Q̃c

and key K̃p coming from another linear projection, and the
softmax is performed along the cluster center dimension.

In the following subsection, we detail how the cluster-
ing perspective alleviates the issues of current transformer-
based methods. In the discussion, we use object queries and
cluster centers interchangeably.

3.3. Clustering Mask Transformers

In this subsection, we redesign the cross-attention in the
transformer decoder from the clustering perspective, aiming
to resolve the issues raised in Sec. 3.2.
Residual Path between Cluster Assignments. Similar to
other designs [10], we stack the transformer decoder multi-
ple times. To facilitate the learning of pixel-cluster assign-
ment, we add a residual connection [33] between clustering
results including the final segmentation result. That is,

Z = softmax
N

(S+ K̃p × (Q̃c)T), (6)

where S ∈ RHW×N is the affinity logits between linearly
projected pixel features and cluster centers in the previous
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Figure 4. Detailed visual illustration of pixel-cluster assignment
(left), cluster centers update (middle), and pixel features update
(right). The tensor shapes are specified for illustration.

decoder (left panel of Fig. 4). We emphasize that since our
clustering results have the same format as the segmentation
output, we are able to add residual connections between
them, which is further supervised by the ground-truths.
Solution to Sparse Query Update. We propose a sim-
ple and effective solution to avoid the sparse query update
by combining the proposed clustering center update (i.e.,
Eq. (5)) with the original cross-attention (i.e., Eq. (3)), re-
sulting in

Ĉ =C+ softmax
HW

(Qc × (Kp)T)×Vp + ZT ×Vp

=C+ (softmax
HW

(Qc × (Kp)T) + ZT)×Vp,
(7)

where Z is obtained from Eq. (6). The update is shown
in the center panel of Fig. 4, while the effect of densified
attention could be found in Fig. 1.
Solution to Infrequent Pixel Updates. We propose to also
utilize the clustering result Z to perform an update on the
pixel features using the features of cluster centers, i.e.,

F̂ =F+ Z×Vc, (8)

where Vc ∈ RN×D is the linearly projected values from
the cluster centers. This update is performed within each
stacked transformer decoder, enabling frequent commu-
nication between pixel features and cluster centers (right
panel of Fig. 4).

To this end, we have improved the transformer cross-
attention module by simultaneously updating the cluster-
ing result (i.e., pixel-cluster assignment), pixel features, and
cluster centers. However, we notice that during the interac-
tion between pixel features and cluster centers, pixel fea-
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tures are treated as bag of words [49], while the location in-
formation is not well utilized. Although learnable positional
encodings (i.e. object queries [10]) are used for the cluster
center embeddings, the positional encodings are fixed for
all input images, which is suboptimal when an object query
predicts masks at different locations in different input im-
ages. To resolve the issue, we propose to adopt a dynamic
positional encoding conditioned on the inputs for location-
sensitive clustering.
Location-Sensitive Clustering. To inject dynamic location
information to cluster centers, we explicitly predict a refer-
ence mask that consists of M points for each cluster center.
In particular, a MLP is used to predict the reference mask
out of cluster center features, followed by a sigmoid activa-
tion function. That is, we have:

ê = e+MLP(C), (9)
rc = sigmoid(ê), (10)

where e ∈ RN×2M denotes an embedding projected from
the cluster centers, and rc = [rc,h, rc,w] ∈ RN×2M are
the reference mask represented with M pairs of coordinates
(rc,hi , rc,wi ). We utilize a residual update manner [33,99] to
predict the reference mask, with a skip-connection on the
projected embedding e across stages. The location space is
normalized to [0, 1]× [0, 1].

We add location information to pixel features and cluster
centers through a coordinate convolution [59]. Specifically,
we apply coordinate convolutions at the beginning of each
transformer layer to ensure location information is consid-
ered during the clustering process, as shown below.

Ĉ = Conv(Concat(C, rc)), (11)

F̂ = Conv(Concat(F, rp)), (12)

where rp ∈ RHW×2 is the coordinates normalized to [0, 1]
for pixels in image space, which is fixed and not learnable.

We note that compared to the reference point used in the
Deformable DETR [99], the proposed reference mask pro-
vides a rough mask shape prior for the whole object mask.
Besides, we adopt a much simpler way to incorporate the
location information via coordinate convolution.

In order to learn meaningful reference mask predic-
tions, we optimize the reference masks towards ground truth
masks by proposing a mask approximation loss.
Mask Approximation Loss. We propose a loss to min-
imize the distance between the distribution of predicted
reference points and that of points of ground-truth object
masks. In detail, we utilize the Hungarian matching result to
assign the ground-truth mask for each cluster center. Given
the predictedM points for each cluster center, we infer their
extreme points [68] and mask center. We then apply an L1

loss to push them to be closer to their ground-truth extreme
points and center. Specifically, we have

Lext =
1

4K

K∑
i=1

(|min(rc,hi )−min(yhi )|+ |max(rc,hi )−max(yhi )|

+ |min(rc,wi )−min(ywi )|+ |max(rc,wi )−max(ywi )|),

Lcen =
1

2K

K∑
i=1

(| avg(rc,hi )− avg(yhi )|+ | avg(r
c,w
i )− avg(ywi )|),

Lloc = Lext + Lcen, (13)

where y = [yh, yw] are pixels on ground-truth masks and
predicted reference masks have been filtered and re-ordered
based on Hungarian matching results.

Finally, combining all the proposed designs results in our
Clustering Mask Transformer, or CMT-DeepLab, which re-
thinks the current mask transformer design from the clus-
tering perspective.

3.4. Network Instantiation

We instantiate CMT-DeepLab on top of MaX-DeepLab-
S [83] (abbreviated as MaX-S). We first refine its architec-
ture design. Afterwards, we enhance it with the proposed
Clustering Mask Transformers.
Base Architecture. We use MaX-S [83] as our base ar-
chitecture. To better align it with other state-of-the-art ar-
chitecture designs [62], we use GeLU [35] activation to
replace the original ReLU activation functions. Besides,
we remove all transformer blocks in the pretrained back-
bones, which reverts the backbone from MaX-S back to
Axial-ResNet-50 [84]. On top of the backbone, we ap-
pend six dual-path axial-transformer blocks [83] (three at
stage-5 w/ channels 2048, and the other three at stage-4 w/
channels 1024), yielding totally six axial self-attention and
six cross-attention modules, which aligns with the number
of attention operations used in other works [10, 20]. Addi-
tionally, we obtain a larger network backbone by scaling up
the number of blocks in stage-4 of the backbone [14]. As
a result, two different model variants are used: one built
upon Axial-ResNet-50 backbone with number of blocks
[3, 4, 6, 3] (starting from stage-2), and another built upon
Axial-ResNet-104 with number of blocks [3, 4, 24, 3]. See
the supplementary material for a detailed illustration.
Loss Functions. Following [83], we use the PQ-style loss
and three other auxiliary losses for the model training, in-
cluding the instance discrimination loss, mask-ID cross-
entropy, and semantic segmentation loss. However, we note
that the instance discrimination loss proposed in [83] aims
to push pixel features to be close to the feature center com-
puted based on the ground-truth mask, instead of directly
to the cluster centers. Therefore, we adopt the pixel-wise
instance discrimination loss, which learns closely aligned
representations for all pixels from the same class, allowing
better clustering results.

Formally, we sample a set of pixels A from the image,
where we add bias to pixels’ sampling probability based on

5



the size of object mask they belong to. Thus, final sampled
pixels are more balanced from objects with different scales.
Afterwards, we directly perform contrastive loss on top of
these pixels with multiple positive targets [44]:

Linsdis =
∑
a∈A

−1
|P (a)|

∑
p∈P (a)

log
exp (fa · fp/τ)∑
b∈A exp (fa · fb/τ)

,

(14)

where P (a) is a subset of pixels of A that belongs to the
same cluster (i.e., object mask) with a, and |P (a)| is its
cardinally. We use f to denote a pixel feature vector, and τ
is the temperature.
Recursive Feature Network. Motivated by Detec-
toRS [71] and CBNet [60], we adopt a simple strategy,
named Recursive Feature Network (RFN), to increase the
network capacity by stacking twice the whole model (in-
cluding the backbone and added transformer blocks). There
are two main differences. First, since we do not employ
an FPN [57] (as in [71]), we simply connect the features
at stride 4 (i.e., same stride as the segmentation output).
Second, we do not use the complicated fusion module pro-
posed in [71], but simply average the features between two
stacked networks, which we empirically found to be better
by around 0.2% PQ.

4. Experimental Results
We report main results on COCO along with state-of-the-

art methods, followed by ablation studies on the architecture
variants, clustering mask transformers, pretrained weights,
post-processing, and scaling strategies. Finally, we analyze
the working mechanism behind CMT-DeepLab with visual-
izations.
Implementation Details. We build CMT-DeepLab on top
of MaX-DeepLab [83] with the official code-base [88].
The training strategy mainly follows MaX-DeepLab. If not
specified, the model is trained with 64 TPU cores for 100k
iterations with the first 5k for warm-up. We use batch size
= 64, Adam [46] optimizer, a poly schedule learning rate
of 10−3. The ImageNet-pretrained [74] backbone has a
learning rate multiplier 0.1. Weight decay is set to 0 and
drop-path rate [39] to 0.2. The input images are resized and
padded to 1281 × 1281 for training and inference. We use
|A| = 4096 for pixel-wise contrastive loss and M = 8 for
reference masks, we also tried other values but did not ob-
serve significant difference. Loss weight is 1.0 for the mask
approximation loss. Other losses employ the same setting
as [83]. During inference, we adopt a mask-wise merging
scheme [20] to obtain the final results.

4.1. Main Results

Our main results on the COCO panoptic segmentation
val set and test-dev set are summarized in Tab. 1.

Val Set. We compare our validation set results with box-
based, center-based, and end-to-end panoptic segmentation
methods. It is noticeable that CMT-DeepLab, built upon
a smaller backbone Axial-ResNet-50, already surpasses all
other box-based and center-based methods by a large mar-
gin. More importantly, when compared with its end-to-
end baseline MaX-DeepLab-S [83], we observe a signif-
icant improvement of 4.6% PQ. Our small model even
surpasses previous state-of-the-art method MaX-DeepLab-
L [83], which has more than 5× parameters, by 1.9% PQ.
Compared to recently proposed MaskFormer [20], CMT-
DeepLab still shows a significant advantage of 1.2% PQ
and 1.4% PQ while being more light-weight over the small
and large model variant, respectively. The significant im-
provement illustrates the importance of introducing the con-
cept of clustering into transformer, which leads to a denser
attention preferred by the segmentation task. Our CMT-
DeepLab with a deeper backbone Axial-ResNet-104 im-
proves the single-scale performance to 54.1% PQ, out-
performing multi-scale Axial-DeepLab [84] by 10.2% PQ.
Moreover, we enhance the model with the proposed RFN,
which further improves the PQ to 55.3%.
Test-dev Set. We verify the transfer-ability of CMT-
DeepLab on test-dev set, which shows consistently better
results compared to other methods. Especially, the small
version of CMT-DeepLab with Axial-R50 backbone out-
performs DETR [10] by 7.4% PQ, MaX-DeepLab-S [83]
by 4.4% PQ, and MaX-DeepLab-L [83] by 2.1% PQ. Ad-
ditionally, employing a deeper backbone Axial-R104 can
boost the PQ score by 1.1% PQ. On top of it, using the
proposed RFN further improves PQ to 55.7%, surpassing
MaskFormer [20] with Swin-L [62] backbone by 2.4% PQ.

4.2. Ablation Studies

Herein, we evaluate the effectiveness of different compo-
nents of the proposed CMT-DeepLab. For all the following
experiments, we use MaX-DeepLab-S [83] with GeLU [35]
activation function as our baseline. This improved base-
line has a 0.3% higher PQ compared to the original MaX-
DeepLab-S. If not specified, we perform all ablation studies
with the Axial-R50 backbone [33, 84], ImageNet-1K [74]
pretrained, crop size 641×641, and 100k training iterations.
Clustering Mask Transformer. We start with adding the
design variants of Clustering Mask Transformer step by
step, as summarized in Tab. 2a. Regarding the object
queries as cluster centers, and adding a clustering-style up-
date can improve the PQ by 0.9%, illustrating the effective-
ness of the cluster center perspective and the importance of
including more pixels into the cluster center updates. Next,
we utilize pixel-wise contrastive loss instead of the original
instance-wise contrastive loss, resulting in another 0.4% PQ
improvement, as it provides a better supervision signal from
a clustering perspective. In short, re-designing the trans-
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val-set test-dev
method backbone TTA params PQ PQTh PQSt PQ PQTh PQSt

box-based panoptic segmentation methods
Panoptic-FPN [47] R101 40.3 47.5 29.5 - - -
UPSNet [90] R50 42.5 48.5 33.4 - - -
UPSNet [90] R50 X 43.2 49.1 34.1 - - -
UPSNet [90] DCN-101 [24] X - - - 46.6 53.2 36.7
DETR [10] R101 61.8M 45.1 50.5 37.0 46.0 - -
DetectoRS [71] RX-101 [89] X - - - 49.6 57.8 37.1

center-based panoptic segmentation methods
Panoptic-DeepLab [19] X-71 [23] 46.7M 39.7 43.9 33.2 - - -
Panoptic-DeepLab [19] X-71 [23] X 46.7M 41.2 44.9 35.7 41.4 45.1 35.9
Axial-DeepLab-L [84] AX-L [84] 44.9M 43.4 48.5 35.6 43.6 48.9 35.6
Axial-DeepLab-L [84] AX-L [84] X 44.9M 43.9 48.6 36.8 44.2 49.2 36.8

end-to-end panoptic segmentation methods
MaX-DeepLab-S [83] MaX-S [83] 61.9M 48.4 53.0 41.5 49.0 54.0 41.6
MaX-DeepLab-L [83] MaX-L [83] 451M 51.1 57.0 42.2 51.3 57.2 42.4
MaskFormer [20] Swin-B‡ [62] 102M 51.8 56.9 44.1 - - -
MaskFormer [20] Swin-L‡ [62] 212M 52.7 58.5 44.0 53.3 59.1 44.5

CMT-DeepLab Axial-R50‡ [84] 94.9M 53.0 57.7 45.9 53.4 58.3 46.0
CMT-DeepLab Axial-R104‡ 135.2M 54.1 58.8 47.1 54.5 59.6 46.9
CMT-DeepLab Axial-R104‡-RFN 270.3M 55.1 60.6 46.8 55.4 61.0 47.0
CMT-DeepLab (iter 200k) Axial-R104‡-RFN 270.3M 55.3 61.0 46.6 55.7 61.6 46.8

Table 1. Results comparison on COCO val and test-dev set. TTA: Test-time augmentation. ‡: ImageNet-22K pretraining. We provide
more comparisons with concurrent works in the supplementary materials.

PQ PQTh PQSt

baseline 46.2 50.0 40.5
+ clustering transformer 47.1 51.0 41.1
+ pixel-wise contrastive loss 47.5 51.1 42.1

(a) CMT-DeepLab: clustering update.

PQ PQTh PQSt

baseline 46.2 50.0 40.5
+ ref. mask pred. 46.6 50.3 40.9
+ coord-conv 46.9 50.6 41.3

(b) CMT-DeepLab: location-senseitive clustering.

clustering update location decoder params PQ PQTh PQSt

61.9M 46.2 50.0 40.5
X 61.9M 47.5 51.1 42.1

X 65.5M 46.9 50.6 41.3
X 91.0M 47.1 51.3 40.9

X X 91.0M 48.1 51.9 42.2
X X X 94.9M 48.4 52.1 42.8

(c) CMT-DeepLab: architecture.

ImageNet-22K RFN mask-wise merge PQ PQTh PQSt

48.4 52.1 42.8
X 49.3 53.3 43.4
X X 50.1 54.8 43.0
X X X 50.6 54.8 44.3

(d) CMT-DeepLab: pretraining, post-processing, scaling.

Table 2. CMT-DeepLab ablation experiments. Baseline is labeled with grey color. Results are reported in accumulative manner.

res. backbone iters PQ PQTh PQSt

641 Axial-R50 100k 50.1 53.5 44.9
641 Axial-R50 200k 50.6 54.5 44.8
1281 Axial-R50 100k 53.0 57.7 45.9
1281 Axial-R50 200k 53.5 58.5 45.9
641 Axial-R104 100k 51.7 55.4 46.4
641 Axial-R104 200k 52.2 56.4 46.0
1281 Axial-R104 100k 54.1 58.8 47.1
1281 Axial-R104-RFN 100k 55.1 60.6 46.8

Table 3. Ablation on input resolution/backbone/training itera-
tions. ImageNet-22K, mask-wise merge are used for all results.

former layer from a clustering perspective leads to a 1.3%
PQ improvement overall.
Location-Sensitive Clustering. Location information

plays an important role in the clustering process, as shown
in Tab. 2b. Each cluster center needs to predict a reference
mask without using pixel features (i.e., appearance infor-
mation), which requires cluster centers to include more lo-
cation information in the feature embedding and thus ben-
efits clustering. Adding reference masks prediction alone
brings a gain of 0.4% PQ. Using the coordinate convolution
(coord-conv) [59] to include the reference mask information
yields another 0.3% PQ improvement. In sum, the location-
sensitive clustering brings up the PQ score by 0.7%.

Stronger Decoder. We study the effect of using a stronger
decoder design [10, 20]. We remove all transformer lay-
ers from the pretrained backbone, which reverts the MaX-
S backbone [83] to Axial-ResNet-50 [84]. Then we stack
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stage 1 stage 2 stage 3 stage 4 stage 5 stage 6 ref. mask

Figure 5. Visualization of clustering results at different stages (i.e., transformer layers), with last column for reference masks. The clustering
results, providing denser attention maps, are close-to-random at the beginning and are gradually refined to focus on corresponding object.

more axial-blocks with transformer module in the decoder
part. More specifically, we use six self-attention modules
and six cross-attention modules in total for the decoder,
which aligns to the design of DETR [10]. As shown in
Tab. 2c, this stronger decoder brings 0.9% PQ improvement
(47.1% vs. 46.2%).

As shown in Tab. 2c, these improvements are comple-
mentary to each other, while combining them together can
further boost the performance. Adding all of them leads to
CMT-DeepLab, which improves 2.2% PQ over the MaX-
DeepLab-S-GeLU baseline. We note that the major cost
comes from the stronger decoder, which accounts for the
increase of 29.1M parameters, while clustering update and
location-sensitive clustering improve the PQ by 1.3% and
0.7%, respectively, with neglectable extra parameters.

Pretraining, Post-processing, and Scaling. We further
verify the effect of better pretraining, post-processing, and
scaling-up, with results summarized in Tab. 2d and Tab. 3.
Specifically, we find that using ImageNet-22K for pretrain-
ing can improve the performance by 0.9% PQ. Furthermore,
we empirically find that using the mask-wise merge strat-
egy [20] to obtain panoptic results, compared to the simple
per-pixel strategy [83], improves PQ by 0.5%. Next, we
scale up CMT-DeepLab from different dimensions. With
a longer training strategies (from 100k to 200k iterations),
we observe a consistent 0.5% PQ improvement over various
settings, where the improvement mainly comes from PQTh

(i.e., thing classes), indicating that the model needs a longer
training schedule to better segment thing objects. We also
find that using a larger input resolution (from 641 to 1281)
significantly boosts the performance by more than 2% PQ.

Besides, increasing the model size by using a deeper back-
bone or stacking the model with RFN can improve the per-
formance by 1.6% and 1.0%, respectively.
Visualization. In Fig. 5, we visualize the clustering re-
sults in each stage as well as the learned reference masks.
As shown in the figure, the clustering results, starting with
a close-to-random assignment, gradually learn to focus on
the target instances. For example, in the last two rows of
Fig. 5, the clustering results firstly focus on all the ‘per-
son’ instances and the background ‘snow’, and then they
start to concentrate on the specific person instance, show-
ing a refinement from “semantic segmentation” to “instance
segmentation”. Moreover, as shown in the last column of
Fig. 5, the learned reference mask provides a reasonable
prior for the object mask.

5. Conclusion
In this work, we have introduced CMT-DeepLab, which

rethinks object queries, used in the current mask transform-
ers for panoptic segmentation, from a clustering perspec-
tive. Considering object queries as cluster centers, our
framework additionally incorporates the proposed cluster
center update in the cross-attention module, which signifi-
cantly enriches the learned cross-attention maps and further
facilitates the segmentation prediction. As a result, CMT-
DeepLab achieves new state-of-the-art performance on the
COCO dataset, and sheds light on the working mechanism
behind mask transformers for segmentation tasks.
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In the supplementary materials, we provide more tech-
nical details, along with more ablation and comparison re-
sults with other concurrent works. We also include more
visualizations and comparisons over the baselines. Addi-
tionally, we provide a comprehensive comparison, in terms
of training epochs, memory cost, parameters, FLOPs, and
FPS, across different methods. We also report results with
a ResNet-50 backbone for a fair comparison across differ-
ent methods, along with additional results on Cityscapes.
Finally, we summarize the limitations of our work and po-
tential negative impacts.

6. More Technical Details
Backbones. In Fig. 6, we provide an architectural compari-
son of MaX-DeepLab-S [83] and CMT-DeepLab built upon
Axial-R50/104 [84]. Specifically, we simplify the back-
bone from MaX-DeepLab-S [83] by removing transformer
modules in the backbone (light blue), and stacking more
blocks in the decoder module (light orange). The Axial-
R104 backbone is obtained by scaling up Axial-R50 (i.e.,
four times more layers in the stage-4).
Recursive Feature Network. We construct Recursive Fea-
ture Network (RFN) in a manner similar to [71]. More
specifically, we stack two models together, with a skip-
connection from the decoder features at stride 4 in the first
network to the encoder features at stride 4 in the second
network. Instead of using the complicated fusion module
proposed in [71], we simply average the features for fusion.
Moreover, the two networks share the same set of cluster
centers (i.e., object queries), which are sequentially updated
from the first network to the second one. We also add super-
vision for the first network but use the Hungarian matching
results based on the final output.

7. More Results and In-depth Analysis
Effect of frequent pixel update (our second solution). As
discussed in the main paper, the clustering results will be
also used to update pixel features besides cluster centers to
ensure a frequent pixel update. We tried removing the pixel
feature updates from clustering transformer, which leads to
a degradation of 0.4% PQ.
Comparison with more concurrent works. Also shown
in Tab. 4, we compare our CMT-DeepLab with the base-
line MaX-DeepLab [83], and concurrent works Mask-
Former [20] and K-Net [94] on the test-dev set. As shown in
the table, our best model (using 200K iterations and RFN)
attains the performance of 55.7% PQ on the test-dev set,
which is 4.4% and 2.4% better than MaX-DeepLab-L [83]
and MaskFormer [20]. Our best model is 0.5% PQ better
than K-Net [94], which adopts a different framework (i.e.,
dynamic kernels) than mask-transformer-based approaches.
In addition to PQ, we further look into RQ and SQ for per-

formance analysis. We observe that with a similar perfor-
mance to K-Net [94] in RQ, our best model performs bet-
ter in SQ. Specifically, our best model yields 83.6% SQ,
which is 1.2%, 1.6%, and 1.1% better than K-Net, Mask-
Former, and MaX-DeepLab-L, respectively. Interestingly,
our lightweight variant, CMT-DeepLab with Axial-R50,
achieves 83.0% SQ, which is still better than all the other
methods. We attribute our better performance in SQ to the
proposed clustering mask transformer layer, which yields
denser attention maps to facilitate segmentation tasks.
Accuracy-cost Trade-off Comparison. We provide a com-
prehensive comparison of training cost (epochs, memory),
model size (params, FLOPs, FPS), and performance (PQ)
in Tab. 5. The training memory is measured on a TPU-
v4, while other statistics are measured with a Tesla V100-
SXM2 GPU. We use TensorFlow 2.7, cuda 11.0, input size
1200 × 800, and batch size 1. For MaskFormer (PyTorch-
based), we cite the numbers from their paper. As shown
in the table, our CMT-DeepLab-S (Axial-R50) outperforms
MaskFormer-SwinB by 1.2% PQ with comparable model
size and inference cost. Our CMT-DeepLab-S also outper-
forms MaskFormer-SwinL while using much fewer model
parameters and running faster. All our models outperform
MaX-DeepLab. Notably, our best model CMT-DeepLab-
L-RFN (Axial-R104-RFN) outperforms MaX-DeepLab-L
by 4.2% PQ while using only 60% model parameters and
33.6% FLOPs.
Backbone Differences. As different backbones are adopted
for different methods (e.g., MaX-S/L [83], Swin [62]), it
hinders a direct and fair comparison across different meth-
ods. To this end, we provide results based on a ResNet-
50 backbone across different models on COCO val set. As
shown in Tab. 6, our CMT-DeepLab significantly outper-
forms MaX-DeepLab and concurrent works (MaskFormer
and K-Net).
Results on Cityscapes. We provide additional results on
Cityscapes in Tab. 7. For a fair comparison, we adopt the
same setting, including pretrain weights (IN-1k), training
hyper-parameters (e.g., iterations 60k, learning rate 3e-4,
crop size 1025×2049), and post-processing scheme (pixel-
wise argmax as in MaX-DeepLab). As shown in the ta-
ble, our CMT-DeepLab-S significantly outperforms MaX-
DeepLab-S by 2.9% PQ and 1.6% mIoU.

8. Visual Comparison
Visualization Details. To visually compare the clustering
results/attention maps, we firstly follow DETR [10] to av-
erage values across multi-heads to obtain a single attention
map, which is then transformed into a heatmap in a manner
similar to CAM [96] by normalizing the values to the range
[0, 255]. Note that we do not apply any smoothing tech-
niques (e.g., square root), which in fact adjust the learned
attention values. These differences make the visualization
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Figure 6. A visual comparison of architecture between MaX-DeepLab-S and CMT-DeepLab. Pretrained backbone part is labeled in blue
color.

val-set test-dev
method backbone params PQ PQTh PQSt PQ PQTh PQSt SQ RQ
MaX-DeepLab-S [83] MaX-S [83] 61.9M 48.4 53.0 41.5 49.0 54.0 41.6 - -
MaX-DeepLab-L [83] MaX-L [83] 451M 51.1 57.0 42.2 51.3 57.2 42.4 82.5 61.3
MaskFormer† [20] Swin-B‡ [62] 102M 51.8 56.9 44.1 - - - - -
MaskFormer† [20] Swin-L‡ [62] 212M 52.7 58.5 44.0 53.3 59.1 44.5 82.0 64.1
K-Net† [94] R101-FPN [57] - 49.6 55.1 41.4 - - - - -
K-Net† [94] R101-FPN-DCN [24] - 48.3 54.0 39.7 - - - - -
K-Net† [94] Swin-L‡ [62] - 54.6 60.2 46.0 55.2 61.2 46.2 82.4 66.1

CMT-DeepLab Axial-R50‡ [84] 94.9M 53.0 57.7 45.9 53.4 58.3 46.0 83.0 63.6
CMT-DeepLab Axial-R104‡ 135.2M 54.1 58.8 47.1 54.5 59.6 46.9 83.2 64.7
CMT-DeepLab Axial-R104‡-RFN 270.3M 55.1 60.6 46.8 55.4 61.0 47.0 83.5 65.6
CMT-DeepLab (iter 200k) Axial-R104‡-RFN 270.3M 55.3 61.0 46.6 55.7 61.6 46.8 83.6 65.9

Table 4. Results comparison on COCO val and test-dev set. ‡: ImageNet-22K pretraining. †: Concurrent works. We update comparison
with concurrent works, and also our improved results with longer training iterations.

method epochs memory params FLOPs FPS PQ
MaskFormer-SwinB [20] 300 - 102M 411G 8.4 51.8
MaskFormer-SwinL [20] 300 - 212M 792G 5.2 52.7
MaX-DeepLab-S [83] 216 6.3G 62M 291G 11.9 48.4
MaX-DeepLab-L [83] 216 28.7G 451M 3317G 2.2 51.1
CMT-DeepLab-S 54 10.2G 95M 396G 8.1 53.0
CMT-DeepLab-L 54 11.8G 135M 553G 6.0 54.1
CMT-DeepLab-L-RFN 54 25.8G 270M 1114G 3.2 55.1
CMT-DeepLab-L-RFN 108 25.8G 270M 1114G 3.2 55.3

Table 5. A comprehensive accuracy-cost trade-off comparison.

MaskFormer [20] K-Net [94] MaX-DeepLab [83] CMT-DeepLab
PQ 46.5 47.1 46.0 48.5

Table 6. Results comparison with ResNet-50 as the backbone.

method PQ RQ SQ mIoU
MaX-DeepLab-S 61.7 74.5 81.5 79.8
CMT-DeepLab-S 64.6 77.4 82.6 81.4

Table 7. Cityscapes val set results.

differ from those in the paper of MaX-DeepLab [83]. All
visualizations are done with CMT-DeepLab based on Axial-
R50, and MaX-DeepLab-S, with input size 641× 641.
Clustering results. In Fig. 7, Fig. 8, Fig. 9, and Fig. 10,
we provide more clustering visualization results. We ob-
serve the same trend as we presented in the main paper that
the clustering results, providing denser attention maps, are
close-to-random at the beginning and are gradually refined
to focus on different objects. Interestingly, we also observe
some exceptions (see Fig. 7, Fig. 8, Fig. 9), where the clus-

14



tering results start with a good semantic-level clustering, in-
dicating that some cluster centers can embed semantic in-
formation and thus specialize in some classes.
Attention map comparison with MaX-DeepLab.
In Fig. 11, Fig. 12, and Fig. 13, we show more attention
map comparison with MaX-DeepLab. As shown in those
figures, CMT-DeepLab provides a much denser attention
map than MaX-DeepLab.

9. Limitations
Motivated from a clustering perspective, CMT-DeepLab

generates denser attention maps and thus leads to a supe-
rior performance in the segmentation task. However, the
proposed clustering mask transformer, though significantly
improves the segmentation quality (SQ), does not bring
the same-level performance boost on the recognition ability
(RQ). Specifically, we have adopted some simple scaling-
up strategies, including increasing model size, input size,
or training iterations. Those strategies result in a large per-
formance gain in RQ as a compensation, but with a cost at
parameters, computation, or training time. It thus remains
an interesting problem to explore in the future that how to
improve its recognition ability efficiently and effectively.

10. Potential Negative Impacts
In this paper, we present a new panoptic segmenta-

tion framework, inspired by the traditional clustering-based
algorithm, generates denser attention maps and further
achieves new state-of-the-art performance. The findings de-
scribed in this paper can potentially help advance the re-
search in developing stronger, faster, and more elegant end-
to-end segmentation methods. However, we also note that
there is a long-lasting debate on the impacts of AI on hu-
man world. As a method improving the fundamental task
in computer vision, our work also advances the develop-
ment of AI, which means there could be both beneficial and
harmful influences depending on the users.
License of used assets. COCO dataset [58]: CC-by
4.0. ImageNet [74]: https://image-net.org/
download.php.
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Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

Figure 7. Visualization of clustering results at different stages (i.e., transformer layers). We note that clustering results for person (row 1)
and skis (row 3) start from a close-to-random distribution at the beginning and are gradually refined to focus on corresponding target. But
we also find some cluster centers, e.g., sky in row 2, are specialized in some semantic classes and start at a good semantic clustering.

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

Figure 8. Visualization of clustering results at different stages (i.e., transformer layers). Both row 1 and 2 experience a semantic-to-instance
refinement during the clustering process (e.g., in col 3, both clustering results capture all zebras.), which finally falls onto corresponding
zebra. The cluster center on row 3 initializes with a good clustering result for grass, which coincides with the observation that some cluster
centers intrinsically embed semantic information.

16



Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

Figure 9. Visualization of clustering results at different stages (i.e., transformer layers). Row 1, 3 gradually falls into the target person and
skateboard, while row 2 starts with a good clustering for grass.

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

Figure 10. Visualization of clustering results at different stages (i.e., transformer layers). Each row corresponds to an elephant instance
prediction. Similarly, most results start from a close-to-random clustering and gradually converge to the target in a semantic-to-instance
manner.
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Figure 11. Visual comparison between CMT-DeepLab and MaX-DeepLab [83]. CMT-DeepLab provides a denser attention map to update
cluster centers, which leads to superior performance in dense prediction tasks.
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Figure 12. Visual comparison between CMT-DeepLab and MaX-DeepLab [83]. CMT-DeepLab provides a denser attention map to update
cluster centers, which leads to superior performance in dense prediction tasks.
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Figure 13. Visual comparison between CMT-DeepLab and MaX-DeepLab [83]. CMT-DeepLab provides a denser attention map to update
cluster centers, which leads to superior performance in dense prediction tasks.
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