
HODOR: High-level Object Descriptors for Object Re-segmentation
in Video Learned from Static Images

Ali Athar1 Jonathon Luiten1,2 Alexander Hermans1 Deva Ramanan2 Bastian Leibe1

1RWTH Aachen University, Germany 2Carnegie Mellon University, USA

{athar,luiten,hermans,leibe}@vision.rwth-aachen.de deva@cs.cmu.edu

Abstract

Existing state-of-the-art methods for Video Object Seg-
mentation (VOS) learn low-level pixel-to-pixel correspon-
dences between frames to propagate object masks across
video. This requires a large amount of densely annotated
video data, which is costly to annotate, and largely redun-
dant since frames within a video are highly correlated. In
light of this, we propose HODOR: a novel method that tack-
les VOS by effectively leveraging annotated static images
for understanding object appearance and scene context. We
encode object instances and scene information from an im-
age frame into robust high-level descriptors which can then
be used to re-segment those objects in different frames. As
a result, HODOR achieves state-of-the-art performance on
the DAVIS and YouTube-VOS benchmarks compared to ex-
isting methods trained without video annotations. With-
out any architectural modification, HODOR can also learn
from video context around single annotated video frames
by utilizing cyclic consistency, whereas other methods rely
on dense, temporally consistent annotations. Source code
is available at: https://github.com/Ali2500/
HODOR

1. Introduction
Current state-of-the-art Video Object Segmentation

(VOS) methods learn ‘space-time correspondences’ (STC),
i.e. pixel-to-pixel correspondences, between the image
frames in a video. These methods [8,30,50] achieve impres-
sive results, but require a large amount of temporally dense
annotated video for training. Such datasets require signifi-
cant human effort, and the annotations are largely redundant
since image frames within a video are highly correlated.
The largest publicly available VOS dataset [49] contains
only a few thousand videos. Single image datasets [16, 22],
in contrast, exist with hundreds of thousands of annotated
images. In this work, we explore the following question:
can VOS be learned with only single-image annotations?

(a) Space-time correspondence [7, 8, 21, 25, 30, 34, 35, 39, 50, 51].

(b) High-level Object Descriptors for Object Re-segmentation (ours).

Figure 1. Previous methods (a) learn low-level pixel-pixel corre-
spondence to propagate object masks. HODOR (b) learns high-
level object descriptors to re-segment objects in a different frame.

To this end, we propose HODOR: High-level Object
Descriptors for Object Re-segmentation, a novel VOS
framework which extracts a robust, high-level descriptor for
the given objects and background in an image. These de-
scriptors are then used to find and segment those objects in
another video frame, i.e. re-segment them, even if the object
moves or changes appearance (Fig. 1b). This differs funda-
mentally from STC methods which learn low-level, pixel-
to-pixel correspondences (Fig. 1a). The underlying idea
is that high-level object descriptors can be learned without
sequential video data, as this only requires understanding
object appearance, and not reasoning about motion. Thus,
HODOR can be trained for VOS using only single images
without any video motion augmentation (Fig 2a), and still
be applied to video (Fig 2b). This is inherently not possible
with STC methods since learning correspondences requires
comparing multiple, different frames.

The key to our approach is that it forces object appear-
ance information to pass through a concise descriptor, i.e. an
information bottleneck. This prevents the descriptor from
trivially summarizing the object mask shape and location.
The network thus learns to concisely encode object appear-
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Figure 2. HODOR train and inference strategies. HOD: High-level Object Descriptor Encoder. OR: Object Re-segmentation Decoder.
Left: HODOR can be trained with single annotated images (without sequence augmentations). Center: HODOR is run on video by feeding
features from a different frame to the decoder. Right: Training HODOR can take advantage of unlabeled frames using cycle-consistency.

ance, and also to match the descriptor to each pixel in order
to re-segment the object in the same image.

If we add sequential augmentation to our single im-
age training strategy to increase the network’s robustness,
HODOR out-performs all existing methods trained with
similar augmented image sequences on the DAVIS [32]
and YouTube-VOS [49] benchmarks. This is because STC
methods can only learn correspondences of simple motion
from augmented frames, and thus cannot generalize well to
the complex motion of real video. HODOR however, being
based on high-level object appearance and scene context, is
much more resilient to this discrepancy.

HODOR can also be trained using cycle consistency on
video where only a single frame is annotated (Fig 2c). With-
out modifying the approach at all, we can simply propagate
masks through unlabeled frames and then in reverse back
to the labeled frame to apply the loss. This is enabled by
a fully differentiable formulation for attending to soft in-
put masks which allows gradients to flow through multiple
frame predictions. Based on this, our network can learn to
be more robust to appearance changes that occur in natural
video, while only requiring single annotated frames. Cur-
rent STC methods cannot be trained under this setting.

There are two further advantages: The encoder can pro-
cess, and model interactions between, an arbitrary number
of objects. This improves performance and makes the in-
ference speed largely independent of the number of objects.
This is in contrast to many works [7, 8, 30, 50] where part
of the network requires separate forward passes per ob-
ject. (2) The decoder can jointly attend to object descriptors
over multiple past frames with negligible overhead. Thus,
we can incorporate temporal history during inference even
though the method can be trained on just single images.

To summarize: we propose a novel VOS framework
that uses high-level descriptors to propagate objects across
video. This enables training using just single images, with
or without other unlabeled video frames. Our model pro-
cesses an arbitrary number of objects simultaneously, and
can readily incorporate temporal context during inference.
We achieve state-of-the-art results on DAVIS and YouTube-
VOS among methods trained without video annotation.

2. Related Work
We group existing VOS methods into three categories:

pixel-pixel, object-object and object-pixel. Though not all
methods perfectly fit this taxonomy, it is nonetheless useful
in comparing our approach to existing works.

Pixel-pixel Correspondence. Such approaches learn low-
level space-time correspondence between pixels, and use
these correspondences to propagate object masks between
video frames. Whereas early VOS approaches [9,15,18,31]
used pre-computed optical flow as a measure for pixel-pixel
correspondence, FEELVOS [39] was the first to learn these
correspondences in an end-to-end fashion within the VOS
framework, and STM [30] significantly improved upon this.
Nearly all subsequent VOS methods [7, 8, 21, 25, 34, 35, 50,
51], including the two current state-of-the-arts (STCN [8]
and AOT-L [51]) are based on the space-time correspon-
dence paradigm, with each proposing various novel tech-
niques for improving speed and performance. HODOR di-
verges from this paradigm by instead learning correspon-
dences between pixels and high-level object descriptors.

Self-supervised Pixel-pixel Correspondence. One set
of methods learns pixel-pixel correspondences using unla-
belled video via self-supervision. To do this, some meth-
ods [17, 44] optimize their network with colorization and
image reconstruction based training objectives. Other meth-
ods [13, 47] learn from cyclic consistency by propagating
random image patches through a video sequence. HODOR
can also be trained with cyclic consistency, but with the ob-
jective of learning high-level object descriptors rather than
low-level pixel correspondences.

Object-object Comparison. Another common VOS
approach involves directly comparing object representa-
tions [18, 20, 26, 42, 52]. Such methods first learn object
proposals for the target image, and then match these propos-
als to previously tracked objects. This paradigm is inspired
by methods in multi-object tracking [2, 40, 48], and often
involves spatial similarity constraints and object ReID vec-
tors [12,18] for temporal association. Such methods require
training for proposal generation on a specific set of object
classes, and thus do not generalize well to novel categories.

Object-pixel Comparison. An alternative to the pixel-
pixel and object-object approaches described above is learn-
ing high-level representations for the set of given objects,
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Figure 3. The HODOR Architecture consists of a backbone, the HOD encoder, and the OR decoder. Q, K, and V refer to Queries, Keys
and Values, respectively. The encoder jointly encodes all objects and background cells (here 2× 2) to descriptors, which are then decoded
to masks by the decoder. Some steps are simplified (the final upsampling) or omitted (fc layers, skip connections). See Sec. 3 for details.

and then re-segmenting these objects in the target frame by
directly comparing the representations to the pixel features
in that frame. Early VOS methods followed this paradigm
by finetuning a segmentation network during inference on
the given first frame object masks [3, 27, 31, 41] to embed
an object representation in the weights of a network, which
is then applied directly to subsequent frames. This is ex-
tremely slow and usually achieves poor results. The most
similar work to ours is SiamMask [46]. It learns a vector
representation for each object which is directly compared
to pixel features to determine whether or not the pixels be-
long to that object. However, this approach trains on large
amounts of annotated video data, and compared to HODOR
and other existing methods, does not achieve good results.
To the best of our knowledge, no other method from this
category even achieves competitive results for VOS.

After online finetuning based methods fell out of fash-
ion, leaderboards for VOS benchmarks were dominated
by object-object association based methods [18, 26] until
the emergence of FEELVOS [39] and STM [30]. Since
then, state-of-the-art VOS approaches are almost exclu-
sively based on the pixel-pixel correspondence paradigm.

3. Method
The HODOR network architecture consists of three com-

ponents: (1) a backbone which learns multi-scale image
features, (2) a High-level Object Descriptor (HOD) en-
coder, and (3) an Object Re-segmentation (OR) decoder.
With HODOR, we revisit the idea of learning object-level
descriptors for VOS which have mostly been replaced in
favour of STC-based approaches. To this end, our network
architecture enables the essence of an object to be encoded
without directly memorizing the object mask’s shape or lo-
cation. We also introduce attention layers which allow mul-
tiple objects to be processed simultaneously, and allow in-
teractions between their descriptors. These attention layers
also enable the descriptors to be enriched with image fea-
tures (in the encoder), and vice versa (in the decoder).

The architecture is illustrated in Fig. 3. Given an RGB
image I ∈ RH×W×3, the backbone produces a pair of C-

dimensional feature maps F = {F 4, F 8} at the 4× and
8× downsampled input resolution scales, respectively. As-
sume that the image I contains O objects of interest with
segmentation masksMf = {Mf

1 , ...,M
f
O}. We first com-

pute a background mask consisting of all the pixels which
do not belong to any object. This background mask is then
split into B separate masksMb = {M b

1 , ...,M
b
B} by divid-

ing it into a grid with B cells.

3.1. Encoder

The encoder accepts as input the set of masksMf ∪Mb

and the image feature map F 8, and produces a set of ob-
ject descriptors Df = {df

1 , ...,d
f
O} containing one C-

dimensional descriptor per foreground object, and likewise
a set of descriptors Db = {db

1, ...,d
b
B} containing one C-

dimensional descriptor for each background patch. Intu-
itively, these descriptors are a concise latent representation
for their respective patches (object or background).

Each descriptor is initialized by average pooling the
set of pixel features belonging to the corresponding patch.
These are then iteratively and jointly refined by a series
of transformer-like layers. Each layer consists of multi-
head self-attention between the set of descriptors Df ∪ Db,
followed by multi-head cross-attention in which these de-
scriptors absorb patch-specific information from the feature
maps F 8 conditioned on the masksMb ∪Mf .

With some abuse of notation, let us use D(l) = Df ∪
Db ∈ R(O+B)×C to denote the set of descriptors at the l-th
layer of the encoder andM =Mf ∪Mb ∈ R(O+B)×H×W

for the set of patch masks. The l-th layer of our encoder can
then be described as follows:

D(l) ←− D(l−1) + SelfAttn(D(l−1))

D(l) ←− D(l) + MaskedCrossAttn(D(l), F 8,M)

D(l) ←− D(l) + FFN(D(l))

(1)

We omit the typical LayerNorm for the sake of text clar-
ity (cf . [4]). FFN denotes a Feed-forward Network con-
sisting of three fully-connected layers with ReLU activa-
tions. SelfAttn denotes multi-head attention [38] wherein
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queries, keys, and values are produced by applying separate
linear projections to the input tensor. MaskedCrossAttn

denotes multi-head attention where queries are produced
from the embeddings, but keys and values are produced
from the image feature map F 8. We describe this opera-
tion as ‘Masked’ because we condition the pixel features
F 8 on the mask M to enable the descriptors to better focus
on their respective patches. This could be done by replacing
the dot product affinities between the descriptors D and F 8

in the KeyT Query matrix (KTQ) with−∞ for pixels where
the respective mask value for the given patch is zero. How-
ever, this operation is not differentiable, and it restricts each
descriptor to attend to only those pixels for which the corre-
sponding patch mask value is one. Furthermore, numerical
issues can arise for empty masks during training.

Differentiable Soft Attention-masking. We propose a
better formulation which is differentiable, allows the mask
M to be non-binary (i.e. have soft values), and affords the
network more flexibility to focus on relevant image features.
Given the mask M ∈ [0, 1] and a learnable, positive scalar
α, we define the attention operation as follows:

softmax

(
KTQ + αM√

C

)
· V (2)

This is identical to the standard attention operation pro-
posed by Vaswani et al. [38] except for the term ‘+αM ’. In
practice, each attention head is assigned a different learn-
able parameter α which is optimized during training. Thus,
different attention heads attend to pixel features conditioned
on different magnitudes of masking. This enables the net-
work to learn descriptors which focus on their respective
patch features, but that are also able to capture scene infor-
mation from other parts of the image if this is beneficial for
the training objective. This is inspired by Press et al. [33]
who used additive offsets in temporal attention in NLP.

The encoder is thus designed to learn descriptors condi-
tioned on object/background masks. This formulation con-
tains an inherent information bottleneck which does not al-
low the input mask’s shape or location from directly ‘leak-
ing’ into the descriptors. Specifically, in Eq. 2, the mask
M can only influence the softmax(·) term, i.e. the weights
with which the Values (V ) are summed, but M cannot di-
rectly be copied into the attention operation output.

3.2. Decoder

Whereas the encoder produces descriptors Df ∪ Db by
conditioning the image features F on patch masks Mf ∪
Mb, the decoder does the opposite: it (re)produces the
patch masksMf ∪Mb by conditioning the image features
F on the descriptorsDf ∪Db. The architecture is similar to
that of the encoder consisting of a series of transformer-like
layers with multi-head attention. However, now the image
feature map F 8 is updated iteratively by attending to the

descriptors. There are two additional differences: (1) the
cross-attention does not involve any masking. (2) The self-
attention cannot be used for feature maps with large spatial
dimensions due to its quadratic memory complexity, so we
instead use a 3 × 3 deformable convolution [10]. Since the
purpose of self-attention is to enrich pixel features by allow-
ing them to attend to all other pixels, a deformable convo-
lution can be thought of as having a similar effect where a
pixel can interact with a set of other pixels at learned offsets.
Although recent works [1,11] proposed efficient variants of
attention for image features, we found that deformable con-
volutions still require less memory.

Let us denote with F 8(l) the feature map at the l-th layer
of the decoder, and let us use D ∈ R(O+B)×C to denote the
descriptors produced by the encoder. The l-th decoder layer
can then be described as (again omitting LayerNorms):

F 8(l) ←− F 8(l−1) + DeformConv(F 8(l−1))

F 8(l) ←− F 8(l) + CrossAttn(F 8(l), D)

F 8(l) ←− F 8(l) + FFN(F 8(l))

(3)

For the CrossAttn, a linear projection generates the
queries from the feature map F 8(l) and the keys and val-
ues are two separate linear projections of the descriptors D.
We omit the final FFN from Fig. 3 for space reasons.

The final decoder layer outputs a feature map F 8(L),
which we bilinearly upsample by a factor of 2 and then
add to the image feature map F 4 ∈ F . We then apply a
3×3 convolution to get F 4(L) and at this scale we compute
the per-pixel object logits based on the dot product between
F 4(L) and the descriptors D. The resulting logits are up-
sampled to the input resolution, before applying a softmax
over the descriptor dimension, yielding the output masks
M . Formally,M ∈ RH×W×(O+B) is calculated as follows:

F 4(L) ←− Conv
(
F 4 + upsample2(F 8(L))

)
M ←− softmax

(
upsample4(F 4(L) ·D)

) (4)

3.3. Video Object Segmentation

So far we discussed how the decoder can reproduce the
patch masks which were input to the encoder. However,
since the descriptors encode a robust representation for the
objects in an image, the decoder can re-segment them in any
image I ′ where these objects exist. Let us use It, Ft, Dt

andMt to denote the image frame, feature maps, descrip-
tors, and masks at frame t of a given video clip, respectively.
Given the first frame I1 of a T -frame clip, and the segmen-
tation masks Mf

1 for O objects in the first frame, we can
learn a set of descriptors Df

1 ∪ Db
1 which encode these ob-

jects as well as the background (cf . Sec. 3.1). We can then
segment these objects in another video frame It by simply
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giving the decoder the feature maps Ft for that frame and
conditioning it on the first-frame descriptors Df

1 ∪ Db
1.

This strategy, however, would not generalize well to
lengthy videos with significant scene changes and where
objects intersect and occlude each other. In practice, we
therefore propagate the object masks sequentially frame-by-
frame: t : 1 −→ 2 −→ ... −→ T . At each frame t, the encoder
creates an updated set of object descriptors Df

t ∪ Db
t from

the masks Mt−1 predicted for the previous frame (or the
initial input masks when t− 1 = 1). The decoder then seg-
ments the objects in frame t using these updated descriptors.

Temporal History. To mitigate large object appear-
ance and scene changes in video, existing VOS meth-
ods [8, 30, 50] incorporate temporal context from multiple
past frames when predicting object masks for the current
frame. HODOR also achieves the same feat efficiently:
recall that the decoder is conditioned on the set Df ∪ Db

which contains a variable number of object/background de-
scriptors. To incorporate temporal history when predicting
masks for frame t, we simply take the union of the set of
descriptors for the past Tp frames which we want to incor-
porate, i.e. Df

t−Tp
∪ Db

t−Tp
∪ ... ∪ Df

t−1 ∪ Db
t−1. In the

decoder, feature map F 8
t will be refined by jointly attend-

ing to the set of all descriptors in the Tp frame history. The
subsequent dot-product with the descriptors will produce a
set of masks Mt ∈ RH×W×Tp×(O+B). We temporally ag-
gregate over the time dimension to obtain masks for each of
the O +B patches (we use max for our method).

This formulation has three advantages: (1) it incurs little
computational overhead since we only need the O + B de-
scriptors for each past frame instead of the full feature maps.
(2) We can train with only single images, and still incorpo-
rate temporal context during inference without any architec-
tural changes. (3) We can segment an arbitrary number of
objects with a single forward pass of the network. This is in
contrast to several VOS methods (e.g. [8,30]) which require
a per-object forward pass for at least part of the network.

3.4. Training

HODOR’s problem formulation makes it versatile with
respect to the type of training data it can utilize. For the ba-
sic setting, we only need a static image dataset with anno-
tated object masks. However, annotated image sequences,
if available, can also be utilized by simply propagating the
object (and background) masks over the given sequence.

Furthermore, our problem formulation enables the se-
quential propagation of object masks over a video to be
end-to-end differentiable, i.e. even if we only supervise the
masks predicted for the last frame of a given clip, the error
will be backpropagated over the entire temporal sequence
to the first frame. This allows HODOR to also be trained
on unlabeled frames from videos with arbitrarily sparse

and temporally inconsistent object ID annotations. Given
a training clip with T frames where only frame t = 1 is
annotated, we can propagate the given object masks from
t : 1 −→ T , and then further propagate them in reverse tem-
poral order from t : T −→ 1. We can then use the principle
of cyclic consistency [13,47] for supervision by supervising
the predicted masks for t = 1 to be identical to the input
masks. The inherent information bottleneck of our method
enables it to be trained effectively under this setting without
trivially copying the input masks across the sequence.

4. Experimental Evaluation

Datasets. We evaluate HODOR on the DAVIS’17 [32] and
YouTube-VOS 2019 [49] benchmarks. The DAVIS dataset
comprises 60, 30, and 30 video sequences for training, val-
idation and testing, respectively. YouTube-VOS is a larger
dataset with 3471 videos for training and 507 for validation.
For both benchmarks the task is to segment and track an ar-
bitrary number of objects in each video. The ground truth
mask for each object is only provided for the first frame in
which an object appears. The evaluation measures are the
J score (Jaccard Index),F score (F1-score) and the average
of the two (J&F) is treated as the final measure.

Implementation Details. Our backbone network is the
‘Tiny’ variant of the Swin transformer [23] with Feature
Pyramid Network (FPN) and both our encoder and decoder
consist of 5 layers. For all training settings involving static
images, we use the COCO [22] dataset. Whenever train-
ing on image sequences, each sequence contains T = 3
frames. We provide between 1 and 4 randomly chosen la-
beled objects per image/sequence. The encoder and decoder
weights are randomly initialized, whereas the backbone is
initialized from an off-the-shelf checkpoint trained for ob-
ject detection [22]. The model is trained using the AdamW
optimizer [24] with a batch size of 8 parallelized across 4
Nvidia RTX3090 GPUs. During inference, we use a tem-
poral history comprising 7 past frames. The inference runs
at∼17 frames/s on an Nvidia RTX3090, independent of the
number of instances. See supp. material for further imple-
mentation details e.g. learning rate schedule, training time.

4.1. Training Data Versatility

Table 1 shows results on the DAVIS’17 validation set for
HODOR trained under different settings. For comparison,
we also report results for STCN [8], the current state-of-
the-art VOS method, whenever applicable. On just single
images, HODOR achieves 61.6 J&F , which is at the level
of state-of-the-art VOS approaches from 2017 [3, 41] that
use online fine-tuning during inference. STCN inherently
requires an image sequence and cannot be trained in this
setting. In row 2, we train on image sequences generated by
duplicating the same image T times without any augmen-
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Figure 4. Qualitative results on the DAVIS 2017 validation set: We omit the given first frame masks and only show results for other
frames. Note that fish, pigs, rope, guns, and soapbox carts are not annotated in COCO, which is used to train our model.

Table 1. J&F scores for various training settings on the DAVIS
2017 validation set. The sequence length T = 3 in all experi-
ments. CC: Cyclic Consistency.

Training Setting HODOR STCN [8]

1 Single image 61.6 -

2 T× duplicated image (no aug) 69.4 -

3 T× duplicated image (with aug) 77.5 75.8

4 T× dupl. video frame (with aug) 79.0 72.8

5 T frames, 1 annotated (with CC) 80.6 -

6 Temporally dense video 81.3 85.4

tation. Whereas existing space-time correspondence based
methods collapse under this setting by learning to trivially
copy the input mask, HODOR achieves 69.4 J&F . Even
though this setting does not provide any extra ‘information’
to the network compared to row 1, the J&F increases sig-
nificantly from 61.6 to 69.4. This is because the model ex-
periences noisy input masks due to the sequential propaga-
tion involved in this training setting. Thus, during inference
the model can robustly track objects across lengthy videos
even if the intermediate frame masks are imprecise, as it has
encountered similar masks during training.

In row 3, we train on image sequences generated by ap-
plying T random affine transformations to static images.
With this setting, our J&F further improves to 77.5. This
is because such augmentations coarsely approximate video
motion, thus making the learned object descriptors more ro-
bust to object appearance and scene changes. Existing VOS
methods also ubiquitously train on such augmented image
sequences as a pretraining step, however we out-perform
them under this setting (77.5 vs. 75.8). Qualitative results
of this model can be seen in Fig. 4 and an analysis of the
object descriptors is given in the supplementary material.

We then explore how effectively HODOR can leverage
single frame annotations that are part of a video sequence.
For the next two experiments, we utilize the YouTube-
VOS [49] and DAVIS [32] training sets, but assume that
only one frame per video (the middle-most frame) is anno-
tated (we only use 3,531 of the 98,797 available video frame

annotations). In row 4, we fine-tune models from row 3 by
similarly augmenting the selected frames. This further im-
proves the J&F from 77.5 to 79.0. STCN on the other
hand performs worse (72.8), likely because of overfitting.

For row 5, we fine-tune the model from row 3, but this
time using cyclic consistency by randomly sampling T − 1
unlabeled frames around the single annotated frame in each
video. This improves the J&F from 77.5 to 80.6. The fact
that this is higher than the 79.0 J&F in row 4 shows that
HODOR can effectively learn video motion cues from un-
labeled frames. Existing supervised STC methods cannot
be trained with this strategy since they lack the informa-
tion bottleneck needed to prevent the network from trivially
copying the input mask and also because they cannot back-
propagate gradients through the predicted mask.

Finally, we also train using dense video annotations with
full supervision (row 6), which improves the J&F from
77.5 to 81.3. STCN out-performs us under this setting (85.4
J&F) because the same information bottleneck which en-
ables us to train on single images and unlabeled frames
with cyclic consistency also has the drawback of limiting
the network’s access to fine-grained video motion cues. By
contrast, pixel-to-pixel correspondence methods lack such a
bottleneck thus enabling them to better leverage dense video
data. Nonetheless, to the best of our knowledge, we are the
first to surpass 81 J&F on DAVIS’17 using an approach
not based on pixel-to-pixel correspondences. Note also that
our approach has much better scaling properties since we
require only one frame annotation per video as opposed to
the dense annotations required by existing methods.

4.2. Comparison to State-of-the-art

In Table 2, we report results for existing VOS methods
categorized by the type of training data used. Results for
HODOR are given for two settings: (1) when trained on
augmented image sequences from COCO [22] (cf . Table 1,
row 3), and (2) after fine-tuning with cyclic consistency us-
ing just one labeled frame per training set video (cf . Table 1,
row 5). We use the same model checkpoint for all three
benchmarks. For the sake of completeness we also list re-
sults for methods that do not require any annotations, and
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Table 2. Quantitative results on the DAVIS and YouTube-VOS datasets. For YouTube-VOS we focus on the 2019 validation set, but
substitute 2018 validation set results when only those are available (slightly higher, highlighted in grey). As is common, we evaluate
unseen (us) and seen (s) object classes separatly for Youtube-VOS, UI†: Unlabeled Images, OL: Online Fine-tuning, ∗: retrained by us.

DAVIS val 17 DAVIS test-dev 17 YouTube-VOS val 18 /val 19

OL J&F J F J&F J F J&F Jus Fus Js Fs

UI† DINO [5] 71.4 67.9 74.9 - - - - - - - -

L
ab

el
ed

im
ag

es

OSVOS [3] X 60.3 61.6 69.1 49.0 45.6 52.5 - - - - -
OnAVOS [41] X 63.6 61.0 66.1 57.7 54.8 60.5 - - - - -
OSVOSS [27] X 68.0 64.7 71.3 57.5 - - - - - - -
STM (5x Mix) [30] 60.0 57.9 62.1 - - - 69.1 - - - -
DMN+AOA (COCO) [20] 67.9 65.8 70.0 - - - - - - - -
KMN (5x Mix) [34] 68.9 67.1 70.8 - - - - - - - -
STCN (5x Mix) [8] 75.8 73.1 78.6 - - - - - - - -
CFBI (COCO) [50] ∗ 57.6 55.8 59.4 54.0 51.7 56.3 68.4 64.7 70.9 68.2 69.7
STCN (COCO) [8] ∗ 55.0 52.3 57.6 51.7 49.5 54.0 69.4 66.4 73.9 67.8 69.3
HODOR (Ours, COCO) 77.5 74.7 80.2 65.0 62.6 67.4 71.7 65.5 71.4 73.7 76.0
HODOR (Ours, COCO + CC) 80.6 77.8 83.4 66.0 63.6 68.4 72.4 63.9 70.5 75.8 79.3

U
nl

ab
el

ed
vi

de
os

MAST [17] 65.5 63.3 67.6 - - - 64.9 61.5 68.4 64.3 65.3
STC-CRW [13] 67.6 64.8 70.2 - - - - - - - -
MAMP [29] (uses optical flow) 70.4 68.7 72.0 - - - 68.2 65.4 73.7 66.3 67.5

L
ab

el
ed

vi
de

os

FEELVOS [39] 71.5 69.1 74.0 57.8 55.2 60.5 - - - - -
AFB-URR [21] 74.6 73.0 76.1 - - - 79.6 74.1 82.6 78.8 83.1
e-OSVOS [28] X 77.2 74.4 80.0 64.8 60.9 68.6 71.4 74.3 74.3 71.7 66.0
STM [30] 81.8 79.2 84.3 - - - 79.4 72.8 80.9 79.7 84.2
CFBI [50] 81.9 79.1 84.6 74.8 71.1 78.5 81.0 75.2 83.0 80.6 85.1
EG-VOS [25] 82.8 80.2 85.2 - - - 80.2 74.0 80.9 80.7 85.1
KMN [34] 82.8 80.0 85.6 77.2 74.1 80.3 81.4 75.3 83.3 81.4 85.6
DMN+AOA [20] 84.5 81.4 87.5 78.3 74.8 81.7 82.7 76.7 84.8 82.6 87.0
HMMN [35] 84.7 81.9 87.5 78.6 74.7 82.5 82.5 77.3 85.0 81.7 86.1
STCN [8] 85.4 82.2 88.6 76.5 73.1 79.6 82.7 78.2 85.9 81.1 85.4
AOT-L [51] 85.4 82.4 88.4 81.2 77.3 85.1 84.5 78.4 86.7 84.0 88.8

also those trained on densely annotated video.

Looking at the ‘Labeled Images’ category, it can be
seen that HODOR trained on COCO achieves 77.5 J&F
on DAVIS’17, outperforming all existing methods. This
includes earlier VOS methods [3, 27, 31, 41] that per-
form online fine-tuning (best score: 68.0 J&F from
OSVOSS [27]), but also current state-of-the-art methods
which pre-train on similar augmented image sequences.
The best performing method among these is STCN (75.8
J&F) which is 1.7 J&F lower than our 77.5. It is worth
noting that while DMN+AOA [20] use COCO images for
this training step, STM [30], KMN [34] and STCN [8]
use a collection of 5 image datasets [6, 19, 36, 45, 53]
(‘5x Mix’ in the table). To verify that this discrepancy
does not disadvantage other methods, we retrained STCN
and CFBI on COCO images using their respective train-
ing code. These experiments are marked with ‘∗’ in the ta-
ble. It can be seen that STCN performs significantly worse
on DAVIS under this setting (55.0 J&F). Though per-
formance on YouTube-VOS is comparatively better (69.4
J&F), HODOR still outperforms it (71.7 J&F). The

same trend holds true for CFBI. One possible explanation
for the large performance difference of these methods on
the two datasets is that the augmentations applied to static
images are quite aggressive, which make objects undergo
significant movement across frames. This better approxi-
mates YouTube-VOS videos where objects also frequently
undergo large motions. By contrast, object motion in videos
from DAVIS is comparatively milder, and because these
methods learn pixel-to-pixel correspondences, they do not
perform well during inference if the nature of object motion
is different from what was encountered during training.

Finally, we also report our result after fine-tuning on
cyclic consistency using only the middle-most annotated
frame from each video in the YouTube-VOS and DAVIS
training set. This improves the J&F by 3.1, 1.0 and 0.7
points on the DAVIS validation, DAVIS test and YouTube-
VOS validation sets, respectively.

4.3. Ablations

We perform ablations to investigate our design choices
and report the results in Table 3.
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Figure 5. Temporal History Ablation: Performance on
DAVIS’17 val for different temporal history lengths during infer-
ence.

Temporal History During Inference. In Sec. 3.3, we dis-
cussed how HODOR can effectively incorporate temporal
history from past frames when predicting the object masks
for a given frame. Fig. 5 plots theJ&F score on DAVIS’17
val for different temporal history lengths. It can be seen that
increasing the frame history from 1 to 4 frames yields an
approximately linear performance improvement from 74.3
to 77.2. Thereafter, the J&F saturated at 7 frames at a
J&F score of 77.5. Recall that because we only need the
object/background descriptors for past frames rather than
the full feature maps, the inference run-time is minimally
affected by the temporal history length: increasing the tem-
poral history from 1 to 10 frames only reduces the inference
speed from 17.3 to 16.7 frame/s (reported speed is an aver-
age over 5 runs).

Multi-instance. Unlike most other VOS methods,
HODOR handles all objects in a single forward pass. This
enables it to effectively utilize multi-object context and
learn better descriptors. For experiment (1), we train and
infer with only one foreground instance, and merge multi-
ple forward passes by running a pixel-wise argmax over the
object logits during inference. This reduces the J&F from
77.5 to 71.5, clearly highlighting the benefit of our multi-
instance approach which also increases inference speed by
negating the need for per-object forward passes.

Attention Masking in Encoder. Recall from Sec. 3.1 that
we condition the descriptors on their respective patch masks
with our proposed soft attention mechanism. Experiment
(2) shows the result without attention masking. Thus, the
only cue for the descriptors to specialize to their respective
targets is their initialization (average pooling over the target
pixel features); this reduces the J&F to 74.4. For experi-
ment (3), we apply hard attention masking by thresholding
the masks at 0.5 and setting the KT Q matrix entries inside
the attention operation to −∞ for pixels where the mask is

zero. This strategy yields a similarly reduced J&F of 74.5.
The performance increase from using our learned soft atten-
tion masking shows that it helps the encoder to better condi-
tion the descriptors on the given object/background masks.

Encoder/Decoder Layers. For experiments (4-7), we ab-
late the depth of the encoder and decoder. Reducing the
depth from 5 to 3 in either of them reduces theJ&F by∼1.
For the zero-layer case, the 5 encoder layers are replaced
by a single MLP consisting of 3 fully-connected layers and
the 5 decoder layers are replaced with two 3 × 3 convolu-
tions. For the zero-layer decoder, the J&F reduces to 74.4,
whereas the zero-layer encoder reduces the J&F to 72.8.
This shows that while both components play an important
role in the overall performance, the encoder has a larger im-
pact. One reason could be that whereas self-attention in the
encoder allows object descriptors to interact, such interac-
tions are not as profound in the decoder where deformable
convolutions are used instead of self-attention.

Barebones Network. For experiment (8), we completely
omit both encoder and decoder, i.e. the descriptors are gen-
erated by simply average pooling the backbone features,
and the output masks are generated by computing their dot
product with backbone features of a different image. Doing
so reduces the J&F from 77.5 to 70.6. This shows that
although the method does not completely collapse without
the encoder/decoder layers, the latter are still important and
impart an improvement of 6.9 J&F .

Deformable Convolution in Decoder. Due to memory
constraints, we use a 3 × 3 deformable convolution [10]
instead of the self-attention operation (cf . Sec. 3.2). In ex-
periment (9), we instead use a regular 3×3 convolution and
observe a reduction in J&F from 77.5 to 75.1. This high-
lights the importance of substituting self attention with an
operation that is able to attend to far-away spatial locations.

Background Descriptors. We use nine background de-
scriptors initialized by dividing the image into a 3 × 3 grid
and average pooling the background pixel features in each
cell. This gives HODOR more flexibility to model the back-
ground. For experiment (10) we instead use a single back-
ground descriptor, reducing the J&F from 77.5 to 76.2.

5. Discussion

Limitations. Aside from our performance on dense video
data (discussed in Sec. 4.1), another limitation of our
method is that when there are distractor objects in the scene
with similar appearances, HODOR sometimes compels it-
self to segment an object even if that object has moved out
of the video scene. Since such cases arise more frequently
in YouTube-VOS videos, this is one reason why our J&F
score for YouTube-VOS is lower than that for DAVIS. In fu-
ture work, improved training strategies could be formulated

8



Table 3. Several ablation results on the DAVIS 2017 validation set.

Setting J&F J F

1 Single foreground instance 71.5 69.2 73.9

2 No masking in encoder 74.4 71.5 77.2
3 Hard masking in encoder 74.5 71.8 77.1

4 # layers in encoder: 5 −→ 0 72.8 70.5 75.2
5 # layers in encoder: 5 −→ 3 76.6 73.9 79.4

6 # layers in decoder: 5 −→ 0 74.4 71.7 77.1
7 # layers in decoder: 5 −→ 3 76.4 73.6 79.3

8 Barebones Network 70.6 68.2 72.9

9 Regular convolution in decoder 75.1 72.0 78.2

10 1x background descriptor 76.2 73.7 78.7

HODOR 77.5 74.7 80.2

to better optimize the model for such challenging cases.

Ethical Considerations. As with most computer vision
methods, the dual-use dilemma can and should not be ig-
nored. However, it is unlikely that our approach could
be utilized to facilitate negative use-cases (e.g. population
tracking or surveillance) more effectively than dedicated
approaches for these applications. Another important eth-
ical aspect is that dataset annotation is often performed by
an exploited labor force deprived of minimum wage and/or
legally binding benefits. Reducing the need for such anno-
tations can thus be seen as a positive aspect of our approach.

6. Conclusion

We proposed a novel VOS approach which uses high-
level descriptors for encoding and propagating objects
across video. Our approach contains an information bottle-
neck which enables training on single images and unlabeled
frames using cyclic consistency. Thus, unlike existing STC
based methods which train on dense video data, HODOR
can be trained on static images, or on videos with arbi-
trarily sparse, temporally inconsistent frame annotations.
Since annotating single frames is easier than dense video,
HODOR has strong potential for scaling up performance by
learning from large-scale video datasets with sparse, or even
automatically generated frame annotations [43].
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Supplementary Material

S1. Object Descriptors for Re-Identification
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Figure S1. Retrieval Task: Precision-Recall curve for retrieval
task on all object instances in DAVIS’17 val.

Our object descriptors are trained to encode an object’s
appearance so that it can be re-segmented, i.e. segmented
in another video frame. Here we explore the applicabil-
ity of these descriptors for a re-identification/retrieval task.
For this, we consider the set of object descriptors for all
frames for all video sequences in the DAVIS’17 validation
set. For each descriptor, we calculate the Euclidean dis-
tance to all other descriptors, and then use these distances
to retrieve other descriptors belonging to the same object
instance. The resulting precision and recall is used to gen-
erate the precision-recall curve in Fig. S1 by averaging the
retrieval scores across all descriptors.

Looking at the curve, we see that for each descriptor, ∼
50% of the other descriptors belonging to the same object
instance can be retrieved with a fairly high recall of∼ 80%.
Thereafter, the precision drops off sharply. Note, however,
that this plot does not reflect the full quality of the object
descriptors for the Video Object Segmentation (VOS) task
due to two main reasons:

1. This experiment disregards the image feature maps and
directly compares the descriptors to one another. In the
actual VOS use-case, we compute the dot-product be-
tween descriptors and image features to produce per-
pixel logits which are then optimized to correctly seg-
ment the given object. In this experiment however,
we directly compute the Euclidean distance between
the descriptors themselves. Recall from Sec. 2 of the
main text where we discussed that ”Object-object Cor-
respondence” based method use such re-identification

techniques for associating objects over time. HODOR
by contrast is an ”Object-pixel Correspondence” based
method.

2. For this experiment, we expect the network to learn
descriptors which separate objects globally, i.e. across
different video sequences. During training however,
the network was only trained to distinguish between
objects in the same image (or image sequence).

We hence conclude from this experiment that the ob-
ject descriptors learned by our network can be used for
re-identification tasks. However, the distribution of the de-
scriptors for a given instance do not follow a unimodal dis-
tribution. This results in the sharp drop-off in recall seen in
Fig. S1.

S2. Visualizing Descriptor Feature Space

We attempt to visualize the object descriptors by project-
ing the 256-D object descriptors for all object instances in
the DAVIS’17 validation to 2-D using t-SNE [37]. The re-
sulting visualization is shown in Fig. S2 wherein the object
crop for each descriptor is pasted at the projected 2-D co-
ordinates. We can clearly see that descriptors for the same
object instance are tightly clustered in a trajectory-like se-
quence. Though not visualized here, we observed that the
trajectory-like shape usually corresponds to the frame in-
dex, which means that the descriptors tend to drift slightly
over time.

We can also see a strong semantic trend in the descrip-
tors. The lower-right portion of the image contains several
of the ‘car objects, the top-right contains several riders (i.e.
persons righting motorbikes, bicycles, horses). The center
portions generally contains persons, and the lower-left por-
tion of the image contains several animal classes e.g. cow,
dog, goat. There are, however, noticeable exceptions. Note
how there is a cluster of three fish on center-right, but the
remaining two fish are very far away from them and each
other.

Given that applications based on object embeddings of-
ten use a simple linear projection for further processing, we
also visualize the object descriptors by projecting them to
2-D using Principal Component Analysis (PCA). The re-
sulting illustration is given in Fig. S3. Here, in general, the
descriptors are less distinguishable from each other, but the
overall trend still holds true, i.e. descriptors for the same
instance and similar semantic classes are generally located
close to one another.
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Figure S2. Object Descriptor Visualization: The descriptors for all object instances in DAVIS’17 val projected to 2-D using t-SNE.

S3. Background Descriptors

In Sec. 3 of the main text, we explained how HODOR
uses high-level descriptors to model the foreground objects
and also the background. For the latter, all non-object pix-
els are combined into a background mask which is then
split into 9 separate masks by dividing it into a 3 × 3 grid.
One further minor architectural detail is that aside from
the 9 background descriptors, we also predict an additional
‘catch-all’ background logit for each pixel. To do this, we

apply a 3 × 3 convolution followed by a 1 × 1 convolu-
tion to the refined feature map F 4(L) in the decoder (cf .
Eq. 4 in the main text) to obtain a single-channel logit map.
Then, before computing the softmax over the descriptors,
we append the logit value for each pixel, representing an-
other background descriptor. Formally speaking, Eq. 4 of
the main text changes to the following:
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Figure S3. Object Descriptor Visualization: The descriptors for all object instances in DAVIS’17 val projected to 2-D using PCA.

F 4(L) ←− Conv
(
F 4 + upsample2(F 8(L))

)
Mbc ←− Conv

(
Conv

(
F 4(L)

))
M ′ ←− Concatenate

(
F 4(L) ·D,Mbc

)
M ←− softmax (upsample4 (M ′))

(S1)

whereMbc is the background catch-all logit map andM ′

is an intermediate variable used to denote the concatenation
of the dot-products F 4(L) ·D and Mbc.

Note that these catch-all background logits are not prop-
agated frame-by-frame when processing a video sequence.
Without this technique, we obtain a J&F of 76.2 on
DAVIS’17 val, which is 1.3 lower than the 77.5 reported
in Table 2 of the main text.

Some example probability heatmaps for both the catch-
all, as well as the 3× 3 background grid can seen in Fig. S4
and S5. Note how the catch-all logits have high magnitudes
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mostly around object edges. The background descriptors
sometimes associate themselves to an object-like region e.g.
to the bush in the horsejump-high sequence (bottom-right
descriptor), or to the black box/case in the bike-packing se-
quence (bottom-right descriptor). In general, we an also see
a location bias based on the background mask patch which
each descriptor was made to focus on by the encoder.

S4. Implementation Details

Input Image Dimensions. For training, the input image is
resized in an aspect-ratio preserving manner such that the
pixel area is ∼ 300,000 and the lower dimension is an inte-
ger multiple of 32. During inference, the images are resized
to have lower dimension 512.

Loss Function. To supervise the predicted masks, we use
the sum of the cross-entropy loss and the DICE loss (both
weighted by unity).

Learning Rate Schedule. When training on COCO [22],
the learning rate is first warmed up from 0 to 10−4 over
10k iterations. Then at 100k iterations we apply step de-
cay and reduce the learning rate to 10−5. The training is
then run for a further 150k iterations. For training on an-
notated video frames (both augmented frames and cyclic
consistency), we fine-tune the network by loading weights
from the COCO augmented sequence checkpoint, and then
warm-up the learning rate from 0 to 10−5 over 10k itera-
tions. The network then trains for a further 10k iterations
with constant learning rate. Since there are only ∼ 3500
labeled image frames under this setting, the model tends to
over-fit if trained longer.

Training Time. The main training on COCO for 250k
iterations requires ∼ 2 days on 4 Nvidia 3090 GPUs. The
fine-tuning for 20k iterations requires less than 6 hrs.

Soft Attention-masking Scaling Factors. In Sec. 3.1
of the main text, we explained our novel attention-
masking mechanism which applies an additive offset to the
KeyT Query matrix. The offset is the mask value scaled by
a positive scalar α. We initialize α separately for each of
the 8 attention heads as follows: [32, 32, 16, 16, 8, 8, 4,
4]. These are applied as learnable parameters which can be
optimized by the network.

Image Augmentations. For the results reported in Table 2
of the main text, we trained on image sequences generated
by applying random affine transformations to COCO im-
ages. We use the popular imgaug library [14] for this task.
The range of values for each transformation type are as fol-
lows:

• Translation: 0− 25% w.r.t the dimension size.

• Rotation: 0− 10% in both directions.

• Shear: 0− 10% along both axes.

• Crop: 60− 90% of the image is retained.

Note that each image in the training image sequence is
generated by applying the transformations to the original
image, i.e. we do not apply sequential augmentation. Aside
from these geometric augmentations, we also apply color
augmentations as follows:

• Hue : 0− 12%

• Saturation: 0− 12%

• Contrast (linear): 0− 5%.

• Brightness: 0− 25%

Our color augmentation strategy is inspired from that
used by Cheng et al. [8] for STCN.
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Figure S4. Background Descriptor Visualization: Each block shows the ground truth foreground object mask(s) (top left) and a total of
10 background probability heatmaps, corresponding 1 catch-all heatmap (mid left) and the full 3× 3 background grid heatmaps (columns
2-4). Not the location bias in the 3 × 3 grid, where the grid-based background descriptor initialization sometimes causes the background
descriptors to attach to a nearby object. 5



Figure S5. Background Descriptor Visualization (continued): Each block shows the ground truth foreground object mask(s) (top left)
and a total of 10 background probability heatmaps, corresponding 1 catch-all heatmap (mid left) and the full 3 × 3 background grid
heatmaps (columns 2-4). Not the location bias in the 3 × 3 grid, where the grid-based background descriptor initialization sometimes
causes the background descriptors to attach to a nearby object.
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