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Abstract

Talking head video generation aims to produce a syn-
thetic human face video that contains the identity and pose
information respectively from a given source image and a
driving video. Existing works for this task heavily rely on
2D representations (e.g. appearance and motion) learned
from the input images. However, dense 3D facial geometry
(e.g. pixel-wise depth) is extremely important for this task
as it is particularly beneficial for us to essentially generate
accurate 3D face structures and distinguish noisy informa-
tion from the possibly cluttered background. Nevertheless,
dense 3D geometry annotations are prohibitively costly for
videos and are typically not available for this video gen-
eration task. In this paper, we introduce a self-supervised
face-depth learning method to automatically recover dense
3D facial geometry (i.e. depth) from the face videos with-
out the requirement of any expensive 3D annotation data.
Based on the learned dense depth maps, we further pro-
pose to leverage them to estimate sparse facial keypoints
that capture the critical movement of the human head. In a
more dense way, the depth is also utilized to learn 3D-aware
cross-modal (i.e. appearance and depth) attention to guide
the generation of motion fields for warping source image
representations. All these contributions compose a novel
depth-aware generative adversarial network (DaGAN) for
talking head generation. Extensive experiments conducted
demonstrate that our proposed method can generate highly
realistic faces, and achieve significant results on the unseen
human faces. 1

1. Introduction
In this paper, we target the task of generating a realis-

tic talking head video of a person using a source image of
that person and a driving video, possibly derived from an-
other person [27, 28, 31]. In the real world, a wide range of
practical applications can be benefited from this task such

*Corresponding author
1https://github.com/harlanhong/CVPR2022-DaGAN

(a) (b) (c)
Figure 1. Qualitative results of the learned depth maps (Fig. 1b)

of the face images (Fig. 1a) using a self-supervised manner, and

dense depth-aware attention maps (Fig. 1c), which can attend to

important semantic parts of the face such as eyes.

as role-playing video games and virtual anchors.

Rapid progress has been achieved on talking head video
generation in terms of both quality and robustness in recent
years, using generative adversarial networks (GANs) [5]. A
successful direction for the task in the literature focuses on
decoupling identity and pose information from the face im-
ages [22, 24, 31]. For instance, pioneering works [22, 24]
propose to model relative poses between two face images
based on estimated sparse facial keypoints, and the poses
are further used to generate dense motion fields, which
warps the feature maps of the source image to drive the im-
age generation. Similarly, Eurkov et al. [1] aimed to specifi-
cally learn two latent codes for the pose and the identity, and
then input them into a designed generator network for face
video synthesis. More than that, data augmentation strate-
gies [1,39] are also explored to more effectively perform the
disentanglement of the pose and identity information. Al-
though these methods show highly promising performance
on the task, they still pay large attention to learning more
representative 2D appearance and motion features from the
input images. However, for face video generation, 3D dense
geometry is critically important for the task while rarely in-
vestigated in the existing methods.

The dense 3D geometry (e.g. pixel-level depth) can bring
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several significant benefits for the talking-head video gen-
eration. First, as the video captures the moving heads in a
realistic 3D physical world, the 3D geometry can greatly fa-
cilitate an accurate recovery of 3D face structures, and the
model capability of maintaining a realistic 3D face structure
is a key factor for generating high-fidelity face videos. Sec-
ond, the dense geometry can also help the model to robustly
distinguish the noisy background information for genera-
tion especially under cluttered background conditions. Fi-
nally, the dense geometry is also particularly useful for the
model to identify expression-related micro-movements on
the faces. However, a severe issue of utilizing the 3D dense
geometry to significantly boost the generation is that the 3D
geometry annotations are highly expensive and typically not
available for this task.

To address this problem, in this paper, we first propose to
learn the pixel-wise depth map (see Fig. 1b) via geometric
warping and photometric consistency in a self-supervised
manner, to automatically recover dense 3D facial geometry
from the training face videos, without requiring any expen-
sive 3D geometry annotations. Based on the learned dense
facial depth maps, we further propose two mechanisms to
effectively leverage the depth information for better talking-
head video generation. The first mechanism is depth-guided
facial keypoint detection. The facial keypoints estimated by
the network should well reflect the structure of the face, as
they are further used to produce the motion field for feature
warping, while the depth map explicitly indicates the 3D
structure of the face. Thus, we combine geometry represen-
tations learned from the input depth maps with the appear-
ance representations learned from the input images, to pre-
dict more accurate facial keypoints. The second mechanism
is a cross-modal attention mechanism to guide the learning
of the motion field. The motion field may contain noisy
information from the cluttered background, and cannot ef-
fectively capture the expression-related micro-movements
as they are generated from sparse facial keypoints. There-
fore, we propose to learn depth-aware attention to have
pixel-wise 3D geometry constraint on the motion field (see
Fig. 1c), to drive the generation with more fine-grained de-
tails of facial structure and movements.

All the above-illustrated contributions compose a Depth-
aware Generative Adversarial Network (DaGAN) to ad-
vance talking head video generation. Extensive experi-
ments are conducted to qualitatively and quantitatively eval-
uate the proposed DaGAN model on two different datasets,
i.e. VoxCeleb1 [18] and CelebV [27]. The experimental re-
sults show that our proposed self-supervised depth learn-
ing strategy can produce accurate depth maps on both the
source and the target human face images. Our DaGAN
model can also generate higher-quality face images com-
pared with state-of-the-art methods. More specifically, our
model is able to better preserve facial details, yielding a syn-
thesized face with a more accurate expression and pose.

In summary, the main contribution is three-fold:

• In this work, we propose to introduce a self-supervised
face-depth learning method to recover explicit dense
3D facial geometry (i.e. depth maps) from face videos
for talking head video generation, and utilize the
learned depth to boost the performance.

• We propose a novel depth-aware generative adversarial
network for talking head generation, which effectively
incorporates the depth information into the genera-
tion network via two carefully designed mechanisms,
i.e. depth-guided facial keypoint estimation, and cross-
modal (i.e. depth and image) attention learning.

• Extensive experimental results show accurate depth re-
covery of face images and also achieve superior gener-
ation performance compared with state-of-the-arts.

2. Related Works
Generative Adversarial Networks. The generative ad-
versarial network (GAN) was introduced by Goodfellow et
al. [5] to produce realistic images under certain conditions.
GANs have attracted substantial attention and has been
studied in many tasks [15], e.g., unconditional image syn-
thesis [5, 11, 12, 19], text-to-image translation [20, 29, 34],
and image inpainting [9, 13, 14]. In this work, we focus on
talking head video generation with GAN guided by 3D fa-
cial depth maps learned from a self-supervised manner.

Depth Estimation. Many works have been proposed to
tackle the problem of depth estimation from stereo images
or video sequences [3, 4, 7, 16, 40]. Zhou et al. [40] use
an end-to-end learning approach with view synthesis as the
supervisory signal to estimate the depth map in monocular
video sequences in an unsupervised manner. Based on [35],
Clement et al. [4] gain a significant improvement using a
minimum reprojection loss to deal with occlusions between
frames and an auto-masking loss to ignore confusing sta-
tionary pixels. Gordon et al. [6] tried to learn camera intrin-
sics for every two consecutive frames to make the model
able to perform inference in the wild.

To utilize the depth information of human faces, we in-
troduce a self-supervised depth estimation method for the
talking head generation task with only video images re-
quired. The depth map can provide dense 3D geometric
information for the keypoint detection and can serve as an
important cue to guide the model to focus on fine-grained
critical parts of the human face (e.g. eyes, and mouth) dur-
ing image generation.

Talking Head Video Generation. Talking Head Video
Generation can be divided into three major strategies ac-
cording to its driven-modality, i.e. image-driving meth-
ods [1, 22, 24, 26, 31, 36], landmark-driving methods [8, 32,
33, 37] and audio-driving methods [2, 23, 38, 39]. To ex-
clude the driving face’s identity information, several image-
driving methods [22, 24] tried to predict keypoints of both
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Figure 2. An illustration of the proposed DaGAN approach, which can be mainly divided into three sub-networks: (1) a self-supervised

depth learning sub-network Fd. We learn pixel-wise face depth maps in a self-supervised manner to recover the dense 3D facial geometry

from the training face videos. (2) a depth-guided facial keypoints detection sub-network Fkp. In this part, we combine both the geometry

representations from depth maps with the appearance representations from the images to predict more accurate facial keypoints. (3) a

cross-modal (i.e. depth and rgb image) attention learning sub-network. We learn dense depth-aware attention map using depth maps to

constrain the motion field, to obtain a more accurate generation of fine-grained details of facial structure and movements.

the source image and driving image, and model local mo-
tion using the changes in the positions of corresponding
keypoints. Similarly, Yao et al. [31] construct 3D meshes
to remove the identity information from the driving im-
ages. Using facial landmarks instead of pure images to en-
code the pose information is an intuitive method. The fs-
vid2vid [33] models person appearance by decomposing it
into two layers, i.e. a pose-dependent coarse image and a
pose-independent texture image. Zhao et al. [37] not only
model global motions using full facial landmarks, but also
use local landmarks to enforce the model to focus on local
regions. The audio-driving method is a more popular way to
perform face reenactment since the audio does not contain
identity information, which can enable the model to more
easily obtain a latent code of pose information from the au-
dio. In [38], the encoder disentangles the pose information
from identity information assisted by the audio modality.
In both [38, 39], they argue that the audios and the images
should share the same pose space.

In contrast to these existing works, we learn explicit
pixel-wise depth map in a self-supervised manner, to pro-
vide highly beneficial 3D dense geometry information of
the human faces, which allows the proposed model to ac-
curately perceive 3D structures of the faces, and generate
more fine-grained details of face spatial structures.

3. The proposed DaGAN Approach
Generating talking head videos is a technically challeng-

ing task as it requires the preserving of the identity infor-
mation while imitating the facial motion from the driving

faces. In this work, under the same setting as utilized in pre-
vious works [22, 31], we propose a depth-aware generative
adversarial network, termed as DaGAN, for talking head
video generation. It learns a depth estimation network in a
self-supervised manner from training face videos, without
requiring any expensive 3D geometry data as input. Thus,
we can recover reliable face depth maps for both the in-
put source and driving images to capture accurate 3D face
structures and the expression-related micro-movements for
higher-quality talking-head video generation.

3.1. Overview
Our proposed DaGAN approach consists of a generator

and a discriminator. The core network architecture of our
generator is depicted in Fig. 2, while the implementation
of the discriminator is directly inspired from FOMM [22].
Our generation network can be split into three parts: (i) a
self-supervised depth learning sub-network Fd. The face
depth network Fd first learns depth estimation using two
consecutive frames (i.e. Ii and Ii+1) from a face video
in a self-supervised manner. Then the whole deep frame-
work is jointly trained while with Fd fixed. (ii) A depth-
guided sparse keypoints detection sub-network Fkp. Given
a source image Is and a driving image Id from the driving
video, we exploit Fd to produce depth maps (Ds and Dd)
for each image. These depth maps and corresponding RGB
images are concatenated to learn geometry and appearance
features for detecting face keypoints (i.e. {xs,n}Nn=1 and
{xd,n}Nn=1), which can be used to generate relative motion
fields of the human faces. (iii) The feature warping mod-
ule accepts the keypoints as input to generate motion fields,
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Figure 3. The training process of our face depth network. In addi-

tion to the face depth network, we use a pose network to estimate

the relative camera poses [RIi→Ii+1 , tIi→Ii+1 ] and the camera

intrinsic matrix Kn. The symbol c represents the concatenated

operation.

which are used to warp the source-image feature map to
fuse with the appearance information, resulting in a warped
feature Fw. To enforce the model to focus on fine-grained
details of face structures and micro-expression movements,
we further learn a dense depth-aware attention map using
the source depth map Ds and the warped feature Fw. The
depth-aware attention map can be used to refine the warped
feature to produce a refined feature Fg , resulting in a better
generated image Ig .

3.2. Self-supervised Face Depth Learning
In this part, we elaborate the technical details of the

proposed self-supervised facial depth learning network,
which can automatically recover dense face depth maps
from the input source and driving images. Although SfM-
Learner [40] previously proposed to learn outdoor scene
depth in an unsupervised manner in an autonomous driving
scenario, while in this work, we extend the method to learn
face depths specifically for talking head video generation.
Since the facial videos contain relative larger-area dynamic
motion (moving head dominating on the image) compared
to the outdoor scenes, unsupervised facial depth estimation
is a challenging problem in our task.

We optimize the depth network using available train-
ing face videos. Specifically, given two consecutive video
frames Ii and Ii+1 from a face video, with Ii+1 as a source
image and Ii as a target image, we aim to learn several ge-
ometric elements, including a depth map DIi for the target
image Ii, a camera intrinsic matrix Kn, n indicating the
n-th input video in the training data, and a relative camera
pose RIi→Ii+1

with translation tIi→Ii+1
between the two

images. It should be noted that the camera intrinsic Kn is
also not available in our training face video dataset, which is
clearly different from [40] using provided camera intrinsics.
Kn is input-video-clip-specifically learned in our method,
as each face video can be possibly captured by any camera.
So the input of our method only requires video frames.

The depth map DIi can be produced using the depth net-
work Fd(·). The pose RIi→Ii+1

, the translation tIi→Ii+1
,

and the camera intrinsic matrix Kn are predicted from the
same pose network Fp(·) as follows:

DIi = Fd(Ii), (1)

[RIi→Ii+1
, tIi→Ii+1

],Kn = Fp(Ii || Ii+1), (2)

where the symbol || indicates a concatenation of the two
images. Then, we can warp the target image Ii to the view
of the source image Ii+1 as follows:

qk ∼ Kn[RIi→Ii+1
| tIi→Ii+1

]DIi(pj)K
−1
n pj , (3)

Ĩi = BI(Ii+1, {qk}Nk=1), (4)

where qk and pj denote the warped pixel on the source im-
age Ii+1 and an original pixel on the target image Ii; N is
the overall number of pixels of the image; BI(·) is a differ-

entiable bilinear interpolation function; Ĩi is a reconstructed
image at the source view. Therefore, we can construct a

photometric consistency error Pe(·, ·) between Ĩi and Ii to
train our depth network in a self-supervised manner. Fol-
lowing [4], we use L1 and SSIM [25] to construct the pho-
tometric consistency error Pe as:

Pe(Ii, Ĩi) = α(1−SSIM(Ii, Ĩi))+(1−α)||Ii− Ĩi||, (5)

where α is set to 0.8 showing better optimization in our ex-
periments. After training the framework, we only utilize
the face depth network Fd in DaGAN to estimate the depth
maps of input face images, which are further employed by
our proposed mechanisms for talking head generation.

3.3. Motion Modeling by Sparse Keypoints
After we obtain the depth map from the face depth net-

work, we concatenate the RGB image and its corresponding
depth map produced by Fd. Then, the keypoints estimator
Fkp inputs the concatenated appearance (i.e. Iτ ) and geom-
etry (i.e. Dτ ) information to more accurately predict a set
of sparse keypoints of the human face:

{xτ,n}Kn=1 = Fkp(Iτ || Dτ ), τ ∈ {s, d}, (6)

where K is the number of the detected face keypoint, and
the subscript τ indicates a source image or a driving image;
|| denotes a concatenation operation. We follow the design
of [22] to implement our keypoints detector.

We adopt a feature warping strategy to capture head
movements between the source and the target images, and
implement a proposed feature warping module. Firstly, we
compute a set of initial 2D offsets {On}Kn=1 for all the key-
points as follows:

{On}Kn=1 = {xs,n}Kn=1 − {xd,n}Kn=1. (7)

Then, we generate a 2D dense coordinate map z similar
to [22]. After that, a dense 2D motion field wm is generated
by adding the K offsets {On}Kn=1 into the 2D coordinate
map at the corresponding coordinates of the K keypoints.
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Figure 4. The illustration of our feature warping module. Here,
D is the downsampling operation, w is the warping operation,

⊙
is the element-wise multiplication. The

⊕
and − represent

the addition and subtraction operation, respectively.

As shown in Fig. 4, we first utilize the dense 2D motion
field wm to warp the downsampled image to produce an ini-
tial warped feature map. After that, an occlusion estimator
T take as input the initial warped feature map to predict a
motion flow mask Mm and an occlusion map Mo [31]. The
motion flow mask Mm assigns different confidence values
for the estimated dense 2D motion field wm, resulting in
masked motion field, while the occlusion map Mo aims to
mask out the feature map regions that should be inpainted
since the head has varying rotations. we utilize the masked
motion field to warp the appearance feature map learned
from the source image Is extracted by the feature encoder
EI . Then, they are fused with the occlusion map Mo to
produce the warped soruce-image feature Fw as follows:

Fw = Mo ∗Wp(EI(Is),Mm ∗wm), (8)

where Wp is the warping function. In this way, the warped
features Fw can better preserve the identity of the source
image while maintaining the head motion information be-
tween two faces.

3.4. Cross-Modal Attention Module
To effectively embed the learned depth maps to boost the

generation in a more dense way, we propose a cross-modal
(i.e. depth and image) attention mechanism to enable the
model to better preserve the facial structure and generate for
expression-related micro facial movements, as the depth can
provide us dense 3D geometry, which is essentially benefi-
cial for maintaining the facial structure and identifying the
critical movements when performing the generation. More
specifically, we develop a cross-modal attention module to
produce a dense depth-aware attention map to guide the
warped feature Fw for face generation.

As shown in Fig. 5, a depth encoder Ed take a source
depth map Ds as input to encode a depth feature map Fd,
and we perform linear projection on Fd and the warped
source-image feature Fw into three latent feature maps Fq ,
Fk and Fv by three different 1 × 1 convolutional layers
with kernels Wq , Wk, and Wv , respectively. The Fq ,
Fk and Fv can respectively represent the query, key and

conv

conv

conv

Figure 5. The illustration of our cross-modal attention module.
Here, 1× 1 convolutional layers do not share the parameters with
each other, and the symbol

⊗
represents the matrix multiplication.

value in the self-attention mechanism. Thus, the geometry-
related query feature Fq produced by the depth map can be
fused with the appearance-related key feature Fk to gen-
erate dense guidance for the human face generation. We
obtain the final refined features Fg for generation:

Fg = Softmax
(
(WqFd)(WkFw)

T
)
× (WvFw), (9)

where Softmax(·) represents a softmax normalization func-
tion which outputs the dense depth-aware attention map A
in Fig. 5. The A contains important 3D geometric guidance
for generating the faces with more fine-grained details of
facial structure and micro-movements. Finally, the decoder
takes as input the refined warped features Fg to produce the
final synthesized image Ig .

3.5. Training
In the training stage, the identities of the source and the

driving image are the same, while they can be different in
the inference stage. Following the previous works [22, 24],
we train the proposed DaGAN in a self-supervised manner
by minimizing the following loss:

L =λPLP (Ig, Id) + λGLG(Ig, Id)

+ λELE({xd,n}Kn=1)

+ λD(LD({xs,n}Kn=1) + LD({xd,n}Kn=1)).

(10)

Perceptual loss LP . We minimize the perceptual loss [10]
between the driving image Id and the generated image Ig ,
which has been effectively demonstrated being able to pro-
duce visually sharp outputs [22]. Moreover, we create an
image pyramid for the driving image Id and the generated
image Ig to compute a pyramid perceptual loss.

GAN loss LG. We adopt the least-squares loss [17] as our
adversarial loss. We use the discriminator to compute fea-
ture maps of different scales from the input image, and per-
form LG on multiple levels as LP . We also minimize the
discriminator feature matching loss [24].

Equivariance loss LE . For a valid keypoint, when apply-
ing a 2D transformation to the image, the predicted keypoint
should change according to the applied transformation [22].
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Thus, we utilize an equivariance loss LE to ensure the con-
sistency of image-specific keypoints.
Keypoints distance loss LD. In order to make the detected
facial keypoints aovid crowded around a small neighbour-
hood, we employ a keypoints distance loss to penalize the
model if the distance of two corresponding keypoints falls
below a predefined threshold.

Overall, the first two terms ensure the generated image
being similar to the ground-truth. The third one enforces
the predicted keypoints to be consistent, while the last one
constrains the keypoints not to be clustered together. The
λP , λG, λE and λD are the hyper-parameters to allow for a
balanced learning from those losses. More details about the
losses are presented in the Supplementary Material.

4. Experiments
In this section, we conduct extensive experiments on two

talking face datasets to evaluate our proposed method. More
additional experiments results and video samples are re-
ported in the Supplementary Material.

4.1. Dataset and Metrics
Dataset. We mainly conduct experiments on two talking
head generation datasets (i.e. VoxCeleb1 [18] dataset and
CelebV [27] dataset) in this work. We follow the test set
sampling strategy of MarioNETte [8].
Metrics. In this work, several metrics are utilized to eval-
uate the quality of the generated images. Specifically, we
use structured similarity (SSIM) and peak signal-to-noise
ratio (PSNR) to evaluate the low-level similarity between
the generated image and the driving image. Also, we adopt
other three metrics, i.e. L1, Average Keypoint Distance
(AKD), and Average Euclidean Distance (AED) proposed
in [21] to evaluate the keypoint-based methods.

In cross-identity reenacting experiments, following the
previous work [8], we adopt the CSIM to evaluate the qual-
ity of identity preservation between source images and gen-
erated images. PRMSE is utilized to evaluate the head
poses, while AUCON for expression evaluation.

4.2. Implementation Details
The structure of the keypoints estimator is an hourglass

network [30]. We use similar architectures as in [4] for im-
plementing our depth and pose networks, while the decoder
in the generator is the same as in [22]. The details of the
structures of each sub-network in the proposed DaGAN is
elaborated in Supplementary Material. For the optimization
losses, we set λP = 10, λG =1, λE = 10, and λD = 10. We
set the number of keypoints in DaGAN as 15. In the training
stage, we first train our face depth network using consecu-
tive frames from videos in VoxCeleb1, and we fix it during
the training of the whole deep generation framework.

4.3. Comparison with State-of-the-art Methods
Self-reenactment. We first compare the face synthesis re-
sults where the source and driving images are of the same

Model CSIM ↑ SSIM↑ PSNR↑ PRMSE ↓ AUCON↑
X2face [26] 0.689 0.719 22.537 3.26 0.813

NeuralHead-FF [33] 0.229 0.635 20.818 3.76 0.719
MarioNETte [8] 0.755 0.744 23.244 3.13 0.825

FOMM [22] 0.813 0.723 30.394 3.20 0.886
MeshG [31] 0.822 0.739 30.394 3.20 0.887
OSFV [24] 0.895 0.761 30.695 1.64 0.921

DaGAN (ours) 0.899 0.804 31.220 1.22 0.939

Table 1. Comparisons with state-of-the-art methods on the self-

reenactment on the VoxCeleb1 dataset [18]. ↑ indicates larger is

better, while ↓ indicates smaller is better.

Model L1 ↓ AKD ↓ AED↓
X2face [26] 0.078 7.687 0.405

Monkey-Net [21] 0.049 1.878 0.199
FOMM [22] 0.043 1.294 0.140
OSFV [24] 0.043 1.620 0.153

DaGAN (ours) 0.036 1.279 0.117

Table 2. Comparisons with keypoint-based methods on self-

reenactment on the VoxCeleb1 dataset [18]. ↓ smaller is better.

Source image Driving image FOMM OSFV Ours

Figure 6. Qualitative comparisons of cross-identity reenactment

on the VoxCeleb1 dataset [18].

person, and report the results in Tab. 1. It can be ob-
served that our DaGAN achieves the best results among
all the compared methods. Compared with the other two
keypoint-driven methods, i.e. FOMM [22] and OSFV [24],
our DaGAN model achieves the most accurate head move-
ments (1.22 of ours vs. 3.20 of FOMM, and 1.64 of OSFV,
in PRMSE), which verifies that our depth-guided facial-
keypoints estimation can better capture the motion of hu-
man heads. Regarding the facial expression, our method
still obtains the highest score (0.939 in AUCON), mean-
ing that our method can recover more fine-grained details
of the face structures and micro-expression movements of
the face. Also, our method produces the highest scores in
both SSIM and PSNR, which demonstrates that our method
can produce more realistic images compared with the most
competitive methods. Additionally, we report the results on
other three metrics proposed by [21] in Tab. 2. Our method
obtains the best scores in these three metrics, clearly con-
firming our initial motivation that introducing the 3D depth
maps can greatly benefit the keypoint-based generation.

Cross-identity reenactment. We also perform experiments
on the CelebV dataset to exploit the cross-identity motion
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Model CSIM↑ PRMSE ↓ AUCON↑
X2face [26] 0.450 3.62 0.679

NeuralHead-FF [33] 0.108 3.30 0.722
marioNETte [8] 0.520 3.41 0.710

FOMM [22] 0.462 3.90 0.667
MeshG [31] 0.635 3.41 0.709
OSFV [24] 0.791 3.15 0.805

DaGAN (ours) 0.723 2.33 0.873

Table 3. Comparisons with state-of-the-art methods on cross-

identity reenactment on CelebV dataset [27].

Source image Driving image FOMM OSFV Ours

Figure 7. Qualitative comparisons of cross-identity reenactment

on the CelebV dataset [27].

transfer, where the source and driving images are from dif-
ferent persons. We report the experimental results in Ta-
ble 3. As we can observe that the PRMSE and AUCON
of our DaGAN method remain the best among all methods,
achieving 2.33 for PRMSE and 0.873 for AUCON. We also
present several generated examples in Fig 6 and 7. As some
methods do not release their code, we only show the results
of those methods with available codes (e.g. FOMM and
OSFV). For the seen faces in Fig. 6, our method produces
face images with more fine-grained details than the oth-
ers, for instance, the mouth and eyes regions in three rows.
It verifies that the utilization of depth maps enables the
model to identify micro-expression movements of the hu-
man faces. For the unseen targets in the CelebV dataset, we
also show some generated samples in Fig. 7. Our method
can also produce visually natural results for unseen targets.
Notably, the generated images of OSFV in the first row is
almost the same as the source image as it cannot detect the
subtle motion on the face, which is also part of the reason
why it outperforms our method in terms of CSIM in Tab. 3.

4.4. Ablation study
In this section, we conduct ablation studies to demon-

strate the effectiveness of the proposed self-supervised face
depth learning method and the proposed two mechanisms
for talking head generation. We report results of ablation
studies in Tab. 4, and show several qualitative examples
of the generation results in Fig. 8 and Fig. 9. In Tab. 4,
“w/ CAM” means applying cross-modal attention module
to refine the warped feature, and “w/ FDN” indicates that

Model CSIM↑ PRMSE ↓ AUCON↑
Baseline 0.688 5.39 0.657

Baseline w/ FDN 0.710 2.69 0.852
Baseline w/ CAM 0.698 2.56 0.838

DaGAN (ours) 0.723 2.33 0.873

FOMM 0.462 3.90 0.667
FOMM w/ FDN 0.695 2.81 0.812
FOMM w/ CAM 0.669 2.36 0.821

FOMM w/ FDN+CAM 0.716 2.28 0.865

Table 4. Ablation study. “Baseline” demotes the simplest model

trained without the face depth network and cross-modal attention

module. “Baseline w/ CAM” indicates that the baseline employs

the cross-modal attention module after feature warping module,

while “Baseline w/ FDN” combines the face depth network to es-

timate facial keypoints.

using the face depth network to estimate the face depth
map for depth-guided sparse keypoints estimation. Here,
our baseline is the simplest model trained without the depth
map and depth attention module.

Dense face geometry recovery. We first show recovered
depth maps for human faces from the proposed face depth
network. Since we do not have ground-truth depths for the
face images, it is tricky to directly evaluate the depth es-
timation quantitatively. Therefore, we only visualize the
face depth maps in the third column of Fig. 8. The face
depth maps are estimated from the driving images shown in
the second column in Fig. 8. Our self-supervised geome-
try learning method can predict pixel-wise depth in the face
images. Some other visualization of the face depth maps
and their corresponding 3d point clouds is shown in Fig. 10.
These visualization results strongly demonstrate that our
proposed depth learning network is able to effectively re-
cover the dense 3D geometry of human faces, which is
clearly very beneficial, and directly embedded in the pro-
posed model to learn both sparse facial keypoints and global
pixel-wise dense attention for better generation.

Effectiveness of depth-guided keypionts. We aim to ex-
plore the impact of depth map on keypoints detection and
report the related results in Tab. 4. From Tab. 4, we can
easily recognize that the depth-guided keypoints helps our
model gain significant gain in PRMSE and AUCON, which
indicate that the depth map really plays a significant role in
the talking head generation task. From Fig. 8, the “Base-
line w/ FDN” predicts more accurate head orientation than
“Baseline” (it can also be seen in Tab. 4, i.e. 2.69 vs. 5.39, in
PRMSE), which indicates that the depth-guided facial key-
points can model accurate motions of the human heads.

Effectiveness of cross-modal attention module. From the
Tab. 4 and Fig. 8, the cross-modal attention module (CAM)
can clearly improve the generation quality of expression-
related micro-movements of human faces. In Fig. 8, we can
observe that the generated face results with the proposed
CAM module (i.e. “Baseline w/ CAM”) have more vivid
expression than that of “Baseline w/ FDN” and “Baseline”.
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Source image Driving image Baseline Baseline w/ FDN Baseline w/ CAM OursDepth map
Figure 8. Qualitative ablation studies. Depth map and depth attention module can obtain improvements compared with baseline, while our

full method produce the most realistic image.

Figure 9. Visualizing the dense depth-aware attention map in

cross-modal attention module. In the last three columns, the red

mark “×” indicates the query location.

It verifies that the CAM enables the model to capture the
expression-related micro-movements at important facial re-
gions (e.g., human eyes and mouth). Additionally, the vari-
ance “Baseline w/ CAM” outperform “Baseline” by 0.181
in AUCON. The results in Tab. 4 and Fig. 8 verify that our
proposed depth attention module can effectively utilize the
depth map to enable model focus on micro-movement of the
human face to boost the quality of the generated image.

Additionally, we visualize the dense depth-aware atten-
tion maps in Fig. 9. The high activation areas of each query
point are mainly located in the expression-related parts of
the human face, (e.g. eyes, nose, and mouth). These vi-
sualization results indicate that our designed cross-modal
(i.e. depth and RGB) attention module can indeed address
the micro-movements of the human face to produce more
vivid expression in generation.

Plug-and-play experiments. Additionally, we also plug
our proposed face depth network and depth-aware cross-
modal attention module into FOMM [22], i.e., using
FOMM as a strong baseline, as our proposed modules can

Image Depth map 3D point cloudImage Depth map 3D point cloud

Figure 10. Visualization of estimated face depths and point clouds.

be flexibly deployed into existing video generation meth-
ods. The results are reported in Tab. 4. It is obvious
that FOMM with the proposed modules can further achieve
a significant improvement. These results fully demon-
strate the effectiveness of learning dense 3D facial geometry
(i.e. depth) for the talking head video generation task.

5. Conclusions
In this work, we proposed a depth-aware generative

adversarial network (DaGAN) for talking head genera-
tion. DaGAN learns pixel-wise face depth maps in a self-
supervised manner to recover dense 3D facial geometry. We
also design two mechanisms to better leverage the depth for
the generation. First, we combine the geometry from depth
maps and appearance from RGB images to predict more ac-
curate facial keypoints. Second, we design a cross-modal
(i.e. depth and RGB) attention mechanism to capture the
expression-related micro movements to produce more fine-
grained details of facial structures. Ablation studies clearly
show that depth maps can benefit the motion transfer be-
tween two faces. Our DaGAN also produces more realistic
and natural-looking results compared to state-of-the-arts.
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