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Abstract

Learning-based depth estimation has witnessed recent
progress in multiple directions; from self-supervision using
monocular video to supervised methods offering highest ac-
curacy. Complementary to supervision, further boosts to
performance and robustness are gained by combining in-
formation from multiple signals. In this paper we systemat-
ically investigate key trade-offs associated with sensor and
modality design choices as well as related model training
strategies. Our study leads us to a new method, capable of
connecting modality-specific advantages from polarisation,
Time-of-Flight and structured-light inputs. We propose a
novel pipeline capable of estimating depth from monocular
polarisation for which we evaluate various training signals.
The inversion of differentiable analytic models thereby con-
nects scene geometry with polarisation and ToF signals and
enables self-supervised and cross-modal learning.

In the absence of existing multimodal datasets, we exam-
ine our approach with a custom-made multi-modal camera
rig and collect CroMo; the first dataset to consist of syn-
chronized stereo polarisation, indirect ToF and structured-
light depth, captured at video rates. Extensive experiments
on challenging video scenes confirm both qualitative and
quantitative pipeline advantages where we are able to out-
perform competitive monocular depth estimation methods.

1. Introduction
Modern vision sensors are able to leverage a variety of

light properties for optical sensing. Common RGB sensors,
for instance, use colour filter arrays (CFA) over a pixel sen-
sor grid to separate incoming radiation into specified wave-
bands. This allows a photosensor to detect wavelength-
separated light intensity and enables the acquisition of fa-
miliar visible spectrum images. Wavelength is however
only one property of light capable of providing information.

Light polarisation defines another property and describes
the oscillation direction of an electromagnetic wave. While
the majority of natural light sources (e.g. the sun) emit
unpolarised light, consisting of a mixture of oriented os-
cillations, surface reflection from non-metallic objects can
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Figure 1. Top row: polarisation input signal (Pol.) visualised as
Angle and Intensity. Additionally; Time-of-Flight Amplitude (i-
ToF) and structured-light sensor co-modalities, exploitable during
training. Bottom row: monocular depth estimation, using the Pol.
input. Uni-modal model training of p2d [11] and the monodepth2
architecture [22], compared with cross-modal training (Ours).

linearly polarise the light. Such polarised light then con-
tains surface structure information, retrievable using ana-
lytic physical models [8]. This information can be used to
harness the depth cues offered by this light property. Polari-
metric imagery is a passive example for depth estimation.
Passive sensors have acceptable resolution and dense depth
however there exist well understood capture situations that
prove challenging (e.g. textureless surface regions).

However further known properties of light (i.e. speed)
provide yet more information. Indirect Time-of-Flight (i-
ToF) cameras are active light sensors and use a pulsed,
near infrared light source to measure object and surface dis-
tance. Further active sensors use structured-light and these
emit known infrared patterns and use stereoscopic imag-
ing to measure the distance to the surface. While i-ToF
and structured-light cameras have clear advantages, such as
the ability to function in low-light scenarios and good short
range precision, they are susceptible to specular reflections,
ambient light and range remains limited.

We argue that novel combination of active and passive
light sensors offers new possibilities. We can exploit such a
combination to take advantage of the discussed, modality-
specific strengths and weaknesses. We observe that (1) dif-
fering visual modalities offer information cues about com-
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plimentary aspects of the world and (2) there exist clear
trade-offs between the complexity of capture sensor setups
and the resulting data diversity and quality, accessible for
supervision signals. This motivates us to systematically in-
vestigate these considerations and provide insight into train-
ing data capture design decisions and the related pay-offs.
Our study results in the proposal of a framework capable
of exploiting available supervision signals and is tailored to
benefit from the particular strengths of unique modalities.

We instantiate our ideas by bringing together the physi-
cal understanding of Polarisation and i-ToF in a data driven
fashion. In practice this affords an inference pipeline that
estimates depth from a single polarisation image. We train
a convolutional neural network (CNN), with cross-modal
fusion using differentiable physical models. We establish a
dataset comprising Ground Truth depth obtained via Multi-
View Stereo (MVS) reconstruction [52] that enjoys access
to information rich, full video sequences. We carry out ex-
tensive experimental work to establish the efficacy of our
proposed monocular depth estimation strategies.
Our contributions can be summarised as:
1. Novel multi-modal method. We propose a multi-modal

training approach that allows for monocular depth esti-
mation from polarisation images. We propose (i) dif-
ferentiable analytic formulae that define modal-specific
loss terms, (ii) cross-modal consistency joint-training
towards improved real-world depth estimation from a
single polarisation image, (iii) architectural components
that increase predicted depth sharpness (see Fig. 1).

2. CroMo dataset and training modalities study. We
provide a systematic analysis of the benefits afforded
when multiple image modalities are available at train-
ing time, for monocular depth estimation. Investigation
and exposure of improvements are enabled by the unique
Cross-Modality video dataset1. Our multiple hardware-
synchronized cameras capture, for the first time, stereo
polarisation (Pol), indirect Time-of-Flight (i-ToF) and
structured-light images from active sensing.

The remaining sections of the paper are thus organised:
Sec. 2 provides brief review of depth estimation with re-
spect to relevant modalities and previous work considering
multiple information signals. Sec. 3 presents our model ca-
pable of monocular depth estimation from polarisation im-
agery and our cross-modal training procedure. In Sec. 4
we introduce CroMo, our novel multi-modal dataset, Sec. 5
reports experimental work validating our contributions and
Sec. 6 provides discussion and future research issues.

2. Related Work
To the best of our knowledge this is the first work

to study end-to-end monocular depth inference, utilising
cross-modal information from Time-of-Flight (i-ToF), ac-

1Dataset is available at: https://cromo-data.github.io/

tive stereo and polarisation modalities during training. We
briefly review the literature most closely related to the main
components of our investigation and proposed framework.

2.1. Monocular depth estimation
Estimating depth from a single image constitutes a hard,

ill-posed problem. Pioneering work on supervised monoc-
ular depth estimation [42] used synthetic samples during
training. Synthetic data was also previously used in con-
junction with stereo network distillation [25] for this task.
To improve accuracy and convergence speed, [17] introduce
a spatially-increasing discretisation. However, acquiring
ground truth depth data remains a difficult task [20].

To overcome the difficulty of collecting accurate ground
truth signal, multiple works [19, 61] investigate a con-
sistency loss by leveraging stereo imagery during train-
ing, towards self-supervision. While being undoubtedly
path-breaking, the initial methods suffered from a non-
differentiable sampling step. Godard et al. [21] formu-
lated a fully-differentiable pipeline with left-right consis-
tency checks during training and have also explored the
temporal components [22], even in challenging setups such
as night scenes [55]. These methods predict depth with
RGB input, while we utilise polarisation images.
Monocular Polarisation Previous work use monocular po-
larisation imagery to recover depth. One route to overcome
Shape from Polarisation (SfP) ambiguities is to use ortho-
graphic camera models to express polarisation intensity in
terms of depth [64]. Atkinson et al. [8] compute depth with-
out knowing the light direction through a non-linear opti-
mization framework and yet assume fully diffuse surfaces.
Linear systems have also been constructed for the task [53]
by adding shape from shading equations. While theoreti-
cally interesting, the orthographic assumption has restricted
their application to synthetic lab environments.
Learning based Polarisation Due to lack of reasonably-
sized datasets, only a limited number of works focus on
learning with polarisation. Ba et al. [9] provide polarisation
images together with a set of plausible inputs from a phys-
ical model to estimate surface normals. The work of [34]
apply polarisation for instance segmentation of transpar-
ent objects and [37] learn de-glaring of images with semi-
transparent objects. Recently, Blanchon et al. [11] extended
the work of [22] with complementary polarimetric cues.
In contrast to them, we invert a physical model to enable
self-supervision through consistency cycles and addition-
ally study the benefit of co-modal i-ToF information.
Learning based i-ToF i-ToF sensors acquire distance infor-
mation by estimating the time required for an emitted light
pulse to be reflected [65]. Sensors measure either the time
(direct) or the phase (indirect) difference between emitted
and received light. The modality enjoys high precision for
short range distances [27], yet suffers from limited spatial
resolution and noise [15], which constitute challenging fac-
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tors for any learning-based approach. Obtaining reliable
signals from specular surfaces is difficult and inherent Multi
Path Interference (MPI), often manifests as noisy measure-
ments and artifacts. Synthetic training is also explored for
raw i-ToF input data in end-to-end fashion [5,24,57]. How-
ever, the ability to account for real world domain shifts is
limited. In [4] a GAN is employed towards addressing such
domain adaption issues on a limited dataset.
i-ToF depth improvement MPI can be considered a critical
issue and error mitigation has been the focus of a body of
work [60]. Two-path approximations [23] have been used
within optimization schemes [14, 35] and multiple frequen-
cies are used to constrain the problem [16]. Kadambi et
al. [33] propose a hardware solution to address scenes with
translucent objects and a number of scholars incorporate
light transport information to correct for MPI [2,26,44,46].

2.2. Depth with multiple sensors
Depth completion has been carried out via combining mul-
tiple input modalities, for example, a sparse but accurate
LiDAR signal in combination with RGB [58]. It is diffi-
cult to address sparse signals with CNNs [41] and LiDAR
sensors can produce problematic artifacts resulting in unre-
liable Ground Truth depth estimates [39]. One strategy to-
wards removing dependence on this form of supervision are
self-supervision cues however these fall behind supervised
pipelines in terms of accuracy [40].
i-ToF and x Confidence-based combination of i-ToF depth
and classical RGB stereo is explored with the network ar-
chitecture of [3] and a semi-supervised approach for this
combination is explored by [47] in a generic framework.
While these approaches improve upon the individual depth
estimates, they rely on a late fusion paradigm. Son et
al. [54] use a robotic arm to collect 540 real training images
of short range scenes with structured light ground truth.

By inserting micro linear polarizers [45] in front of a
photo-receiver chip, Yoshida et al. [62] build an i-ToF sen-
sor capable of acquiring both i-ToF depth and polarisation
scene cues. Combination of both the absolute depth (i-ToF)
and relative shape (polarisation cues) allowed reconstruc-
tion of depth for specular surfaces. While this pipeline re-
quires i-ToF and polarisation input to solve an optimiza-
tion problem, we alternatively explore cross-modal self-
supervised training and single image inference.
Depth from multi-view Polarisation Another route to pre-
dict depth is the use of more than one polarisation im-
age [7] which enables methods based on physical models.
An RGB+Polarisation pair can provide sharp depth maps
with stereo vision [66]. Other methods [12] use more than
two polarisation images. Despite the sharpness of the re-
sults, the difficulty to acquire multi-view polarisation im-
ages is still a major hurdle. Atkinson et al. [6] combine
polarisation methods with photometric stereo. Two im-
ages of a scene, from an identical view point yet with dif-

ferent light exposures, are leveraged. An extension deal-
ing with mixed reflectivity is established via a combined
photometric-polarisation linear system in [38] and Garcia
et al. [18] solve for polarisation normals using circularly
polarised light. Traditional multi-view methods also benefit
from polarisation. Miyazaki et al. [43] recover surfaces of
black objects using polarisation physics and space carving.
Depth refinement with Polarisation Consumer depth esti-
mation tools progress significantly in recent years however
their predictions are noisy and lack details. Using polari-
sation cues, [32] enhance sharper depth maps from RGBD
cameras by differentiating their depth maps to resolve po-
larisation ambiguities and perform mutual optimization.

Despite clear improvements in monocular depth estima-
tion methods, their performance remains bounded by the
chosen modality hence calling for multi-modal depth esti-
mation. Our method alleviates this problem with a learn-
ing based approach. During training we leverage comple-
mentary modalities such that our model can compensate the
drawbacks of the single modality used at inference time.

3. Method
Our multi-modal monocular depth investigation leads to

a new model architecture that accounts explicitly for pre-
diction blur and introduces two novel analytic losses. We
discuss these components in the following sections.

3.1. Architecture
Our architecture employs multiple encoder-decoder net-

works illustrated in Fig. 3a. We observe that monocular
depth estimation methods often incur blurry image predic-
tions and we address this problem by introducing architec-
tural components that account for prediction blur. Firstly
convolutions in our encoders are coupled with gated convo-
lution. Our network then composes a traditional U-Net [51]
with skip connections and the gated convolutions [63]. The
encoder utilises a ResNet [28] style block, while the de-
coder is a cascade of convolutions with layer resizing.

Secondly, drawing on the fact that Displacement Fields
(DF) can be utilised to aid sharpness [49], we estimate a DF
using a self-supervised sharpening decoder. Depth pixels
with strong local disparity have values redefined to mirror
a nearest neighbour that does not exhibit strong local dis-
parity. Groundtruth (GT) displacement fields can thus be
defined for each predicted depth during training (“on-the-
fly”), guiding our dedicated displacement field prediction.
We inspect predicted depth with and without our DF strat-
egy and observe significant improved sharpness, most evi-
dent when employing 3D visualisations (Fig. 4).

3.2. Loss Formulation
Our study considers multiple modalities and various sen-

sor configurations at training time. We explore several loss
terms to exploit our unique setting (see Tab. 3). Loss terms
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Figure 3. Our full model with modality specific losses Lcorr, Lcorr→pol and Lstereo (see Sec. 3.1 for further details).

Figure 4. Effect of the Displacement Fields (DF). Left top (bot-
tom): predicted depth (point cloud) without DF. Center top: polar-
isation intensity. Right top (bottom): predicted depth (point cloud)
with DF. Flying pixels, visible in 3D, are clearly reduced.

in our training procedure are enabled through both coordi-
nate frame projections (P1, P2) and analytic transforms (A1,
A2) of individual network (N1, N2) outputs (see Figs. 3a,
3b). We firstly process input modalities individually us-
ing distinct networks. These ingest i-ToF correlation and
left polarisation images respectively and output initial depth
maps. We propose two analytic losses, derived from prop-
erties of i-ToF and polarisation, to train and link the net-
works. We train the i-ToF module without ground truth and
also leverage the available multi-modal information through
image recovery via related analytical formulae (A1, A2).
Strategically similar to previous work [13], at inference
time we require only a single modality (in our case polari-
sation), and can discard network N1 completely.

Terms Lcorr→pol and Lcorr evaluate discrepancies be-
tween each input image and respective recovered images,
obtained using auxiliary and final depth maps (Fig. 3b).
Our individual branches share information through the loss
term Lcorr→pol. Explicitly, we recover a polarisation image
from an auxiliary depth map and then project this, using
projection P1, to the polarisation sensor frame of reference
via the final depth map Dpol. Finally our third loss term
Lstereo is used to train the polarisation network (N2) by

comparing the right polarisation image, projected using the
predicted depth Dpol, with the left polarisation image. We
next provide details of our analytical formulae for image re-
covery and the loss terms that enable our training procedure.

Depth to polarisation (A2) Polarisation cameras capture
polarised intensity along directions ϕpol. The measured in-
tensity is given by [66]

iϕpol
= iun · (1 + ρ cos(2ϕpol − 2φ))

with ϕpol ∈
{
0,
π

4
,
π

2
,
3π

4

} (1)

where ϕpol is the polariser angle, iun is the intensity of un-
polarised light, ρ is the degree of linear polarisation and
φ is the Angle of Polarisation (AoP). The polarisation pa-
rameters ρ ∈ {ρs, ρd} and φ ∈ {φs, φd} depend on local
reflection type, either diffuse (d) or specular (s) as follows:

ρs =
2 sin2(θ) cos(θ)

√
η2−sin2(θ)

η2−sin2(θ)−η2 sin2(θ)+2 sin4(θ)

ρd =
(η−1/η)2 sin2(θ)

2+2η2−(η+1/η)2 sin2(θ)+4 cos(θ)
√
η2−sin2(θ)

(2)

with θ ∈ [0, π/2] the viewing angle and η the object refrac-
tive index, typically 1.5, and{

φd = α [π] if the pixel is diffuse
φs = α+ π

2 [π] if the pixel is specular (3)

The π-ambiguity is denoted as [π] in (3), and α denotes the
azimuth angle of the surface normal n. Azimuth angle α
and viewing angle θ are obtained as

cos(θ) =
n · v
‖n‖‖v‖

and tan(α) =
ny
nx
, (4)

with v the viewing vector defined as the vector pointing
toward the camera center from the 3D point P (x, y)
corresponding to pixel (x, y) with depth d(x, y) and n the
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outward pointing normal vector, defined as the cross prod-
uct of the partial derivatives with respect to x and y [66]:

n =

 −fy∂xd(x, y)
−fx∂yd(x, y)

(x− cx)∂xd(x, y) + (y − cy)∂yd(x, y) + d(x, y)

 (5)

with fx, fy, cx, cy the camera intrinsics.
Hence, from a given depth map d, one can compute the

azimuth angle α and the viewing angle θ using (4) and (5),
followed by the polarisation parameters ρ and φ with (2)
and (3). The polarisation images for diffuse and specular
surfaces Îdiffuse

pol and Îspecular
pol are finally recovered using the

calculated polarisation parameters with (1).

Depth to correlation (A1) Indirect ToF measures the cor-
relation between a known emitted signal and the received
signal. The emitted signal at frequency fM is a sinusoid:

g(t) = 2 cos (2πfMt) + 1 (6)

and the signal, reflected by the scene, is of the form [30]

f(t) = α cos (2πfMt+ 2πfMτ) + β (7)

where the τ is the time delay between the emitted signal
g(t) and the reflected signal f(t). The i-ToF measurement
c(x) is the correlation between the two signals:

c(x) = lim
T→∞

1

T

∫ T
2

−T
2

f(t)g(t− x) dt

= α cos (2πfMx+ 2πfMτ) + β

(8)

where we only consider the direct reflection signal and ig-
nore the multipath interference (MPI) and sensor imperfec-
tions. We are interested in the phase ϕ, proportional to the
depth d between the objects in the scene and the sensor:

ϕ = (2πfMτ) [2π] =

(
d · 4πfM

c

)
[2π] (9)

where c is the speed of light and [2π] represents the
2π-ambiguity. Using the four bucket strategy [36] to sample
c(x) at four positions, where 2πfMx ∈ {0, π2 , π,

3π
2 }, four

measurements {c(x0), c(x1), c(x2), c(x3)} can be obtained
to recover the phase ϕ, the amplitude α and the intensity β.

tan(ϕ) =
c(x3)− c(x1)
c(x0)− c(x2)

(10)

α =
1

2

√
(c(x3)− c(x1))2 + (c(x1)− c(x0))2 (11)

β =
1

4

3∑
i=0

c(xi) (12)

Hence, from a given depth d, one can compute the phase ϕ
using (9) and then reformulate the recovered i-ToF correla-
tion using (10), (11) and (12) in turn to form Îcorr.

Stereo loss Lstereo This loss requires that left and right im-
age pairs are accessible during training. While only the left
image Il is fed to the network, the right image Ir can guide
the model towards generating valid depth, and vice versa.
More formally, let Kl and Kr be camera matrices with in-
trinsic parameters for left and right images respectively, and
D a depth map on the left reference frame. Let Tleft→right de-
note the transformation that moves 3D points from the left
coordinate system to the right. An image coordinate trans-
formed from left coordinate pl to the right image is

pleft→right = Kr · Tleft→right ·D (pl) ·K−1l · pl (13)

A backward differentiable warping [31] is used to reproject
an image onto the left view as Iright→left.

We form a stereo loss Lstereo, and related mask loss Lmask
similarly to [22], which aid network training and deal with
occluded pixels respectively as

Lstereo = Epe

(
Il, Iright−→

Dpol

left

)
(14)

Lmask = Epe

(
Il, Iright−→

D∞
left

)
(15)

where the photometric error is similar to [22]:

Epe(Ix, Iy) = α
1−SSIM(Ix,Iy)

2 + (1− α) ‖Ix − Iy‖1 (16)

Analytical losses Lcorr and Lcorr−→pol Depth Dcorr is
firstly inferred directly from i-ToF correlation input, and
then two recovered images Îcorr and Îpol are formed.
Recovered images represent the ‘ideal’ input for each
modality, i-ToF and polarisation respectively, conditioned
on the inferred depth. Since Îpol is generated from
Dcorr, we reproject it using Dpol to form a recovered fi-
nal polarisation image Îicorr−→

Dpol

pol, i ∈ {diffuse, specular}.

In each case, discrepancies between the recovered im-
age and the true input image provide a strong indi-
cation of the quality of the generated depth. We
use this signal to guide the network. Formally

Lcorr = Epe

(
Icorr, Îcorr

)
(17)

Lcorr→pol = min
i∈{diffuse,specular}

{
Epe

(
Il, Î

i
corr−→

Dpol

pol

)}
(18)

where Il is the left polarisation image, Îcorr−→
Dpol

pol the recov-

ered polarisation image aligned to Il, Icorr the i-ToF corre-
lation input, and Îcorr the recovered correlation image. We
use a min operator for Lcorr→pol to lift the problem of classi-
fying a pixel as diffuse or specular by computing both pos-
sibilities and letting the network select the best solution.

Finally, following [59], we use an additional loss Lstruct
in the objective function, derived from structured-light in-
formation (see appendix for further detail).
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In summary, depending on the input modalities available
at training time, we can add or remove the introduced losses
Lcorr, Lcorr→pol, Lstereo and Lstruct as appropriate. We explic-
itly note that hyper parameter tuning for balancing of these
loss terms is not required, due to our formulation.

Our total loss L can then be formulated as:

L = min
i∈{mask,stereo,corr→pol,struct}

{
Li

}
+ Lcorr + LDF (19)

where LDF is the L2 norm between predicted and GT DF.

4. Data
We next provide details on our custom camera rig

(Sec. 4.1) and CroMo dataset (Sec. 4.2), comprising syn-
chronised image sequences capturing multiple modalities,
at video-rate across real-world indoor and outdoor scenes.

4.1. Camera capture rig
Our prototype custom-camera hardware rig is shown in

Fig. 5. Our rig is constructed in order to capture syn-
chronised data across multiple modalities including stereo
polarisation, i-ToF correlation, structured-light depth and
IMU. We rigidly mount two polarisation cameras (Lucid
PHX050S-QC) providing a left-right stereo pair, an i-ToF
camera (Lucid HLS003S-001) operating at 25Mhz and a
camera (RealSense D435i) for active IR stereo capture. All
devices are connected with a hardware synchronisation wire
resulting in time-aligned video capture at a frame rate of
10fps. The left polarisation camera is the lead camera which
generates the genlock signal and defines the world refer-
ence frame. Accurate synchronisation was validated us-
ing a flash-light torch and was further confirmed by the
respectable quality observed from stereo Block Matching
results [29]. The focus of all sensors is set to infinity, the
aperture to maximum, and the exposure is manually fixed at
the beginning of each capture sequence. The calibration on
all four cameras’ extrinsics, intrinsics, and distortion coeffi-
cients is done with a graph bundle-adjustment for improved
multi-view calibration (see appendix for further details).

4.2. CroMo dataset
We collect a unique dataset comprising multi-modal cap-

tures such that each time point pertains to measurement
of (1) Polarisation: raw stereo polarisation cameras pro-
duce 2448×2048 px stereo images. (2) i-ToF: 4 channel
640×480 px correlation images. (3) Depth: a structured-
light capture of the scene resulting in a 848×480 px depth
image. In addition to the three main sensors, IMU infor-
mation is recorded to further enable future research direc-
tions. Our dataset consists of more than 20k frames, to-
talling >80k images of indoor and outdoor sequences in
challenging conditions, with no constraints on minimum or
maximum scene range. We group these sequences into four
different scenes which we name: Kitchen, Station, Park and
Facades. Despite the multitude of senors, operating ranges

are not unlimited and our data collection also does not cover
all possible scenarios; we further discuss limitations in our
appendix. We report statistics per captured scene in Tab. 1
(lower). These statistics characterise our scene captures
and provide useful information, e.g., that the median scene
depth differs greatly between indoor (Kitchen) and outdoor
(Station, Park and Facades) scenes. This is a strong indica-
tor for whether the i-ToF sensor will perform well. Tab. 1
(upper) provides a comparison with other depth datasets
showing that CroMo is the first publicly available, modality
rich dataset containing a large quantity of image data.

5. Experiments
Our experimental design evaluates (1) the effect of mul-

tiple modalities, accessible at training time, for monocular
depth estimation and (2) the effect that changing network
architecture has on depth quality, under consistent input
signal. Our capture setup allows us to employ a standard
MVS approach [52] on full temporal sequences of polarisa-
tion intensity frames (left-camera), to serve as ground-truth
depth for our experimental work. This expensive offline op-
timisation leverages accordances amongst all frames per se-
quence, affording high quality depth to evaluate our ideas.

Multi-modal training We firstly evaluate combinations
of training input signal by changing the number of sensors
available to the model. We fix network encoder-decoder
backbone components (i.e. ResNet50, analogous to [22])
and train models that leverage cues from a maximum of
four sensors; left and right polarisation, i-ToF correlation
and structured-light. We show predicted depth improve-
ments, attainable by systematic addition of sensors, and
quantify where best gains can be made. The training sig-
nal components used for our monocular depth estimation
experiments are as follow: Temporal (M) extracts infor-
mation from video sequences (3 frames), Stereo (S) uses
stereo images, i-ToF (T) leverages i-ToF correlations via
our two interconnected depth branches (see Sec. 3.2). Fi-
nally, Structured-light (L) incorporates an additional mask
into the objective function, derived from information pro-
vided by our structured-light sensor. The structured-light
signal is utilised only when the mask improves the projec-
tion loss. We explore alternative strategies to exploit the
structured-light signal and discuss details on practical ben-
efits (e.g. convergence speed) in the appendix.

Introduced signal components define our set of training
experiments. For example, Stereo and Structure Light
(SL) train the model using self-supervised stereo (S) and
structured-light (L) information. Experiments therefore use
differing subsets of the introduced loss terms (see Tab. 3).
Qualitative results are shown in Fig. 6. Unsurprisingly,
self-supervised stereo (S) is relatively blurry and struggles
to capture fine details, such as the thin, metallic arch on the
Facades sample, or the furniture in the Kitchen. Addition of
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Sturm et al. [56] X X X - - - X X X >20k
Agresti et al. [4] - (X) - X - - X - X 113

Guo et al. [24] - X - X - X - - X 2000
Zhu and Smith [66] (X) - - - X X X - X 1

Qiu et al. [48] X - - - X X X - X 40
Ba et al. [10] X (X) - - X X X - - 300

Kadambi et al. [32] X X - - X X X - X 1
CroMo
↓

(X) X X X X X X X X >20k

Scenes GT depth statistics (meters) valid
ratio

# of
seqs.

# of
framesmean var. min max median

Kitchen 3.3 3.6 0.3 15.7 2.9 0.95 3 2859
Station 4.9 14.8 0.3 18.9 3.6 0.86 11 7400

Facades 4.0 8.4 0.3 17.8 3.3 0.86 7 7228
Park 6.1 23.7 0.3 19.7 4.4 0.82 10 5551
Total 4.7 13.6 0.3 18.3 3.6 0.86 31 23038

Table 1. CroMo comparison and dataset statistics.

Models trained with Stereo (S) input MP GMACs Sq Rel RMSE RMSE Log δ < 1.25 δ < 1.252 δ < 1.253

ResNet18 architecture [22] 14.36 20.17 1.7928 2.1982 0.3596 0.5061 0.7026 0.8009
ResNet50 architecture [22] 32.55 39.62 1.5037 2.0642 0.3383 0.5324 0.7262 0.8160
p2d [11] (ResNet50 - Stokes) 32.55 39.62 1.5938 2.1291 0.3884 0.4565 0.6632 0.7775
MiDaS architecture [50] 104.21 207.86 1.4021 1.9985 0.3252 0.5409 0.7901 0.8281

Our architecture (Stereo (S) input) 74.40 97.39 1.3031 1.8889 0.3233 0.5533 0.7301 0.8213

Table 2. Architectural comparisons under consistent modality sensor input; Stereo (S). Our proposed architecture improves quantitative
results across the majority of metrics whilst remaining competitive in terms of compute and space requirements.

Image
sensors Training strategy Lstereo LDF Lcorr Lcorr−→pol Lstruct Sq Rel RMSE RMSE Log δ < 1.25 δ < 1.252 δ < 1.253

2 Stereo (S) w/o DF sampling X 1.5037 2.0642 0.3383 0.5324 0.7262 0.8160
Stereo (S) X X 1.3031 1.8889 0.3233 0.5533 0.7301 0.8213

3 Stereo and i-ToF (ST) X X X X 1.2829 1.8573 0.3202 0.5541 0.7308 0.9062
Stereo and Structured-Light (SL) X X X 1.1233 1.7510 0.3168 0.5529 0.7370 0.9251

4 Stereo, i-ToF, Structured-Light (STL) X X X X X 1.0699 1.6070 0.2891 0.6512 0.7882 0.9266
STL+Temporal (STLM) X X X X X 1.0031 1.4889 0.2527 0.7061 0.8066 0.9246

Table 3. Model training strategies that differ in terms of available image sensor signals (utilised loss components). Sec. 3 and 4 provide
details on loss function components and image sensors, respectively. In spite of having access to only a single, consistent modality during
inference, the model benefits from visibility of additional training signals.

i-ToF and structured-light modalities, exclusively at train-
ing time, result in (ST), (SL), (STL) and can be observed to
improve respective depth quality. Finally, (STLM) adds our
temporal modality and improves detail recovery (e.g. metal-
lic arch and fence). Qualitative results can be observed to
corroborate our hypothesis; inclusion of additional modali-
ties at training time afford the model multiple complemen-
tary depth cues that can qualitatively improve depth infer-
ence. Our experimental work highlights the nature of valu-
able investigation possible with our unique CroMo dataset.
Quantitative results are reported in Tab. 3. We follow [22],
reporting standard evaluation metrics, with focus on the
RMSE in our following experiments. Best performance is
obtained when all sensors are used together (STLM) while
self-supervision stereo (S) with only polarisation images
performs worst. When additional modalities are added to
self-supervision (S); i.e. i-ToF (ST) or structure light (SL),
performance improves in both cases, with larger gains come
from the addition of the latter. We conjecture that struc-

tured light information helps more due to the nature of our
dataset and current distribution of image content therein i.e.
∼85% outdoor imagery, where i-ToF sensors are impaired
by ambient light. Combining the i-ToF and structured-light
sensors (STL), further improves. The best depth prediction
utilises the temporal component (STLM). RMSE on Tab. 3
displays a clear trend; the availability of additional sensor
cues at training time improves monocular inference.

Network architecture We next investigate the effect of
network architecture on monocular estimation performance.
Of note, we highlight that employing a larger capacity net-
work is not the only way to improve prediction perfor-
mance. We use our self-supervised stereo (S), i.e. baseline-
modality, training strategy for all experiments that follow in
this section. This strategy provided weakest performance
in our previous investigation of training modality choice
(Tab. 3). For this reason, we consider it an appropriate
candidate with which to evaluate improvements afforded
by changes to network architecture. We report millions-
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Figure 6. Same ResNet50 architecture as in [22] with different
modalities: each new modality closes the gap with GT.

of-parameters at inference (MP) and the giga-multiply-
accumulates per second (GMACs) in order to evaluate size
and compute-cost per architecture. Architectures consist of
the ResNet18 U-Net used in [22] and their supplementary
material ResNet50 variant, the p2d architecture [11] using
ResNet50 with a different data representation (Stokes), the
MiDaS [50] architecture and Ours (see Sec. 3.1, Fig. 3a).
Qualitative results are shown in Fig. 7. It may be ob-
served that the ResNet18 architecture with smallest (MP)
fails to obtain good background detail of the swing frame
structure (Station sample) or of the tree (Park sample). The
ResNet50 variant slightly improves detail, especially with
raw measurements instead of Stokes (p2d [11]). Even when
increasing network capacity c. three-fold with MiDaS, re-
sults are unsatisfying. Our proposed architecture (Ours)
requires smaller capacity and computation for a sharper re-
construction of the swing and the tree. We disentangle
the benefits of additional sensor modalities from our model
contributions, highlighting the advantage of gated convolu-
tions and our DF-based approach towards reducing blur.
Quantitative results are reported in Tab. 2. The small-
est architecture ResNet18 [22] performs worst. The larger
U-Net ResNet50 performs better, and has been generally
adopted [11, 21]. Note p2d [11] uses a different data rep-
resentation (Stokes) for polarisation cf . ResNet50; perfor-
mance decreases. We believe the Stokes representation, us-
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Figure 7. Different architectures, same training strategy Stereo
(S): our new architecture produces the sharpest depth predictions.

ing angle directly, is more sensitive to noise and not appro-
priate for an SSIM loss with the self-supervised stereo (S)
training strategy. MiDaS [50] provides second best perfor-
mance and yet necessitates roughly ×2 GMACs. Our ar-
chitecture provides best performance while remaining rela-
tively compact which we largely attribute to gated convolu-
tions and displacement field estimation (see Sec. 3.1).

6. Conclusion
We systematically investigate the effect of using addi-

tional information from co-modal sensors at training time,
for the task of monocular depth estimation from polarisation
imagery. Our exploration is enabled through a unique multi-
modal video dataset which constitutes synchronized images
from binocular polarisation, raw i-ToF and structured-light
depth. We quantify the beneficial influence of both passive
and active sensors, leveraging self-supervised and cross-
modal learning strategies that lead to the proposal of a new
method providing sharper and more accurate depth estima-
tion. This is made possible through two physical mod-
els that describe the relationships between polarisation and
surface normals on one side and correlation measures and
scene depth on the other. We believe that our fundamen-
tal investigation of modality combination and the CroMo
dataset can accelerate research of both spatial and temporal
fusion, towards advancing cross-modal computer vision.
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7. CroMo: Supplementary Material
We provide additional materials to supplement our main

paper. In Sec. 7.1 we provide observations on the proper-
ties of light polarisation. Sec. 7.2 states the specifics for
our surface normal estimation process. In Sec. 7.3, we pro-
vide additional details for our multi-view camera calibration
procedure, Sec. 7.4 provides some further modelling details
and finally Sec. 7.5 gives supplementary information on our
network architectures and learning parameters.

7.1. Light polarisation parameters

nIncident

light

θ

α

Reflected

light

x

Incident

light

Specular 

reflection

Diffuse 

reflection

n

a

nIncident

light

θ

α

Reflected

light

x

Incident

light

Specular 

reflection

Diffuse 

reflection

n

b

Figure S1. (a) differing types of reflected light and (b) the link
between a surface normal n, its viewing angle θ and its azimuth
angle α (right).

Most natural light sources emit unpolarized light that
only becomes polarized if reflected. Hence the type of re-
flection, illustrated in Fig. S1, either diffuse (d) or specular
(s), influences the characteristics of the reflected polarized
light. More specifically, the reflective surface influences the
relation between the normals’ parameters (θ, α) and the po-
larisation parameters (ρ, φ), defined in Eq. 2 and 3 of the
main paper.

7.2. Surface normals

In the main manuscript we estimate polarisation intensity
using the varying coordinates of surface normals. Hence,
the computation of these normals, derived from network
depth prediction, plays an important role in the training pro-
cess. To increase the robustness of estimated normals, we
compute the cross products using four distinct pairs of or-
thogonal directions as in [S4]:

n0 = ∂xv× ∂yv
n1 = ∂−xv× ∂−yv
n2 = ∂x+yv× ∂−x+yv
n3 = ∂−x−yv× ∂x−yv

(S1)

The weighted average of these normals is calculated using
weights wi where:

w0 = exp(−0.5‖∂xiun‖1) · exp(−0.5‖∂yiun‖1)
w1 = exp(−0.5‖∂−xiun‖1) · exp(−0.5‖∂−yiun‖1)
w2 = exp(−0.5‖∂x+yiun‖1) · exp(−0.5‖∂−x+yiun)‖1)
w3 = exp(−0.5‖∂−x−yiun‖1) · exp(−0.5‖∂x−yiun)‖1)

(S2)

The final surface normal (unnormalized) is then estimated
by their linear combination:

n =
1

4

3∑
i=0

wi · ni (S3)

Weights wi result in neighbouring pixels of iun that contain
strong color disparity, to be down-weighted in the normal
computation. This follows from the assumption that such
pixels are more likely to represent different objects. Con-
versely, if neighbouring pixels possess similar color, they
are more likely to correspond to the same object and their
associated partial derivatives are more likely to provide nor-
mals that accurately describe the observed object shape.

7.3. Graph-based bundle adjustment

As discussed in Sec. 4.1 of our main paper the calibration
of extrinsics, intrinsics and distortion coefficients, for all
four capture-rig cameras, is achieved using a graph-based
bundle-adjustment [S2] that improves multi-view calibra-
tion. We provide here further details of our multi-view cal-
ibration procedure.

We start with well established calibration methods [S1]
to obtain the intrinsics Kk and distortion coefficients dk
for each camera Ck, where k ∈ {0, 1, 2, 3}. We use a
standard pinhole camera model and define C0 as the left
polarisation camera, C1 the right polarisation camera,
C2 the i-ToF camera, and C3 the structure light camera.
We use five parameters for the distortion coefficients
and collect n images of a calibration checkerboard, from
all cameras synchronously. In practice we move the
checkerboard in front of the cameras while keeping the
camera rig stationary. We attempt to cover as wide a
field-of-view as possible for all four cameras. We find
it is more important to thoroughly cover and account for
the extremities of the individual images as opposed to
attempting to be visible to all cameras simultaneously.
Further, we estimate the rigid transformation for each
camera pair composed of C0 (our world reference), and
camera Ck in turn, where k ∈ {1, 2, 3}. This provides
the extrinsics Tk→0 = [Rk→0

∣∣tk→0] for camera Ck (with
T0→0 = [I

∣∣0]).
These initial intrinsic, extrinsic parameter values and the

distortion coefficients are however sub-optimal as they are
obtained by solving successive sub-optimisation problems.
Towards improving the multi-camera calibration, we define
the reprojection error of points Xj on the image Ii for the
camera Ck as

x̂ij = π
(
Tk→0, T

i
0, X

j , dk,Kk

)
Eik =

#points∑
j=0

1
x̂i
j∈Ii
· dist

(
xij , x̂

i
j

)2 (S4)

1



Where T i0 is the position of camera C0 for image i, and
x̂ij is the distorted 2D point from the projection function
π(·) which projects a 3D Point Xj visible by the camera
Ck at position T i0 · Tk→0 with distortion coefficients dk and
intrinsic parameters Kk on image Ii. The function dist(·)
defines the robustified distance between 2D points, i.e. a
Huber m-estimator, and xij is the 2D point detected on the
checkerboard with a corner detector corresponding to the
3D point Xj in image Ii. The indicator function 1

x̂i
j∈Ii

defines whether the 2D Point x̂ij is visible in image Ii.

Finally, we used a graph-based bundle-adjustment [S2] to
model the global problem, for all cameras Ck, jointly as:

min
T i
0 ,Tk→0,dk,Kk

#cameras∑
k=0

#images∑
i=0

Eik, (S5)

with T 0
0 fixed to [I

∣∣0] in order to properly constrain the
gauge freedom. All camera calibration parameters are
initialised using the values obtained from the original
individual calibrations.

This formalism, borrowed from the SLAM commu-
nity [S3], allows us to optimize all parameters, i.e. the in-
trinsic, the extrinsic and the distortion parameters for all
cameras, jointly. We find the global optimisation process
is able to improve our calibration RMSE by ∼5–10%.

7.4. Additional modelling details

7.4.1 Reflection ambiguities

A diffuse-specular ambiguity initially exists in our formu-
lation; pertaining to diffuse or specular reflection (see Eq.3,
main paper). This ambiguity is addressed during training
via the min operator found in Eq.18. We propose to re-
solve reflection ambiguities (per-pixel) by minimization of
the SSIM loss between respective {specular, diffuse} im-
ages and the input image, towards consistently providing a
valid training signal. Secondly, the azimuthal π-ambiguity
is directly accounted for by the formulation of Eq.1; the
inherent cos(·) modulation nullifies ambiguity found in its
input (2φ component of the argument) and thus supervision
is not adversely affected due to φ being modulo π.

7.4.2 Wrappings ambiguities

An analytical solution exists for the correlation to depth
transform and a wrapping ambiguity remains. However
we highlight that a reconstructed depth, although “phase
wrapped”, is still able to provide reliable surface normals
that can be used to produce (1) the degree of linear polar-
isation and (2) the Angle of Polarisation, for both diffuse
and specular surfaces. Once these are projected to the N2

referential, this information is used in conjunction with the
brightness of the left polarisation image to render valid “Re-
covered polarisation” images, (see Fig 3b of our main pa-
per).

7.4.3 Polarization intensity recovery

To render the intensity, we require the brightness of each
pixel (iun in Eq.1). We obtain the brightness of the polari-
sation image by channel-wise summing of the left polarisa-
tion input pixel values. Two images are rendered following
Eq.1; for both the cases of diffuse and specular images. We
use a binary mask to select values, pixel-wise, from either
the specular or diffuse image. The mask selects pixels such
that the minimum SSIM loss between the {specular, dif-
fuse} image and the input image are retained.

The two images formed therefore constitute only an
intermediary step towards producing a final image. We
use a binary mask to then select values, pixel-wise, from
either the specular or diffuse image to form a new image
containing the pixels that retain the minimum SSIM loss
between the {specular, diffuse} image and the input image
(i.e. the min in Eq.18 is per pixel). We thus form a final
image that contains both specular and diffuse components.

7.4.4 Correlation image rendering from depth

Analogous to the Polarization image strategy, we use the
input correlation image (obtaining α, β estimates), in ad-
dition to depth information, to estimate both the ambient β
and reflectance α, for correlation reconstruction.

7.5. Architecture and training details

7.5.1 Architecture

We provide additional description for the network archi-
tecture that we propose in order to process the considered
input modalities. Instances of this architecture are depicted
as edges ‘N1’ and ‘N2’ in the system design; see Fig 3a of
our main paper.

We employ a standard U-Net architecture, similar to our
baseline [22], including skip connections. The encoder is
based on a ‘Resnet’ [28] style block, with the original con-
volutional layer replaced by gated convolution [63]. The
size of the input images are 512×544×12 for polarisation
and 640×480×4 for i-ToF, respectively.

For polarisation, we have the following configuration;
layer one: 512×544×64, layer two: 256×272×128,
layer tree: 128×136×256, layer four: 64×68×512. For
i-ToF, we have the following configuration; layer one:
640×480×64, layer two: 320×240×128, layer tree:
160×120×256, layer four: 80×60×512. Both depth and
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Displacement Field decoders are a standard cascade of
convolutions with layer resizing. Encoder skip connections
are concatenated after each resize operation (see Fig. 3a).

7.5.2 Training parameters

To aid reproducibility, we report training parameters and
hyperparameters. We use identical training parameters and
align with our baseline [22] where possible. We use the
Ranger optimiser [S5] and batch sizes of 8, a learning rate
of 1e−4 with an exponential learning rate decay. We train
all considered methods for 50 epochs.

7.5.3 Comparison with RGB input

A direct comparison with RGB input forms a relevant and
interesting line of enquiry. Our custom capture rig does not
currently accommodate this modality directly. However, to-
wards investigating this experimentally, we did transform
the polarisation input frame to an RGB frame by consid-
ering the polarisation intensity of each RGB channel, in-
dividually. We note that this is not directly equivalent to
an RGB sensor since the bayer pattern differs. We ac-
tively decided not to include this experimental work in
the main paper to avoid misinterpretation and confusion.
Preliminary work evaluating our Polarisation input cf . the
noted “Polarisation-converted-to-RGB” showed improve-
ments using Polarisation (RMSE 1.4) over “Polarisation-
converted-to-RGB” (RMSE 1.53).

7.5.4 Controlling for capture environment

We note that the i-ToF modality excels in indoor environ-
ments, however these represent a relatively smaller portion
of our dataset. To corroborate this, we report an experiment
that considers our various training strategies, tested on only
an indoor environment (Kitchen). The addition of i-ToF
(from (S) to (ST)), at training time, significantly improves
the predicted depth in this restricted setting (see Tab. S1).

Image
sensors

Training
strategy Sq Rel RMSE RMSE Log

2 (S) 0.6202 1.2930 0.2944
3 (ST) 0.3001 0.6520 0.2237
4 (STLM) 0.2105 0.5431 0.180

Table S1. Test on Kitchen scene (780 frames): additional sensors
can be observed to improve performance. The largest improve-
ment comes from the addition of the i-ToF, (from (S) to (ST)), in
an exclusively indoor test setting.

7.5.5 Further analysis of where additional sensors help

We include preliminary further analysis with respect to in-
vestigation of scenarios where additional sensors help. We
include an example that highlights two points (see Fig. S2).
Due to the concave nature of the scene, the addition of ToF
information alone during training (from S to ST) adversely
impacts the depth prediction and we find MPI often detri-
mental to the ToF sensor in such cases. Additional sensors
(from ST to STLM) do however improve final depth esti-
mation and we show gains achievable by adding orthogonal
signal during training, where inference utilises only a sin-
gle polarisation image in all cases. Additional investigation
and rigorous analysis of such scenarios makes for interest-
ing future work.

a. Pol. Intensity b. S c. ST d. STLM

Figure S2. Depth estimation improvements possible from a com-
mon input (a). We show gains achievable by adding orthogonal
signal during training, where inference utilises only a single polar-
isation image in all cases. See text for further detail.

7.5.6 Additional structured light experiments

The structured light sensor present in our camera rig offers
low-noise signal which we find can also be leveraged in a
supervised fashion, directly. For completeness, we com-
pare the resulting depth estimation when supervising di-
rectly with structure-light (D) and our approach, using un-
supervised signals (STLM). The structure-light signal, ob-
tained from our Realsense sensor, is claimed reliable up to
a 10 meters range according to the constructor [1]. We thus
further investigate by evaluating performance over distinct
0 − 10m and 0 − 20m ranges. Results in Tab. S2 show
that the fully supervised method (D) can offer similar per-
formance to our approach (STLM) in the range 0 − 10m
yet performance degrades by significant margins when con-
sidering the more challenging 0 − 20m range. This high-
lights the benefits of our unsupervised multi-modal strat-
egy (STLM); leveraging information from multiple sensor
sources and an ability to learn to adapt when a particular
sensor results in low quality measurement, due to unsuitable
physical conditions (e.g. structured light in the 10 − 20m
range).

7.5.7 Additional details on the Lstruct loss

We select to use a structured light loss similar to the loss
proposed in [59]. We find that such indirect supervision of
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Image
sensors

Training
strategy

0-10m 0-20m
Sq Rel RMSE RMSE Log Sq Rel RMSE RMSE Log

1 (D) 0.9479 1.4246 0.2117 5.447 6.2629 1.6134
4 (STLM) 1.0031 1.4889 0.2527 1.3994 2.9512 0.3879

Table S2. Comparison of training strategies for two depth predic-
tion ranges. Our training strategy (STLM) works well in spite of
the operational limits of particular sensors.

the structure light signal allows to automatically select the
best source of information, particularly in situations where
the structure light signal fails or becomes unreliable (as dis-
cussed in Sec. 7.5.6). Formally, given a depth from the
structured light Dstruct, the loss reads:

Lstruct = Epe

(
Il, Iright −→

Dstruct
left

)
(S6)

We make use of an additional L1 loss between predicted
depth and the Dstruct depth, when Lstruct is minimal (see
Eq.19 in the main manuscript).

7.5.8 Limitations and Societal Impact

Limitations We note distinct limitations that relate to our
sensor setup. Active sensors have limited range and areas of
operativity e.g. i-ToF often offers weaker performance out-
doors, structure light sensors are of limited range, and po-
larisation sensors sacrifice spacial sampling resolution for
spectral sampling resolution. Our multi-modal ideas at-
tempt to combat these limitations indirectly however we re-
main bound by the physical laws of light.

Additionally, our current hardware setup is operable by
a single person, and yet data capture is currently more cum-
bersome than e.g. use of a modern smartphone. Training
data collection, that involves the acquisition of multiple
modalities, currently induces a somewhat larger investment
of effort over monomodal capture. With the argument being
that the cost may then be recouped when assessing monoc-
ular inference time performance. Our hardware rig consti-
tutes a research prototype and form factor likely improves
as camera evolution results in further reductions in sensor
size, weight and cost.

Finally we would note that our current dataset does
not yet capture all possible scenarios and represents but a
subset of urban scenes where depth estimation can prove
valuable. Future capture sessions will look to enrich and
widen the recorded capture scenarios, towards increasing
the value of the data resource that we provide to the
community.

Societal Impact We note that our proposed CroMo dataset
was collected by only two human operators in urban envi-
ronments. While care was taken towards objective scene
capture, such collected data may yet reflect the biases of
human operators; influencing specific content, scenarios or

capture setups. Efforts towards the reduction of bias, intro-
duced by manual human operators, might suggest mount-
ing of the system on automatic vehicles in future. Addi-
tional ideas, toward mitigation of the axis of bias relating to
manual data capture, can be considered an interesting future
research direction.
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