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Abstract

Most face relighting methods are able to handle diffuse
shadows, but struggle to handle hard shadows, such as
those cast by the nose. Methods that propose techniques
for handling hard shadows often do not produce geomet-
rically consistent shadows since they do not directly lever-
age the estimated face geometry while synthesizing them.
We propose a novel differentiable algorithm for synthesizing
hard shadows based on ray tracing, which we incorporate
into training our face relighting model. Our proposed al-
gorithm directly utilizes the estimated face geometry to syn-
thesize geometrically consistent hard shadows. We demon-
strate through quantitative and qualitative experiments on
Multi-PIE and FFHQ that our method produces more geo-
metrically consistent shadows than previous face relighting
methods while also achieving state-of-the-art face relight-
ing performance under directional lighting. In addition, we
demonstrate that our differentiable hard shadow modeling
improves the quality of the estimated face geometry over
diffuse shading models.

1. Introduction
Single image face relighting is a problem of great interest

among the computer vision and computer graphics commu-
nities. Relighting consumer photos has been a major driving
factor in motivating the problem given widespread interest
in photo editing. Face relighting also has applications in
other areas such as Augmented Reality (AR) [29], where it
can be used to modify facial illuminations to match the en-
vironment lighting, and face recognition [16, 33], where it
can relight images to frontal illuminations. It is thus rele-
vant both for consumer interests and entertainment and for
security applications such as authentication.

Earlier relighting methods [35, 43, 54] tend to make the
simplified assumption that light is naturally scattered by the
environment and thus diffuse in nature, and that human skin
is a lambertian material. While this is sufficient to model

*All of the data mentioned in this paper was downloaded and used at
Michigan State University.
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Figure 1. Overview. We introduce a novel face relighting method
that produces geometrically consistent shadows. By proposing a
differentiable algorithm based on the principles of ray tracing that
directly uses the face geometry for modeling hard shadows, our
method produces physically correct hard shadows which the state-
of-the-art face relighting method, Hou et al. [10], cannot produce.

general lighting directions and soft shadows, it does not ac-
count for non-lambertian effects such as hard shadows from
strong directional lights. This is highly problematic since
many light sources in the real world (e.g. the sun) are best
modeled as directional lights. In AR/VR, the environment
lighting is often also set to be directional lights. In order to
enhance photorealism both for in-the-wild consumer photos
and in AR/VR, proper hard shadow modeling is a necessity.

One important problem in face relighting is thus han-
dling hard shadows. Most existing methods do not handle
non-diffuse lighting and are unable to synthesize realistic
hard shadows [35,43,54]. They generally use smooth light-
ing conditions such as low-order Spherical Harmonics (SH)
and train on images with diffuse lighting. While many illu-
mination conditions in the wild are ambient or area-based,
these assumptions do not account for the interactions of
strong directional lights and point lights, which produce
hard shadows. Among current methods that do model hard
shadows [10, 29, 30], none are able to guarantee geometri-
cally consistent cast shadows since they do not directly uti-
lize the estimated face geometry to generate them. Without
using the geometry directly, the shape of the cast shadows,
such as those cast by the nose, may be incorrect.

We introduce a novel differentiable algorithm to estimate
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the locations of cast shadows using the principles of ray
tracing. We rely on the principle that cast shadows will
be located on parts of the face where the projected ray to
the light source intersects some occluding surface, such as
the nose. Our method can thus leverage the estimated face
geometry to produce geometrically consistent hard shad-
ows (see Fig. 1). We further demonstrate that differentiably
modeling hard shadows can improve the quality of the face
geometry, especially in regions that produce hard shadows
(e.g. the nose and near the boundary of the face), compared
to models that assume diffuse shading. We therefore show
that differentiable hard shadow modeling not only benefits
the realism of the relit image, but also the intrinsic compo-
nent estimation which can benefit other downstream tasks.

Our proposed method thus has four main contributions:
�We propose a single image face relighting method that

can produce geometrically consistent hard shadows.
� We introduce a novel differentiable algorithm to esti-

mate facial cast shadows based on the estimated geometry.
�We achieve SoTA relighting performance on 2 bench-

marks quantitatively/qualitatively under directional lights.
� Our differentiable hard shadow modeling improves the

estimated geometry over models that use diffuse shading.

2. Related Work
Face Relighting Prior works can be categorized into 4
groups: intrinsic decomposition [2,3,5–7,16–19,22,23,29,
30, 35, 36, 40, 44–47, 51], image-to-image translation [10,
43, 49, 53, 54], style transfer [21, 27, 34, 38, 39], and ratio
images [32, 37, 42, 50]. Intrinsic decomposition estimates
the geometry, albedo, and lighting and renders the image
with a new lighting. Image-to-image translation instead di-
rectly estimates the relit image. Style transfer transfers the
lighting of the reference image as a style to the input image.
Ratio image methods relight by estimating the ratio between
the source and target images or illuminations. A summary
of our method compared to recent works is shown in Tab. 1.

Nestmeyer et al. [29] model hard shadows using a bi-
nary visibility map estimated from a U-Net. The visibility
map is not directly constrained by the face geometry and
therefore has a large amount of freedom, which can lead to
geometrically inconsistent shadows. Also, since it is binary,
their cast shadows are black whereas the true intensity of a
shadow should match the environment’s ambient light.

Hou et al. [10] utilize shadow masks to assign higher
weights along hard shadow borders. While this improves
the shadows, they do not use the geometry and thus the
shadows can have any shape. Our model produces hard
shadows where rays cast from the face to the light source
intersect other parts of the face geometry, which ensures
that the shadows are geometrically consistent.

Pandey et al. [30] model both diffuse and specular light-
ing, and can generate non-lambertian effects such as hard

Method Lighting
Model

Model
Category

Handles Hard
Shadows

Geom. Consistent
Hard Shadows

SfSNet [35] SH Intrinsic X X
DPR [54] SH Im2Im X X

SIPR [43] Environment
Map Im2Im X X

Nestmeyer
[29]

Directional
Light Intrinsic X X

Hou [10] SH Im2Im X X
Total

Relighting [30]
Environment

Map Intrinsic X X

Proposed Directional
Light Intrinsic X X

Table 1. Method Comparison. A summary of our proposed
method compared to recent face relighting methods.

shadows. However, they rely on a shading network to pro-
duce the relit image given the albedo and light maps, which
will have network estimation error. Thus, there is no guar-
antee that they produce geometrically consistent shadows.
Differentiable Rendering and Ray Tracing In recent
years, multiple differentiable renderers have been proposed
[14, 20, 24, 26, 28] that are suitable for inverse rendering
tasks. However, the majority of differentiable renderers do
not explicitly model shadows, particularly hard shadows.

The most similar work to ours is Li et al. [20], which
proposes a differentiable ray tracer to model hard shadows.
Their method operates on meshes and introduces a novel
Monte Carlo edge sampling algorithm to handle the non-
differentiability along triangle edges. Our shadow model-
ing is also a form of differentiable ray tracing, but operates
on the 2.5D points generated from a face depth map rather
than a mesh. Instead of integrating over edges of mesh tri-
angles to determine shading, we find it sufficient to sample
points between each point on the face and the light source
and assign a cast shadow to the point if one of the sampled
points intersects with some facial parts, such as the nose.

Recently, Srinivasan et al. propose NeRV [41], which
can model scene-specific hard shadows from any directions
more efficiently than prior work. However, they rely on a
visibility MLP to predict the locations of shadows, which
leaves the possibility of generating geometrically inconsis-
tent shadows due to network estimation error. Furthermore,
NeRV requires hundreds of images with known lighting and
pose and can only be trained on one static scene at a time,
whereas our model is generalizable due to leveraging pub-
lic face datasets in training, only requires a single image per
subject, and can be applied in inference to any face image.

3. Proposed Method
3.1. Problem Formulation

Our relighting method relies on intrinsic decomposition,
and is thus motivated by the rendering equation [11]:

Lo(x, ωo) =

∫
ωi∈Ω

f(x, ωi, ωo)Li(x, ωi) 〈n, ωi〉 dωi,

(1)
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Figure 2. Model Overview. Given a single image It and target lighting direction ωt, our model generates a relit image Ip with geomet-
rically consistent cast shadows. The geometric consistency is achieved thanks to our shadow mask estimation module, which estimates
shadow mask Mshadow using depth map Dp (the face geometry). Mshadow incorporates non-diffuse cast shadows into our shading Sp.

where x is a point on the 3D surface, n is the surface nor-
mal at x, ωi and ωo are the incoming and outgoing light-
ing directions respectively, Ω is the unit hemisphere cen-
tered around n with all possible values of ωi, Li(x, ωi)
and Lo(x, ωo) are the incoming and outgoing radiances re-
spectively, and f(x, ωi, ωo) is the bidirectional reflectance
distribution function (BRDF) determining the material’s
reflectance. If only diffuse reflection is considered, i.e.
f(x, ωi, ωo)=a(x)/π, the rendering equation becomes:

Lo(x, ωo)=
a(x)

π

∫
ωi∈Ω

Li(x, ωi) 〈n, ωi〉 dωi =a(x)s(x).

(2)
Here a(x) is the diffuse albedo and s(x) the diffuse shading.

Assuming there is a dominant directional light in the
scene, without considering the visibility of the light source
from x, the diffuse shading s(x) can be approximated by:

s(x) = ia + id 〈n, ωd〉 , (3)

where ia is the intensity of the ambient light in the scene
and id and ωd is the intensity and direction of the direc-
tional light, respectively. In other words, Li(x, ωi) =
ia + idπ δ(ωi, ωd), where δ(·, ·) is the Dirac delta function.

To model differentiable cast shadows, we introduce the
shadow mask Mshadow to model the visibility of the direc-
tional light. For each point, Mshadow stores a value close
to 0 if the point is under a cast shadow and close to 1 oth-
erwise. The intensity under a cast shadow should be ia,
since the directional component is blocked by some part of
the face and thus only the ambient component should con-
tribute to the shadow’s intensity. To model cast shadows in
the shading, we represent the modified shading s′ as:

s′(x) = ia + Mshadow(x)id 〈n, ωd〉
= Mshadow(x)s(x) + (1−Mshadow(x))ia.

(4)

Our reformulation of the rendering equation is thus,

Lo(x, ωo) = a(x)s′(x), (5)

which overcomes the limitations of the diffuse shading s
and models cast shadows.

Unlike prior face relighting methods that model cast
shadows [10,29,30], our formulation ensures geometrically
consistent cast shadows by computing Mshadow directly us-
ing the estimated face geometry. We discuss this in Sec. 3.3.

3.2. Architecture
Given a single image It as input, our model estimates

the intrinsic components: depth map Dp (geometry), albedo
Ap, the lighting direction ωp, and the ambient lighting in-
tensity ia,p. Our architecture is largely adopted from the
hourglass network used by DPR [54], but we replicate the
decoder and form two branches to estimate Dp and Ap re-
spectively. ωp and ia,p are estimated using a multilayer per-
ceptron (MLP) following the encoder. The surface normals
Np are then computed from Dp, and the shading Sp is com-
puted via Eqn. 4. We will discuss how Mshadow is com-
puted in the next section. The final rendered image Ip is
then generated following Eqn. 5 as:

Ip = ApSp. (6)

During training, we render Ip using ωp, the estimated light-
ing direction of the input image It. We supervise the intrin-
sic component estimation by enforcing that Ip reproduces
the input image It. During inference, our model instead ac-
cepts a target lighting direction ωt as input, which allows us
to perform relighting. We compute Mshadow using Dp and
ωt, which allows us to generate relit images with geomet-
rically consistent cast shadows from any lighting direction.
We illustrate our overall model architecture in Fig. 2.
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Figure 3. Shadow Mask Estimation. We generate Mshadow us-
ing Dp, ωt, and the principles of ray tracing. For every point
xi ∈ Dp, we sample points from Dp along the direction −−→xiωt. If
there exists a sampled point whose distance to −−→xiωt is close to 0,
then −−→xiωt intersects a surface (e.g. the nose) along its path and xi

is under cast shadow. If there is no such point among the sampled
points, then xi is not under cast shadow. We show 2 points x1 and
x2, marked as green and red asterisks respectively. Among the
sampled points for x1 (green points), there exists a point (marked
by a yellow arrow) that intersects a surface (the nose) and thus x1

is under a cast shadow. For x2, none of the sampled points (red
points) intersect a surface, so x2 is not under a cast shadow.

3.3. Shading Estimation
One of our key contributions is producing geometrically

consistent cast shadows using shadow mask Mshadow. It
is generated directly from the estimated geometry and used
to produce shading Sp that models cast shadows. We now
discuss the motivation and formulation.
Ray Tracing To motivate our algorithm for generating
Mshadow, we first discuss the traditional ray tracing algo-
rithm. For every point xi on the 3D object, the ray tracing
algorithm casts a shadow ray towards the light source [1].
If the shadow ray intersects with a surface along its path,
then xi is under cast shadow. In our setting, the shadow
rays determine which points are under cast shadow based
on whether the ray intersects with some parts of the esti-
mated 3D face, such as the nose.
Shadow Mask Estimation Our method incorporates the
principles of ray tracing to generate Mshadow using the es-
timated depth map Dp and the target lighting direction ωt

(see Fig. 3). Each pixel in Dp corresponds to a 3D point
xi, and we represent ωt as a unit vector in 3D space. We
can thus represent the shadow ray for point xi as an order
pair (xi, ωt). To determine whether it intersects the sur-
face, we sample m = 160 points xs1,xs2, ...,xsm along
its direction from Dp at regular intervals. We then provide
a differentiable visibility function based on the following
observation: if there exists a sampled point whose distance
to the ray is close to 0, then the current ray or a nearby
ray would intersect with the surface and the point xi is un-
der cast shadow. Conversely, if none of the sampled points
have a distance close to 0 to the ray, the shadow ray does
not intersect the surface and xi is not under cast shadow.
We therefore compute the minimum distance dmin between

the sampled points and the ray by

dmin = min
j∈[1,m]

|−−−→xixsj × ωt|, (7)

where × is the cross product. If dmin is close to 0, we set
the corresponding shadow mask value Mshadow(xi) to be
close to 0, indicating xi is under a cast shadow. Otherwise,
it should be close to 1. To achieve this while ensuring that
computing Mshadow(xi) is a differentiable operation, we
define Mshadow as a Sigmoid function of dmin:

Mshadow(xi) =
−4e−dmin

(1 + e−dmin)2
+ 1. (8)

We apply our algorithm to all points xi in depth map Dp to
generate the shadow mask Mshadow, which indicates where
cast shadows lie on the face. Since we use Dp to compute
Mshadow, we directly leverage the 3D geometry of the face
to synthesize our cast shadows, ensuring that they are geo-
metrically consistent with respect to the face.

3.4. Training Losses
We utilize multiple loss functions to supervise the in-

trinsic decomposition. To supervise the depth estimation,
we define Ldepth =

Σ Mdepth‖Dp−Dt‖1

Σ Mdepth
, where Dt is the

groundtruth depth map, and mask Mdepth defines where
we have depth supervision in the image. The groundtruth
depth is obtained using the method of Bai et al. [4] to first
estimate the face mesh, and subsequently apply z-buffering.

To supervise the albedo estimation, we define Lalbedo =
Σ Mface‖Ap−At‖1

Σ Mface
, where At is the groundtruth albedo, and

Mface is the full face mask. We generate our groundtruth
albedo using SfSNet [35]. Since SfSNet’s estimated albedo
does not generalize perfectly to our training data, we only
apply Lalbedo in grayscale to give our model more freedom
in estimating the RGB albedo.

To supervise our lighting estimation, we define two addi-
tional losses: Lambient and Llight. We define Lambient =
‖ia,p − ia,t‖1, where ia,t is the groundtruth ambient inten-
sity. Since determining the groundtruth ambient intensity of
an image is challenging, we set ia,t to be the same value for
all training images. We also define Llight = 1 − 〈ωp, ωt〉,
where 〈ωp, ωt〉 is the inner product between the predicted
and the groundtruth lighting direction ωt. We obtain ωt

using SfSNet, and convert the estimated SH representation
into a dominant lighting direction.

To ensure that the estimated intrinsic components as a
whole represent a plausible decomposition, we define a re-
construction loss Lrecon =

Σ Mface‖Ip−It‖2
2

Σ Mface
between the

rendered image Ip and the input It. Finally, to improve the
perceptual quality, we employ a PatchGAN [8] discrimina-
tor that operates on 70 × 70 patches. We define our adver-
sarial loss as LGAN and treat our rendered images as the



Method SfSNet [35] DPR [54] SIPR [43] Nestmeyer [29] Hou [10] Proposed

LPIPS 0.5222±0.0743 0.2644±0.0808 0.2764±0.0736 0.3795±0.2294 0.2013±0.0676 0.1622±0.0490
MSE 0.0961±0.0495 0.0852±0.0515 0.0166±0.0107 0.0588±0.0538 0.0303±0.0162 0.0150±0.0112

DSSIM 0.2918±0.0375 0.1599±0.0558 0.1539±0.0452 0.2226±0.1356 0.1186±0.0388 0.0990±0.0381

Table 2. Relighting Evaluation on Multi-PIE Images with Target Lighting (mean± standard deviation). We compare our model
against methods that accept a single image and a target lighting. Our method achieves the best performance across all metrics (bold).

(a) Input Image (b) Target Image (c) SfSNet [35] (d) DPR [54] (e) SIPR [43] (f) Nestmeyer [29] (g) Hou [10] (h) Proposed

Figure 4. Qualitative Relighting Performance on Multi-PIE (Target Lightings). Each method performs relighting given a single input
image and a target lighting. Our method’s cast shadows much more closely match the target image compared to Hou et al. [10] and
Nestmeyer et al. [29], two baselines modeling cast shadows. SIPR [43], DPR [54], and SfSNet [35] are unable to produce cast shadows.

Method Shih [38] Shu [39] Hou [10] Proposed

LPIPS 0.2446±0.0750 0.1548±0.0482 0.1499±0.0444 0.1580±0.0485
MSE 0.0529±0.0361 0.0188±0.0177 0.0192±0.0119 0.0176±0.0127

DSSIM 0.1998±0.0827 0.0994±0.0415 0.0942±0.0360 0.0962±0.0381

Table 3. Lighting Transfer Evaluation on Multi-PIE (mean±
standard deviation). Each input image is assigned a random ref-
erence image. The reference image is a different subject and a
different lighting from the input image.

fake distribution and the input images as the real distribu-
tion. We also utilize a DSSIM loss to further improve the
perceptual quality similar to Hou et al. [10] and Nestmeyer
et al. [29] defined as LDSSIM =

(1−SSIM(Ip,It))
2 .

Our final loss function is thus defined as:

Ltotal = λ1Ldepth + λ2Lalbedo + λ3Lambient+

λ4Llight + λ5Lrecon + λ6LGAN + λ7LDSSIM ,
(9)

where λi are the weights for each loss function.
Implementation Details We train using PyTorch [31] for
100 epochs with the Adam Optimizer [15] and a learning
rate of 0.0001 on one GeForce RTX 2080 Ti GPU. In train-
ing, we set λ1 = 1, λ2 = 5, λ3 = 2.5, λ4 = 1, λ5 = 20,
λ6 = 0.01, λ7 = 8, the groundtruth ambient intensity to
ia,t = 0.5, and the directional intensity to id = 0.5.

4. Experiments
Since our training objective is to minimize the difference

between the rendered image Ip and the input image It, we
are ultimately free to use any face dataset with lighting vari-
ation. We train our model on the CelebA-HQ dataset [12],
containing 30, 000 in-the-wild face images from the CelebA
dataset [25]. Following the testing protocol of Hou et al.
[10], we evaluate our relighting performance quantitatively

on the Multi-PIE [9] dataset, which contains 18 images per
subject each with a unique directional light.

4.1. Quantitative Evaluations

Multi-PIE Evaluation with Target Lightings As our
model relights using a target lighting ωt, we randomly se-
lect 1 of the 18 directional lights in Multi-PIE as ωt for
each subject and also randomly select 1 of the 18 images
as the input image. Since Multi-PIE captures each sub-
ject under every lighting condition, we have the relighting
groundtruth and can quantitatively compare our relit image
with the groundtruth image under the target lighting ωt. We
thus compare with prior methods that accept a target light-
ing as input [10, 29, 35, 43, 54]. We evaluate using 3 met-
rics: MSE, DSSIM [29], and LPIPS [52]. Both DSSIM and
LPIPS are metrics that are highly correlated with perceptual
quality [29, 52]. DSSIM = 1

2 (1− SSIM) is an error metric
defined based on SSIM [48]. During evaluation, we com-
pute the metrics for all methods only in the face region in-
dicated by Mdepth. This ensures a fair comparison with our
method, since Mdepth represents where our images receive
depth supervision from Bai et al. [4], which does not esti-
mate the depth outside of the face. Our method is thus in-
tended to relight the face region, not the hair or background.

We report the results of our evaluation in Tab. 2 and note
that our model achieves the best performance across all 3
metrics, with the largest gains in DSSIM and LPIPS, indi-
cating that the perceptual quality of our relit images sig-
nificantly improves over prior work. This is largely due
to our differentiable hard shadow modeling that generates
more appropriately shaped hard shadows. We also explic-
itly model both ambient and directional light which helps
to produce more well-balanced colors in our relit images



(a) Input Image (b) Reference (c) Target Image (d) Shih [38] (e) Shu [39] (f) Hou [10] (g) Proposed

Figure 5. Qualitative Relighting Performance on Multi-PIE (Lighting Transfer). The target lighting is estimated from the reference
image and used to relight the input image. Notice that our model estimates the correct target lightings from the reference images whereas
Shih et al. [38] transfers the wrong lightings. Furthermore, neither Shih et al. [38] nor Shu et al. [39] can produce cast shadows through
lighting transfer, whereas our model can. Hou et al. [10] fails to transfer an appropriate cast shadow for the subject in the top row and the
cast shadow for the subject in the second row is noticeably worse than ours in terms of shape and boundary.

than prior work, where the shadows may be too dark or the
illuminated face may be too bright.

Multi-PIE Evaluation Using Lighting Transfer Some
methods require both an input and a reference image and
relight by transferring the style of the reference to the input,
known as lighting transfer. To evaluate our lighting transfer
performance, we sample a random lighting for each Multi-
PIE subject to serve as the input and a random reference
image from the entire dataset. The reference image is a dif-
ferent subject from the input and under a different lighting.
For lighting transfer, we first feed the reference image to our
model to estimate the target lighting direction ωt and the
ambient intensity ia,p. We then pass the input image along
with ωt and ia,p to our model to generate the relit image.
The groundtruth target image is readily available in Multi-
PIE. We compare with Shih et al. [38], Shu et al. [39], and
Hou et al. [10] and report the results in Tab. 3. We achieve
the best performance in MSE and comparable performance
to Hou et al. in terms of DSSIM and LPIPS. We believe
that a large reason why the performance is lower is the im-
perfect lighting supervision from SfSNet [35], which limits
our model’s ability to estimate the correct lighting from the
reference image and lowers the relighting performance.

4.2. Qualitative Evaluations

Multi-PIE Results We show qualitative relighting results
of Multi-PIE [9] subjects for target lightings in Fig. 4 and
for lighting transfer in Fig. 5. When using target lightings,
our model produces cast shadows that much more closely
match the shape of the shadows in target images compared
to prior work. This is due to our shadow mask estimation
that incorporates the face geometry to synthesize cast shad-
ows, improving their geometric consistency. Hou et al. [10]
and Nestmeyer et al. [29] also model cast shadows, but nei-
ther synthesize cast shadows directly from the face geome-
try and instead regress them from CNNs. Thus, they have
no guarantee that their cast shadows correctly match the
face geometry, as seen in Fig. 4. SIPR [43], DPR [54], and

a) Hou [10] b) Proposed c) Target Lighting

Figure 6. Relighting Error Maps. We show the average L1 er-
ror map between our relit images and the groundtruth test images
of Multi-PIE for each lighting and compare with Hou et al. [10].
As shown in b), we have lower error in the shadowed regions, in-
cluding shadows cast around the nose. Hou et al. has higher errors
around the cast shadows, demonstrating that our method produces
more geometrically consistent shadows across all subjects.

SfSNet [35] primarily model diffuse lightings and generally
cannot produce cast shadows. When performing lighting
transfer, we notice that our model can accurately estimate
the target lighting from the reference image and is supe-
rior to the baselines in transferring over cast shadows (see
Fig. 5). Shih et al. [38] and Shu et al. [39] largely fail to
transfer over cast shadows and Hou et al. [10] produces cast
shadows that do not match the shape of the groundtruth.

FFHQ Results We evaluate our performance on in-the-
wild faces from the FFHQ [13] dataset. We show in Fig. 7
that we produce more geometrically consistent shadows
than prior work across several subjects and lightings. We
also show in Fig. 8 that our cast shadows are geometrically
consistent as we rotate the target lightings around the face.
Compared to Hou et al. [10], our cast shadows have much
more plausible shapes and shadow boundaries.

4.3. Ablations and Additional Experiments
Reconstruction Error Analysis To better understand the
distribution of reconstruction errors during relighting, Fig. 6



(a) Input Image (b) Target Lighting (c) SfSNet [35] (d) DPR [54] (e) SIPR [43] (f) Nestmeyer [29] (g) Hou [10] (h) Proposed

Figure 7. Qualitative Relighting Performance on FFHQ. Across multiple in-the-wild subjects and target lightings, our model produces
more geometrically consistent cast shadows than prior methods while achieving noticeably better visual quality. Best viewed if enlarged.

a)

b)

Input Image Light 1 Light 2 Light 3 Light 4 Light 5 Light 6 Light 7

Figure 8. Comparison of Geometric Consistency of Cast Shadows. We compare the geometric consistency of our cast shadows across 7
target lightings with Hou et al. [10], another face relighting method that models cast shadows. Notice that our model’s cast shadows shown
in row b) are more plausible in terms of shape and shadow boundaries than the cast shadows of Hou et al., shown in row a).

visualizes the average L1 error map between our relit im-
ages and the groundtruth target images in our Multi-PIE test
set. We generate an error map for each target lighting sepa-
rately and compute the average across all test subjects with
that target lighting. We compare our error maps with Hou
et al. [10], the SoTA face relighting method, and notice that
our error maps have much lower error in the shadowed face
regions, including the shadows cast around the nose. This
further demonstrates that our method produces more geo-
metrically consistent shadows across all test subjects.
Geometry Error Analysis One benefit of modeling hard
shadows differentiably is that the end-to-end training may
improve the intrinsic components, such as geometry, in
face regions that cast hard shadows. To demonstrate this,
we compare our surface normal errors on the Multi-PIE
test images with two baselines: SfSNet [35], an intrinsic
decomposition method with a diffuse SH lighting model,
and DFNRMVS [4], which provides our geometry supervi-
sion. We choose surface normal error as the metric since

the rendering equation uses surface normals, rather than the
depth, to compute the shading. Although Multi-PIE lacks
groundtruth 3D shapes, we use DFNRMVS [4] to estimate
face meshes given 3 multi-view faces per subject as input,
from which we compute the groundtruth surface normals.
A dataset with large lighting variation and 3D groundtruth
shapes is still lacking, partially due to the sensitivity of 3D
scanners to illumination. We train on Multi-PIE subjects
1-250 and test on subjects 251-346. As for the geometry
supervision in training, we use the face meshes from DFN-
RMVS provided only a single frontal image as input, which
produces lower quality shapes than 3 views.

As shown in Tab. 4, across all test images and light-
ings, our model achieves the lowest average angular error
in surface normal estimation. Improving over DFNRMVS
shows that our model is not upper bounded by the quality
of our shape supervision. Our end-to-end training incorpo-
rating differentiable shadow modeling can yield further im-
provements to the geometry. Improving over SfSNet also



Light 1 (7.80%)
P: 11.6537
D: 12.6395
S: 14.9658

Light 2 (12.60%)
P: 10.9290
D: 12.5049
S: 13.7211

Light 3 (10.60%)
P: 11.5282
D: 12.8954
S: 14.6772

Light 4 (10.25%)
P: 10.5350
D: 11.7384
S: 13.9137

Light 5 (8.72%)
P: 10.8613
D: 11.8990
S: 13.8324

Light 6 (14.50%)
P: 13.0104
D: 15.2162
S: 15.9875

Light 7 (4.44%)
P: 10.3723
D: 10.8543
S: 13.3527

Light 8 (16.10%)
P: 10.8003
D: 12.9457
S: 12.8724

Light 9 (10.54%)
P: 10.3903
D: 11.6144
S: 13.8066

Light 10 (14.69%)
P: 12.1590
D: 14.2524
S: 15.4159

Light 11 (6.63%)
P: 12.2808
D: 13.1525
S: 15.5531

Light 12 (8.68%)
P: 10.4933
D: 11.4909
S: 15.2955

Light 13 (8.48%)
P: 11.6369
D: 12.7155
S: 14.4261

Light 14 (5.94%)
P: 11.3081
D: 12.0220
S: 14.6807

Light 15 (13.76%)
P: 10.2569
D: 11.8937
S: 12.7515

Light 16 (8.99%)
P: 10.8084
D: 11.8756
S: 13.8700

Light 17 (14.93%)
P: 11.0435
D: 12.9818
S: 13.8895

Light 18 (12.55%)
P: 10.4406
D: 11.9396
S: 14.4629

Figure 9. Per Lighting Surface Normal Error on Multi-PIE. We compute the surface normal errors (degrees) across all test images of
the same lighting. Our proposed model (P) achieves lower errors across all lightings than DFNRMVS [4] (D) and SfSNet [35] (S). We
record the improvement percentage of P over the best baseline, where higher percentages are highlighted in brighter green. A reference
image and its lighting direction are provided for each lighting. P improves the normals the most for lightings with hard shadows (e.g.
lightings 4, 6, 8, 9, 10, 15, 17, and 18), which highlights the benefit of our hard shadow modeling in improving the face geometry.

Method Surface Normal Angular Error (Degrees)

SfSNet [35] 14.2796±2.1442
DFNRMVS [4] 12.4505±2.3939

Proposed 11.0672±1.9489

Table 4. Surface Normal Errors on Multi-PIE (mean± stan-
dard deviation). We compare with SfSNet and DFNRMVS.
Our model produces more accurate surface normals than SfSNet,
which assumes a diffuse SH lighting model, and DFNRMVS, our
shape supervision, which shows the ability of our differentiable
hard shadow modeling in improving the geometry.

Figure 10. Surface Normal Improvement. We visualize our sur-
face normal improvement over the best baseline (DFNRMVS [4])
for test images in 4 lightings with hard shadows. The first row
shows a reference image for each lighting. Notice the large im-
provements along and near the nose bridge and the face boundary,
which cast hard shadows. This shows the contribution of our dif-
ferentiable hard shadow modeling in improving the geometry.

highlights the contribution of our shadow modeling, as Sf-
SNet uses a diffuse SH lighting model and thus has no in-
centive to improve the geometry in regions producing hard
shadows. Fig. 9 further demonstrates that the largest im-
provements are achieved for lightings with significant hard
shadows. Fig. 10 visualizes that our model improves the
geometry of the nose and especially the nose bridge signif-
icantly, which is where hard shadows are cast from. It also
improves near the boundary of the face, which also tends
to produce hard shadows. This demonstrates that our dif-
ferentiable hard shadow modeling improves the geometry
estimation, especially in regions that cast hard shadows.

5. Conclusion
We have proposed a novel face relighting method that

produces geometrically consistent hard shadows. Unlike
prior work, our approach is the first to directly synthe-
size cast shadows from the geometry, which improves the
shadow’s shape and boundary. We have shown on the
Multi-PIE and FFHQ datasets that our method achieves
state-of-the-art face relighting performance quantitatively
and qualitatively under directional lighting. We have also
shown that our differentiable hard shadow modeling im-
proves the geometry, especially around the nose, com-
pared to prior work that assumes diffuse shading. We hope
that our work will motivate future physics-driven relighting
methods, and provide insights for handling hard shadows.

Limitations Since we use SfSNet’s [35] imperfect esti-
mated lighting as supervision, our model accumulates more
error during lighting transfer. The RGB albedo from SfS-
Net also does not generalize well to our training data, lim-
iting the quality of our estimated albedo. Training on a
dataset where we know the groundtruth lightings and could
compute the albedo from photometric stereo similar to [29]
would improve our model’s performance. In addition, al-
though CelebA-HQ [12] contains some images under direc-
tional lighting, it primarily contains images under diffuse
lighting. Our model would benefit from a publicly available
in-the-wild dataset with primarily directional lights.

Broader Impact Creating deepfakes or affecting surveil-
lance by adding shadows are major concerns. We acknowl-
edge these risks but argue that our model only adds self
shadows, which are generally limited in size and primarily
around the nose. The user cannot freely manipulate the im-
age or add shadows to any location they desire, which limits
malicious use cases. Moreover, our method can synthesize
images with self shadows for training, which can improve
the robustness of face methods to self-shadowed images.
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Face Relighting with Geometrically Consistent Shadows
(Supplementary Materials)

Method MSE DSSIM LPIPS

DPR [54] 0.0171 0.0796 0.1286

Proposed 0.0080 0.0562 0.1268

Table 1. Quantitative Evaluation for General (Diffuse) Relight-
ing We outperform DPR quantitatively across all metrics in diffuse
relighting on the Multi-PIE dataset.

Input DPR [54] Proposed Target

Figure 1. General (Diffuse) Relighting. We outperform DPR
qualitatively in diffuse relighting on the Multi-PIE dataset, where
each input image is relit by averaging the predictions of 3 ran-
domly selected target lightings. The groundtruth is the average of
the 3 groundtruth Multi-PIE images.

1. Diffuse Relighting Evaluation

To compare with DPR [54] on more general, diffuse
lightings, we follow their protocol and generate diffuse
lighting groundtruth by averaging 3 random directional
lighting images per Multi-PIE [9] subject. For both DPR
and our method, we feed each of the 3 target lightings sep-
arately and average the predictions to generate the final re-
lit image. We outperform DPR in general relighting both
quantitatively and qualitatively (Tab. 1 and Fig. 1).

2. Geometric Consistency Comparison with
Nestmeyer et al. [29]

To compare with the SoTA relighting method Hou et
al. [10], we used the average L1 error for each Multi-PIE
lighting’s test subjects to verify that our model was improv-
ing primarily around the hard shadow region in Fig. 6 of the
main paper. We show the same error map to compare with
Nestmeyer et al. [29] in Fig. 2. Our method has particu-
larly low error in the hard shadow region (nose and cheek),
whereas Nestmeyer et al. has high error in and around the
shadow, especially for the first row’s lighting. Our method

Nestmeyer [29] Proposed Target Lighting

Figure 2. Error Maps. We visualize the average L1 error for each
Multi-PIE lighting’s test subjects. Our method has significantly
lower error around the hard shadow regions (nose and cheek)
compared to Nestmeyer et al. [29], which demonstrates that our
method produces more geometrically consistent hard shadows.

thus produces more geometrically consistent hard shadows.

3. Albedo Comparison
Our albedo supervision from SfSNet [35] is far from per-

fect, as shown in Fig. 3, which is why we define the albedo
loss in grayscale and not RGB. We adopt this supervision
primarily because albedo supervision has limited options
for single image in-the-wild datasets besides PCA, which
often does not preserve facial details well. However, our
model’s estimated albedo clearly improves over SfSNet.

4. Comprehensive FFHQ Relighting Results
We strongly believe in diversity and the representation of

all groups in the computer vision community. We therefore
show a wide variety of relighting results with diversity and
inclusion in mind. Our results cover as many racial groups
as possible, as well as other factors such as different ages,
genders, poses, expressions, subjects with facial hair, and
the presence of glasses (See Fig. 4). We also increased the
lighting diversity to demonstrate that our model can handle
many different desired illuminations.

5. FFHQ Relighting Video
We include a video with 4 FFHQ [13] subjects where

we rotate the light around the face, move the light horizon-
tally, and move the light vertically. From left to right, we
visualize the target lighting, the relighting results of Hou



Input Image SfSNet [35] Proposed

Figure 3. Albedo Comparison. Our method is able to produce
high quality albedo despite the imperfect supervision from SfSNet
[35] by keeping the albedo loss Lalbedo in grayscale, which gives
our model more freedom in the RGB space.

et al. [10], and our proposed method’s relighting results.
Our video demonstrates our high relighting quality as well
as the geometric consistency of our shadows across many
lightings. Compared to [10], it is clear that the shape of
our shadows is superior, especially when comparing the first
subject. We also modify the tone of the image significantly
less, while [10] seems to frequently produce overly dark
shadows. The video can be viewed here.

6. Licenses for Face Related Datasets
Although we don’t collect any face data ourselves in this

work, we do make use of existing face datasets, includ-
ing Multi-PIE [9], FFHQ [13], and CelebA-HQ [12]. The
Multi-PIE database was collected at Carnegie Mellon Uni-
versity, where all subjects agreed that their data would be
used for research purposes. We only use the database inter-
nally for our work and primarily for evaluation. FFHQ con-
sists of images published on Flickr, which are all under mul-
tiple licenses that allow free use, adaptation, and redistribu-
tion for noncommercial purposes. The creators also provide
a way to remove an individual’s photo from the dataset if
they so desire. CelebA-HQ consists entirely of images col-
lected from the internet. Although there is no associated
IRB approval, the authors assert in the dataset agreement
that the dataset is only to be used for noncommercial re-
search purposes, which we strictly adhere to. Users must
also agree not to sell, reproduce, or exploit any of the data
and can only make copies of the data within their own orga-
nization, which we also adhere to.

https://www.youtube.com/watch?v=fbP2i5ywZvw


a)

b)

c)

d)

e)

f)

g)

h)

Figure 4. Comprehensive and Diverse Relighting Performance on FFHQ. Every two rows (e.g. c, d) shows the input image in the first
row and our relighting results in the second row. We demonstrate our relighting performance on a wide variety of racial groups, genders,
ages, expressions, and poses and also include subjects with facial hair and glasses. We find that our model is able to generalize to a wide
range of subjects across many different lightings. Best viewed if enlarged.


	1 . Introduction
	2 . Related Work
	3 . Proposed Method
	3.1 . Problem Formulation
	3.2 . Architecture
	3.3 . Shading Estimation
	3.4 . Training Losses

	4 . Experiments
	4.1 . Quantitative Evaluations
	4.2 . Qualitative Evaluations
	4.3 . Ablations and Additional Experiments

	5 . Conclusion
	1 . Diffuse Relighting Evaluation
	2 . Geometric Consistency Comparison with Nestmeyer et al. PhysicsGuidedRelighting
	3 . Albedo Comparison
	4 . Comprehensive FFHQ Relighting Results
	5 . FFHQ Relighting Video
	6 . Licenses for Face Related Datasets



