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Abstract

Recently, transformer-based methods have achieved
promising progresses in object detection, as they can elim-
inate the post-processes like NMS and enrich the deep rep-
resentations. However, these methods cannot well cope
with scene text due to its extreme variance of scales and
aspect ratios. In this paper, we present a simple yet ef-
fective transformer-based architecture for scene text detec-
tion. Different from previous approaches that learn robust
deep representations of scene text in a holistic manner, our
method performs scene text detection based on a few rep-
resentative features, which avoids the disturbance by back-
ground and reduces the computational cost. Specifically,
we first select a few representative features at all scales
that are highly relevant to foreground text. Then, we adopt
a transformer for modeling the relationship of the sam-
pled features, which effectively divides them into reason-
able groups. As each feature group corresponds to a text in-
stance, its bounding box can be easily obtained without any
post-processing operation. Using the basic feature pyra-
mid network for feature extraction, our method consistently
achieves state-of-the-art results on several popular datasets
for scene text detection.

1. Introduction
Scene text detection has been an active research field

for a long time, because of its wide range of practical ap-
plications, such as scene understanding, automatic driving,
and photo translation. As a key prior component of scene
text reading, scene text detection aims to precisely locate
text in scene images. Despite the noticeable improvement
achieved by existing methods [13, 48, 49, 67], it is still a
challenging task due to the variety of scene text, e.g. differ-
ent scales, complicated illumination, perspective distortion,
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Figure 1. The illustration of feature sampling and grouping. (a)
The confidence score map for text regions indicates the pixel im-
portance for text detection. (b) The text features at red points con-
taining geometric and context information of foreground text are
selected by scores. (c) The sampled features from the same text in-
stance are implicitly grouped at the feature level by a transformer.
(d) The bounding boxes can be easily obtained from the grouped
features.

multi-orientations, and complex shapes. Moreover, most
scene text detection methods depend on complicated pro-
cessing to generate or refine the predicted results, such as
anchor generation, non-maximum suppression (NMS) [37],
binarization [21], or contour extraction [43].

Inspired by the advantages of the transformer [46] in nat-
ural language processing (NLP), lots of works [3, 6, 27, 32,
42, 73] introduce it into vision tasks to extract global-range
features and model long-distance dependencies in images,
while showing promising performance. Especially in object



detection, DETR-based methods [3,32,73] successfully use
transformers to remove the complicated hand-designed pro-
cesses (e.g. NMS and anchor generation) from the former
object detection frameworks [11, 24, 40].

Although transformers bring advantages in global-range
feature modeling to DETR-based frameworks [3], they may
suffer from handling the small objects and the high com-
putational complexity. For instance, a recent DETR-based
scene text detector [39] cannot achieve the satisfactory
detection accuracy on the ICDAR2015 dataset [15] and
ICDAR2017-MLT dataset [36], since the text instances in
these two datasets have much larger variance of scales and
aspect ratios. It is often insufficient for transformers to cap-
ture small text on the feature map at small scales, while the
time cost of a DETR-based method with multi-scale feature
maps is unpredictable. Essentially, unexpected background
noise in higher-resolution feature maps would significantly
increase the computational cost and disturb the transformer
modeling. Though, some recent works [32, 73] improve
the efficiency of transformer-based object detectors by op-
timizing the attention operations, they fail to achieve the
competitive results in scene text detection (refer to the re-
sults reported in Tab. 6).

In this paper, we propose a simple yet effective
transformer-based architecture for scene text detection. We
argue that feature learning with the relationship of all pixels
is not necessary, as foreground text instances only occupy a
few small and narrow regions in scene images. Intuitively,
we firstly sample and collect the features that are highly
relevant to scene text as illustrated in Fig. 1(a)(b). Then,
we adopt a transformer for modeling the relationship of the
sampled features so that they can be properly grouped. As
shown in Fig. 1(c)(d), benefiting from the powerful atten-
tion mechanism of the transformer, each feature group will
correspond to a text instance, which is quite convenient for
predicting its bounding box.

Different from the previous scene text detection meth-
ods [2, 19, 21, 48, 67, 71] that usually learn the deep repre-
sentations of scene text images in a holistic manner with
CNNs, our detection method based on only a few repre-
sentative features has three prominent advantages: 1) it can
significantly eliminate the redundant background informa-
tion, which is beneficial for improving the effectiveness
and efficiency of the detection process; 2) Using a trans-
former to group the sampled features, we can obtain more
accurate grouping results and bounding boxes without any
post-processing operation; 3) As the feature sampling and
grouping are implemented in an end-to-end fashion, the
two stages can jointly improve the final detection perfor-
mance. To verify the effectiveness of the proposed feature
sampling-and-grouping scheme, we conduct extensive ex-
periments on several popular datasets [4, 14, 15, 36, 64, 65]
for scene text detection, consistently achieving the state-of-

of-art results. In addition, the comparison with the recent
transformer-based detectors [3, 32, 39, 73] also proves the
effectiveness of our method.

2. Related Work
Lots of works on scene text detection have been pro-

posed before, which can be roughly divided into two cat-
egories: bottom-up methods and top-down methods.

Bottom-up methods firstly detect/segment the basic
components or pixels of scene text, which are then formed
into bounding boxes with some heuristic operations. In an
early method, CTPN [45] develops a vertical anchor mecha-
nism to predict sequential proposals, and naturally connects
them into bounding boxes by a recurrent neural network.
To better detect long and dense text, SegLink [41, 44] de-
tects components and links of each text instance, and com-
bines them together to generate the final detection results.
In addition, the fundamental components can be defined as
characters with affinity boxes (e.g. CRAFT [2]) or center
points with radius (e.g. TextSnake [28]). These methods are
more flexible in detecting text with various shapes, as long
as the components can be detected and grouped into final
results. However, it suffers from missing components and
background noise, and the final detection results are suscep-
tible to the grouping post-process. Our proposed method,
which is also a bottom-up method, can predict the bounding
boxes by sampling and grouping at the feature level while
not relying on any post-processing.

Top-down methods directly predict bounding boxes of
scene text at the word or line level. Inspired by the pop-
ular object detectors [24, 40], some methods [19, 20, 31]
adjust default anchors into quadrilaterals or rotated bound-
ing boxes to fit the multi-orientations and various aspect ra-
tios of scene text. EAST [71] directly regresses the coordi-
nates of multi-oriented bounding boxes on the entire feature
map. To directly detect curved text in the wild, recent meth-
ods [25, 74] adopt Bezier curves or Fourier signatures for
locating scene text, and apply extra processes (e.g. Bezier-
Align, Inverse Fourier Transformation, and NMS) to gen-
erate the final detection results. These top-down methods
are usually more straightforward than the bottom-up ones,
but they still need some hand-designed processes, such as
anchor generation, NMS, and binarization.

Inspired by the power of transformers in natural lan-
guage processing, the pioneer work, DETR [3], presents
a novel transformer-based architecture for object detec-
tion. It discards several hand-designed processes employed
in [11,24,40], while achieving promising performance. Al-
though a recent method [39] has tried to apply the DETR-
based architecture to scene text detection, it can not achieve
a satisfying detection performance on ICDAR2015 [15] and
ICDAR2017-MLT [36]. Since scene text is more challeng-
ing than common objects for its extreme variance of scales
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Figure 2. The overview of our proposed transformer-based architecture. It consists of a backbone network, a multi-scale feature sampling
network, and a feature grouping network. Specifically, multi-scale feature maps are first produced from the backbone network. Next,
a multi-scale text extractor is used to predict the confidence scores of the representative text regions at the pixel level. Then, we select
text point features with top-N scores and concatenate them with position embeddings. After that, we adopt a transformer to model the
relationship between the sampled features and implicitly group them into fine representations by the attention mechanism. Finally, the
detection results are obtained from the prediction heads.

and aspect ratios, transformers cannot obtain sufficient in-
formation from a single scale feature map. The multi-scale
scheme can somewhat cope with this problem, but it incurs
a huge computational overhead for transformers. Different
from those DETR-based methods [32, 73] focusing on im-
proving the attention units, we propose to eliminate redun-
dant background information directly and select a few im-
portant features [72] from multi-scale feature maps. Thus,
both computational overhead and the quality of sampled
features can be taken into account, which facilitates trans-
formers being better employed for text detection.

3. Methodology
In this section, we first introduce the overall architec-

ture of the proposed scene text detection method. Then, we
elaborate on the proposed feature sampling-and-grouping
scheme and further analyze the advantages of feature sam-
pling in transformer modeling. Finally, we describe the de-
tails about the training of our proposed method.

3.1. Network Architecture

As shown in Fig. 2, our proposed transformer-based ar-
chitecture is composed of a backbone network, a feature
sampling network, and a feature grouping network.

The backbone is the basic feature pyramid network
(FPN) [22] equipped with ResNet-50 [12]. The produced
feature maps F in three different scales (i.e. 1/4, 1/8, 1/16)
are used for feature sampling.

In our feature sampling network, the three feature maps
are first down-sampled to smaller scales (i.e. 1/8, 1/16,
1/32) by a Coord-Convolution layer [23] and a constrained
deformable pooling layer. Then, several convolution layers

are employed to generate confidence score maps to distin-
guish representative text regions. After that, we only select
the features with top-Nk scores in each scale layer k, and
gather them into a sequence form with a shape (

∑
k Nk, C),

where C is the channel number.
In our feature grouping network, the sampled features

are first concatenated with position embeddings. Then, we
adopt transformer encoder layers to model their relation-
ships, and implicitly aggregate the features from the same
text instance. Finally, scores and coordinates of bounding
boxes (or polygons) are obtained via a text/non-text classi-
fication head and a text detection head, respectively.

3.2. Feature Sampling

Despite the novel structure and promising performance
in object detection, transformer-based methods [3, 39] can
not perform well on scene text detection due to the extreme
variance of scales and aspect ratios. Following previous text
detectors [18, 21, 22, 48], we use multi-scale features from
the FPN to boost the detection performance. Nevertheless,
such a scheme incurs unbearable computational cost and
much longer convergence time for transformers. We ob-
serve that foreground text instances only occupy small and
narrow regions, and useful information for localizing text
is relatively sparse. Hence, we propose a feature sampling
network to decrease redundant background noise involved
by multi-scale features, reducing the computational com-
plexity and facilitating feature learning for transformers.

Multi-Scale Text Extractor To sample representative
features from foreground text, we apply a simple multi-
scale text extractor to predict the confidence scores for text
regions at the pixel level. Following CoordConv [23], we



first concatenate each feature map with two extra channels
of normalized coordinates to introduce location informa-
tion. Let F denote the feature maps from the FPN in dif-
ferent scales (i.e. 1/4, 1/8, 1/16), and

F = {fk ∈ RHk×Wk×C |k = 0, 1, 2}. (1)

Then the position information is injected via

f̂k = Conv(fk ⊕ Ck), (2)

where ⊕ stands for the concatenation operation, and Ck ∈
RHk×Wk×2 denotes the normalized coordinates.

Inspired by deformable ROI pooling [5], we specifically
design a constrained one to down-sample the multi-scale
feature maps. Since the text area is relatively concentrated,
the predicted offsets in deformable pooling with further dis-
tance will introduce irrelevant information into the pooled
features. Thus, we add a learnable scaling parameter to con-
strain the predicted offsets, and pool f̂k to f̃k with smaller
scales (i.e. 1/8, 1/16, 1/32).

Finally, we construct a simple scoring net S composed
of convolution layers and a Sigmoid function to generate
the confidence score maps for representative text regions
at all scales. To better distinguish the importance of pix-
els at different positions in each text instance, different
scores over positions are used for supervision. To gener-
ate the score maps, we adjust the Gaussian heatmap gener-
ation in general object detection [8, 16] for text instances in
the word level. Specifically, a two-dimensional Gaussian
distribution is implemented to generate the ground truth
St = {St

k|k = 0, 1, 2} for S, ensuring that the central part
of each text instance has the highest importance score, and
the scores gradually decrease from the center to contours.

Feature Sampling To reduce the redundant background
noise, we design a strategy for selecting representative fea-
tures that are highly relevant to foreground text. These fea-
tures, containing rich geometric and context information of
foreground text, would be sufficient for text localization.

Let S denote the predicted score maps, and

S = {Sk ∈ RH′
k×W ′

k |Sk = S(f̃k), k = 0, 1, 2}. (3)

Then, we sort scores in Sk, and select features with top-Nk

scores in f̃k of each scale, respectively. The selected fea-
tures are gathered into F̄ ∈ RN×C for the incoming trans-
former modeling:

F̄ = [f̄n ∈ RC |n = 0, 1, ..., N ], (4)

where N =
2∑

k=0

Nk, and Nk is the number of selected fea-

tures in different scales.
Thus, the number of enormous features at all scales can

be significantly reduced. The primary selected features are

probably from foreground text regions, which would con-
tain sufficient geometric and context information for text
detection.

3.3. Feature Grouping

Through feature selection, only a few representative fea-
tures that are highly relevant to foreground text are concate-
nated for the incoming transformer modeling. To reserve
the position information of the sampled features, we add
the position embeddings into F̄. Then, we adopt a trans-
former structure to implicitly aggregate features from the
same text instance by attention mechanism. The basic form
is a stacked network with four transformer encoder lay-
ers, which are composed of self-attention modules, feed-
forward layers, and layer normalization. Following [46],
we construct our self-attention module as

Attn(F̂) = softmax(
Q(F̂)K(F̂)

T

√
C ′

)V (F̂), (5)

where F̂ ∈ RN×C′
denotes the sampled features with posi-

tion embeddings, and C ′ is the channel number. Q, K and
V denote the different linear layers.

For previous methods [3, 32], the core issue of applying
the attention operation on a feature map x ∈ RH×W×C′

is the computational complexity on all spatial locations. In
the original DETR [3] encoder, the complexity of attention
operation is O((HW )2C ′), which is quadratic with the spa-
tial size. However, in our method, it is only related to the
number N of selected features F̂, and the complexity be-
comes O(N2C ′). In our implementation, the selected num-
ber N2 ≪ (HW )2, and thus the complexity of our trans-
former could be significantly reduced.

Finally, the output text features are fed into two predic-
tion heads for classification and text detection. The text de-
tection head is composed of fully-connected layers and a
Sigmoid function. It can regress the coordinates of rotated
bounding boxes in the form of B(x, y, h, w, θ) or 8 control
points of Bezier-Curve [25] for arbitrary-shaped text. x, y,
h, w, and θ are the coordinates of the center point, height,
width, and angle, respectively.

3.4. Optimization

The proposed model is trained in an end-to-end manner,
and the objective function consists of three parts as follows:

L = λcL̂class + λdL̂det + λfLfs, (6)

where L̂class is the loss for classification, L̂det is the loss
for text detection, and Lfs is the loss for feature selection.
λc, λd, and λf are scaling factors. Following DETR [3], we
adopt Hungarian algorithm for pair-wise matching before
calculating losses for L̂class and L̂det.



Figure 3. The qualitative results of our proposed method in different cases, including multi-oriented text, long text, multi-lingual text,
low-resolution text, curved text, dense text. For curved text detection, the Bezier curves’ control points are drawn in red.

Loss for classification We adopt the Cross Entropy loss
for text/non-text classification after pair-wise matching by
Hungarian algorithm. It can be formulated as

L̂class =
1

N

∑
x

−[ĝx ·log(p̂x)+(1−ĝx)·log(1−p̂x)], (7)

where N is the total number of selected features, ĝx repre-
sents the label of sample x and p̂x represents the predicted
probability. The elements with ̂ denote the probabilities
or labels of the matched samples after pair-wise matching.

Loss for text detection For multi-oriented text detec-
tion, we adapt the Gaussian Wasserstein Distance (GWD)
loss [58] into a scale-invariant form to better balance the
loss weights of text with different scales. Due to the ex-
treme variance of scales, the loss of small text has a negli-
gible influence on the gradient back-propagation compared
with the loss of large text. Hence, we adjust the GWD loss
as follows:

L̂det =
1

Nr

∑
x

(1− 1

τ + f(d2( ûx

|t̂x|
, t̂x
|t̂x|

))
), (8)

where ûx denotes the predicted rotated bounding box, t̂x
denotes the target one, and | ∗ | denotes its area. Nr is the
number of bounding boxes after pair-wise matching. The
elements with ̂ denote the matched bounding boxes or
the target ones after pair-wise matching. f(·) represents a
non-linear function, and τ is a hyper-parameter to modulate
the loss. d2 will be explained in the Appendix. According
to the GWD loss [58], we set f(d2) = log (d2 + 1) and
τ = 3. By normalizing ûx and t̂x with the area of t̂x, we
can decrease the negative effect of the scale imbalance.

For arbitrary-shaped text detection, we adopt the losses
for Bezier-Curve in ABC-Net [25]. Thus, the prediction

head for text detection is changed to two heads for predict-
ing both bounding boxes and the control points of Bezier
curves, respectively. In the bounding box prediction head,
the center point coordinates, box width and box height
are predicted for each bounding box B̄(x, y, h, w). In the
Bezier curve prediction head, it predicts the coordinates of
8 control points for each text instance.

Loss for feature selection We apply a smooth L1 loss
for optimizing the importance score maps in our feature se-
lection as follows:

Lfs =
1

Nf

∑
k

L1smooth{Sk, S
t
k}, k = 0, 1, 2, (9)

where Nf is the total size of all score maps. Sk and St
k are

the predicted score map and the target map, respectively.

4. Experiments
In this section, we first introduce the datasets and im-

plementation details in our experiments. Then, we present
the evaluation results on public benchmarks and an abla-
tion study on feature sampling. Finally, we compare our
proposed method with some popular transformer-based de-
tection methods.

4.1. Datasets

SynthText [9] is a large synthetic dataset including 800k
images. It is only used to pre-train our models.

ICDAR 2015 (IC15) [15] contains 1000 training im-
ages and 500 testing images in English, most of which are
severely distorted or blurred. All images are annotated with
quadrilateral boxes at the word level.

MLT-2017 (MLT17) [36] is proposed for multi-lingual
scene text detection. It contains 7200 training images, 1800



Method ICDAR 2015 MSRA-TD500 Total-Text CTW1500
P R F P R F P R F P R F

TextSnake [28] 84.9 80.4 82.6 83.2 73.9 78.3 82.7 74.5 78.4 67.9 85.3 75.6
TextField [55] 84.3 83.9 84.1 87.4 75.9 81.3 81.2 79.9 80.6 83.0 79.8 81.4
PSE-Net [48] 86.9 84.5 85.7 - - - 84.0 78.0 80.9 84.8 79.7 82.2
LOMO [66] 91.3 83.5 87.2 - - - 88.6 75.7 81.6 89.2 69.6 78.4
CRAFT [2] 89.8 84.3 86.9 88.2 78.2 82.9 87.6 79.9 83.6 86.0 81.1 83.5
PAN [49] 84.0 81.9 82.9 84.4 83.8 84.1 89.3 81.0 85.0 86.4 81.2 83.7
DB [21] 91.8 83.2 87.3 91.5 79.2 84.9 87.1 82.5 84.7 86.9 80.2 83.4
ContourNet [50] 87.6 86.1 86.9 - - - 86.9 83.9 85.4 84.1 83.7 83.9
DRRG [67] 88.5 84.7 86.6 88.1 82.3 85.1 86.5 84.9 85.7 85.9 83.0 84.5
MOST [13] 89.1 87.3 88.2 90.4 82.7 86.4 - - - - - -
Raisi et al. [39] 89.8 78.3 83.7 90.9 83.8 87.2 - - - - - -
TextBPN [68] - - - 86.6 84.5 85.6 90.7 85.2 87.9 86.5 83.6 85.0

Ours (RBox) 90.9 87.3 89.1 91.6 84.8 88.1 - - - - - -
Ours (Bezier) 91.1 86.7 88.8 91.4 84.7 87.9 90.7 85.7 88.1 88.1 82.4 85.2

Table 1. Detection results on ICDAR2015, MSRA-TD500, Total-Text, and CTW1500. “P”, “R”, and “F” represent Precision, Recall, and
F- measure, respectively.

validation images, and 9000 testing images. All images are
annotated with quadrilateral boxes at the word level.

MSRA-TD500 [64] is a multi-lingual text dataset in Chi-
nese and English. It includes 300 training images and 200
testing images with multi-oriented long text. Following pre-
vious works [13, 21, 28], we include HUST-TR400 [63] as
the extra training data in the fine-tuning stage.

MTWI [14] is a large-scale dataset for Chinese and En-
glish web text reading. It contains some challenging cases,
such as complex layout, small text, and watermarks. There
are 10000 training images and 10000 images for testing, and
all text instances are annotated at the line level.

Total-Text [4] is a dataset that contains text of various
shapes, including horizontal, multi-oriented, and curved. It
contains 1255 training images and 300 testing images, and
the text instances are labeled at the word level.

CTW1500 [65] is a curved text dataset, which consists
of 1000 training images and 500 testing images. The text
instances are annotated at the text-line level.

4.2. Implementation Details

Our model for oriented text detection is denoted as Ours
(RBox), and that for arbitrary-shaped text detection is de-
noted as Ours (Bezier). Ours (RBox) is first pre-trained on
SynthText for 150 epochs, and then fine-tuned on each cor-
responding real-world dataset for another 100 epochs. Ours
(Bezier) follows the experiment settings of ABC-Net [25],
and adds its Bezier Curve Synthetic Dataset for pretraining.
We optimize our models by AdamW [29] with a weight de-
cay of 1e−4 and a momentum of 0.9. The initial learning
rate for pre-training and fine-tuning is 1e−3 and 5e−4, re-

spectively. Both of them will decay to 1e−4 after the 40th
epoch. More details can be referred to Appendix.

4.3. Evaluation on Benchmarks

To compare with previous scene text detectors, we evalu-
ate our proposed method on several popular benchmarks for
scene text detection. We adopt the best model configuration
in the #5 of Tab. 4 for evaluating on all benchmarks. As
shown in Fig. 3, we provide some qualitative results in dif-
ferent cases, including multi-oriented text, long text, multi-
lingual text, small text, low-resolution text, and curved text.
Multi-oriented text detection We evaluate our method for
multi-oriented text on the IC15 dataset and the MSRA-
TD500 dataset, which contain lots of small, low-resolution,
and long text instances. As shown in Tab. 1, our model
outperforms previous state-of-the-art method by 0.9% on
both IC15 and MSRA-TD500. Compared with the for-
mer DETR-based method [39], our proposed model shows
a much better detection performance (89.1% vs. 83.7%)
on small and blurry text of IC15. Compared with previous
CNN-based methods on MSRA-TD500, our method outper-
forms them by at least 1.7% in terms of f-measure, owing
to the advantages of transformers in extracting global-range
features and long-distance dependencies.
Curved text detection To prove our method’s effectiveness
on curved text, we evaluate it on two popular curved text
benchmarks, i.e. the Total-Text dataset and the CTW1500
dataset. As shown in Tab. 1, our method obtains 0.2% im-
provement in terms of f-measure compared with the state-
of-the-art method TextBPN [68]. With the help of Bezier-
Curve [25], our method could generate polygons for curved



Method P R F FPS

Corner [30] 83.8 55.6 66.8 -
CRAFT [2] 80.6 68.2 73.9 8.6
PSE-Net [48] 73.8 68.2 70.7 -
DB [21] 83.1 67.9 74.7 19.0
DRRG [67] 75.0 61.0 67.3 -
Xiao et al. [52] 84.2 72.8 78.1 -
MOST [13] 82.0 72.0 76.7 10.1
Raisi et al. [39] 84.8 63.2 72.4 -

Ours (RBox) 87.3 73.2 79.6 13.1

Table 2. Detection results on the MLT-2017 test dataset.

Method P R F FPS

SegLink * [41] 70.0 65.4 67.6 -
TextBoxes++ * [19] 66.8 56.3 61.1 -
Seglink++ [44] 74.7 69.7 72.1 -
BDN † [26] 77.3 70.0 73.4 2.7
PAN † [49] 78.9 68.9 73.5 16.9
MOST [13] 78.8 71.1 74.7 23.5

Ours (RBox) 78.4 72.3 75.2 21.5

Table 3. Detection results on the MTWI dataset. * and †indicate
that the results are reported by SegLink++ [44] and MOST [13],
respectively.

text, which can not be precisely detected by the former
DETR-based method [39]. Moreover, our method with
Bezier-Curve could also achieve state-of-the-performance
performance on the IC15 and MSRA-TD500 datasets.
Multi-lingual text detection To demonstrate the robustness
of our model for different languages, we evaluate it on two
large-scale scene text datasets (i.e. the MLT17 test dataset
and the MTWI dataset). As shown in Tab. 2, compared with
the state-of-the-art model [52], our model obtains 3.1%,
0.4%, and 1.5% improvements in terms of precision, recall,
and f-measure, respectively. We also evaluate our model on
the MTWI dataset, which contains multi-lingual text from
web images. Our method achieves the best performance
75.2% in terms of f-measure with a competitive inference
speed (21.5 FPS).

4.4. Experiments on Feature Sampling

To demonstrate the effectiveness of our proposed feature
sampling scheme, we conduct several experiments with dif-
ferent sampling configurations on the IC15 dataset and the
MLT17 validation dataset. As shown in #1, #2, and #5
of Tab. 4, our method can significantly improve the per-
formance with the help of higher-resolution feature maps.
For IC15, sampling features at all scales outperforms the

ID
Sampled Features IC15 MLT17 val
L0 L1 L2 P R F P R F

#1 64 - - 75.2 60.4 67.0 79.9 53.2 63.9
#2 64 128 - 86.5 78.3 82.2 82.7 65.9 73.4
#3 16 32 64 82.4 73.7 77.8 78.9 61.1 68.9
#4 32 64 128 88.1 84.0 86.0 84.1 72.8 78.0
#5 64 128 256 90.9 87.3 89.1 86.8 73.4 79.5
#6 128 256 512 90.2 87.9 89.0 85.9 73.8 79.4
#7 Adaptive Sampling 90.7 87.2 88.9 - - -

Table 4. The experiments of feature sampling number on the IC15
test dataset and the MLT17 validation dataset. “L0”, “L1” and
“L2” denote the feature maps in different scales (i.e. 1/32, 1/16,
1/8).

other two configurations by 22.1% and 6.9%, respectively.
Consistently, it achieves 15.6% and 6.1% performance gain
compared with others on MLT17. In addition, we conduct
four configurations to explore the effects of sampling num-
bers from #3 to #6 in Tab. 4. We observe that the perfor-
mance can increase with more sampling features, but stag-
nates in the last. The models with fewer sampled features
can not perform well, because these features do not con-
tain enough geometric and context information of all text
instances. From #5 and #6, we find the performance slightly
decreases as the sampling number increases, which may in-
troduce more redundant features and incur negative effects.

To further evaluate the impact of sampling points, we
we adopt an adaptive sampling scheme for training in #7.
For every training image, we sort all features from the fore-
ground text area by the predicted scores, and sample a fixed
percentage (25%) of them with top scores. In this way, the
sampling number is adaptive to the foreground feature num-
ber, and the performance of adaptive sampling is close to
#5 and #6. Hence, our method is not sensitive when the
sampling number is larger than that of #5. Moreover, we
try to use all the features in different scales for the trans-
former modeling, but encounter the issue of “Out Of Mem-
ory” during training. Assuming the size of input images is
1024×1024, the sizes of L0, L1, and L2 would be 32×32,
64 × 64, and 128 × 128, respectively. The whole features
mixed with background are difficult to model, and lead to
a huge computational cost which is nearly 1400 times more
than that of #5. Thus, our feature sampling is effective to
decrease complexity for multi-scale feature maps and pre-
serve the important information for scene text detection.

4.5. Comparisons with Transformer-Based Detec-
tion Methods

In this part, we compare our model with some popu-
lar transformer-based methods (i.e. DETR [3], Deformable
DETR [73], and Conditional DETR [33]) in object detec-
tion. We use their official codes and follow our training set-
tings for fair comparisons. Noticeably, we adjust their codes
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Figure 4. The convergence curves for DETR, Deformable DETR,
Conditional DETR and Ours (RBox) on SynthText. The training
and validation set is split from SynthText with a ratio 8:2. We train
the previous methods by adjusting their official codes for multi-
oriented text detection and follow the same settings as ours.

for multi-oriented text detection by adding angle regression
and using our loss function.

Since pre-training on SynthText is a necessary step in
previous methods [13, 21, 50, 67], we first compare the
convergence speed on SynthText. We train most models
excluding DETR with the same training settings as ours,
but train DETR for 350 epochs for its low convergence
speed. As illustrated in Fig. 4, the convergence speed of our
method is much faster than DETR, because ours can signif-
icantly reduce redundant information and ease transformer
modeling. Compared with the other two methods [33, 73]
focusing on increasing the efficiency of the attention units,
our feature sampling-and-grouping scheme has a simpler
pipeline but demonstrates a competitive convergence speed
with a better detection performance. After fine-tuning, our
proposed model obtains the best detection performance in
terms of f-measure on IC15 and MLT17 as shown in Tab. 6.

In addition, we compare the FLOPs, the number of
model parameters, and the inference speed with the pre-
vious transformer-based methods. For a fair comparison,
we resize both sides of input images to 640 for all mod-
els to calculate the FLOPs, and use the same images from
the IC15 test dataset to measure the inference speed by
FPS. The number of object queries is set to 100 for pre-
vious methods, and we adopt the #5 configuration in Tab. 4
for ours. As shown in Tab. 7, our proposed transformer-
based architecture has a lower computational cost in terms
of FLOPs and a faster inference speed.

4.6. Transformer Structure

Despite the state-of-the-art performance achieved by our
basic model architecture, we replace the basic transformer

Transformer Layer
IC15 MLT17 val

P R F P R F
Basic Layer 90.8 87.3 89.1 86.8 73.4 79.5

Swin Transformer Layer 90.9 88.1 89.5 87.2 73.4 79.7

Table 5. The experiment on the transformer layers in our feature
grouping network.

Methods
IC15 MLT17 val

P R F P R F
DETR* [3] 87.9 75.4 81.2 84.6 63.4 72.5

Deformable DETR* [73] 88.3 84.7 86.5 86.5 69.3 77.0
Conditional DETR* [33] 87.5 81.8 84.6 85.9 67.8 75.8

Raisi et al. [39] 89.8 78.3 83.7 - - -

Ours (RBox) 90.9 87.3 89.1 86.8 73.4 79.5

Table 6. Comparisons with transformer-based methods on the
IC15 test dataset and the MLT17 validation dataset. * indicates
the methods are trained by adjusting their official codes for multi-
oriented text detection.

Method FLOPs Params FPS

DETR [3] 38.9G 41.3M 9.7
Deformable DETR [73] 36.8G 39.8M 7.6
Conditional DETR [33] 42.2G 43.2M 9.1

Ours (RBox) 35.9G 38.3M 12.9

Table 7. Comparisons with transformer-based methods on FLOPs,
the number of parameters, and the inference speed. For FLOPs,
both sides of input images are set to 640. For FPS, we evaluate
all models on the IC15 test dataset with the same inference setting
of ours. The number of object queries is set to 100 for previous
methods, and we adopt the #5 configuration in Tab. 4 for ours.

encoder layers with those in the modern transformer struc-
ture, i.e. Swin-Transformer [27], for further improve-
ment. Different from applying Swin-Transformer for im-
ages, we only use four swin-transformer blocks for our fea-
ture grouping. Since it is designed for 2-D feature maps, we
feed the feature map into the swin-transformer stage while
masking out the unsampled features. Owing to the power of
Swin-Transformer layers, our model obtains 0.4% and 0.2%
performance gain on the IC15 and the MLT17 datasets as
shown in Tab. 5.

4.7. Rotated Object Detection

Our proposed method not only achieves state-of-the-art
performance on scene text detection, but also performs well
on oriented object detection. To prove the effectiveness of
our method, we adapt it to oriented object detection and
evaluate it on a popular dataset for oriented object detection
in aerial images, i.e., DOTA-v1.0 [51]. DOTA-v1.0 is one
of the largest dataset for oriented object detection in aerial



Method Backbone MS PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC AP50
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ICN [1] R-101
√

81.40 74.30 47.70 70.30 64.90 67.80 70.00 90.80 79.10 78.20 53.60 62.90 67.00 64.20 50.20 68.20
RoI-Trans. [7] R-101

√
88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56

SCRDet [60] R-101
√

89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61
Gliding Vertex [54] R-101 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02
CenterMap OBB [47] R-101

√
89.83 84.41 54.60 70.25 77.66 78.32 87.19 90.66 84.89 85.27 56.46 69.23 74.13 71.56 66.06 76.03

FPN-CSL [57] R-152
√

90.25 85.53 54.64 75.31 70.44 73.51 77.62 90.84 86.15 86.69 69.60 68.04 73.83 71.10 68.93 76.17
RSDet-II [38] R-152

√
89.93 84.45 53.77 74.35 71.52 78.31 78.12 91.14 87.35 86.93 65.64 65.17 75.35 79.74 63.31 76.34

Oriented R-CNN [53]

R-50 89.46 82.12 54.78 70.86 78.93 83.00 88.20 90.90 87.50 84.68 63.97 67.69 74.94 68.84 52.28 75.87
R-101 88.86 83.48 55.27 76.92 74.27 82.10 87.52 90.90 85.56 85.33 65.51 66.82 74.36 70.15 57.28 76.28
R-50

√
89.84 85.43 61.09 79.82 79.71 85.35 88.82 90.88 86.68 87.73 72.21 70.80 82.42 78.18 74.11 80.87

R-101
√

90.26 84.74 62.01 80.42 79.04 85.07 88.52 90.85 87.24 87.96 72.26 70.03 82.93 78.46 68.05 80.52

R
efi

ne
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ge

CFC-Net [34] R-101
√

89.08 80.41 52.41 70.02 76.28 78.11 87.21 90.89 84.47 85.64 60.51 61.52 67.82 68.02 50.09 73.50
DCL [56] R-152

√
89.26 83.60 53.54 72.76 79.04 82.56 87.31 90.67 86.59 86.98 67.49 66.88 73.29 70.56 69.99 77.37

RIDet [35] R-50
√

89.31 80.77 54.07 76.38 79.81 81.99 89.13 90.72 83.58 87.22 64.42 67.56 78.08 79.17 62.07 77.62
S2A-Net [10] R-101

√
89.28 84.11 56.95 79.21 80.18 82.93 89.21 90.86 84.66 87.61 71.66 68.23 78.58 78.20 65.55 79.15

R3Det-GWD [59] R-152
√

89.66 84.99 59.26 82.19 78.97 84.83 87.70 90.21 86.54 86.85 73.04 67.56 76.92 79.22 74.92 80.19

R3Det-KLD [61] R-50
√

89.90 84.91 59.21 78.74 78.82 83.95 87.41 89.89 86.63 86.69 70.47 70.87 76.96 79.40 78.62 80.17
R-152

√
89.92 85.13 59.19 81.33 78.82 84.38 87.50 89.80 87.33 87.00 72.57 71.35 77.12 79.34 78.68 80.63

Si
ng

le
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ge

PolarDet [69] R-101
√

89.65 87.07 48.14 70.97 78.53 80.34 87.45 90.76 85.63 86.87 61.64 70.32 71.92 73.09 67.15 76.64
RDD [70] R-101

√
89.15 83.92 52.51 73.06 77.81 79.00 87.08 90.62 86.72 87.15 63.96 70.29 76.98 75.79 72.15 77.75

GWD [58] R-152
√

89.06 84.32 55.33 77.53 76.95 70.28 83.95 89.75 84.51 86.06 73.47 67.77 72.60 75.76 74.17 77.43

KLD [62] R-50 88.91 83.71 50.10 68.75 78.20 76.05 84.58 89.41 86.15 85.28 63.15 60.90 75.06 71.51 67.45 75.28
R-50

√
88.91 85.23 53.64 81.23 78.20 76.99 84.58 89.50 86.84 86.38 71.69 68.06 75.95 72.23 75.42 78.32

Ours (RBox) R-50 90.36 85.31 56.39 76.45 74.55 83.46 87.78 90.86 85.85 85.28 64.52 67.82 77.72 74.32 67.80 77.90
R-50

√
89.81 85.19 61.35 76.18 79.29 84.81 88.26 90.86 87.55 87.42 66.89 70.10 78.40 79.28 68.48 79.59

Table 8. Detection results on the DOTA-v1.0 testing set. R-50, R-101, and R-152 denote ResNet-50, ResNet-101, and ResNet-152,
respectively. MS indicates that multi-scale testing is used. Red and blue indicate the top two performances.

Figure 5. The qualitative results on DOTA-v1.0 testing set. It contains 15 common categories, such as large-vehicle, small-vehicle, plane,
swimming-pool, ship, tennis-court, etc.



images, and it contains 15 common categories, 2806 images
and 188282 instances.

In the training, we use the same loss function as the
loss for multi-oriented text detection. The feature sampling
scheme is consistent with the configuration #5. Following
the pre-processing in previous methods [58, 62], we split
the training images of DOTA-v1.0 into 1024 × 1024 sub-
images with an overlap of 200 pixels. We train our model
for 100 epochs with an initial learning rate 1e−4, and decay
it at 50th and 80th epoch, respectively.

As shown in Tab. 8, we compare our model with pre-
vious oriented object detection approaches in both single-
scale and multi-scale testing manners. For a fair compari-
son, our method achieves the best performance among the
single-stage approaches, and outperform KLD [62] by 1.32
AP50. By multi-scale testing, our model also achieves the
competitive result 79.59 in terms of AP50 with refine-stage
and two-stage approaches.

4.8. Limitation

For our feature sampling-and-grouping scheme, it is hard
to deal with the “text overlapping” cases, which mean two
text instances overlap each other. Although our feature
grouping network can model the relationship of the sampled
features, the features of the overlapping text are quite com-
plex and tangled. Thus, our proposed method sometimes
fails in these cases, which are shown in the Appendix.

5. Conclusion

In this paper, we present a simple yet effective
transformer-based architecture for scene text detection. Dif-
ferent from previous methods in scene text detection, our
method leverages only a few representative features con-
taining sufficient geometric and context information of fore-
ground text. It is able to effectively reduce the redundant
background noise and overcome the complexity limitation
of the self-attention module. With the power of transform-
ers, we can obtain more accurate bounding boxes without
any post-processing. Through extensive experiments on
several benchmarks, we demonstrate the effectiveness of
our proposed method by consistently achieving state-of-the-
art results on both multi-oriented text datasets and arbitrary-
shaped text datasets.
Acknowledgement This work was supported by National
Key R&D Program of China (No. 2018YFB1004600).
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A. Implementation Details
A.1. Network Architecture

Our proposed transformer-based architecture is com-
posed of a backbone network, a feature sampling network,
and a feature grouping network.

The backbone is the basic feature pyramid network
(FPN) [22] equipped with ResNet-50 [12] as shown in
Fig. 6, The produced feature maps in three different scales
(i.e. 1/4, 1/8, 1/16) are used for feature sampling.

As shown in Fig. 7, each feature map is first fed into
a Coord-Convolution layer [23] to involve position infor-
mation for the incoming presentation in our feature sam-
pling network. Next, it is down-sampled by a constrained
deformable pooling adjusted from [5]. In our implemen-
tation, the predicted offsets are obtained by △pij = λ ·
△p̂ij ◦ (Wk, Hk), where λ = Sigmoid(Avg(fij)) is a
learnable scaling parameter to modulate the predicted off-
set and fij is the feature vector at (i, j). The other symbol
definitions are consistent with the original ROI deformable
pooling [5]. Then, a convolution layer with a 1 × 1 kernel
size and a Sigmoid function are employed to generate confi-
dence score maps to distinguish representative text regions.
After that, we select the features with top-Nk scores in each
scale layer k, and gather them into a sequence form with a
shape (

∑
k Nk, C), where C = 256 is the channel number.

In our feature grouping network, the sampled features
are first concatenated with position embeddings. Then,
we adopt four basic transformer encoder layers as those in
DETR [3] to model the feature relationship, and implicitly
aggregate the features from the same text instance. Finally,
scores and coordinates of rotated bounding boxes are ob-
tained via a text/non-text classification head and a bounding
box prediction head, which are composed of full-connected
layers and Sigmoid functions.

A.2. Scale-Invariant GWD Loss

To regress the coordinates of rotated bounding boxes, we
adapt the Gaussian Wasserstein Distance (GWD) loss [58]
into a scale-invariant form to better balance the loss weights
of text with different scales. Following the GWD loss, we
first convert the rotated bounding box B(x, y, h, w, θ) into a
2-D Gaussian distribution representation N (m,Σ), where
m = (x, y) and Σ is formulated as

Σ =

(
w
2 cos2 θ + h

2 sin2 θ w−h
2 cos θ sin θ

w−h
2 cos θ sin θ w

2 sin2 θ + h
2 cos2 θ

)2

.

(10)
Then, we use the Wasserstein distance between two in-
stances to formulate d2 as

d2 =∥ m1−m2 ∥22 +Tr
(
Σ1 +Σ2 − 2(Σ

1/2
1 Σ2Σ

1/2
1 )1/2

)
.

(11)
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Figure 6. The structure of our feature pyramid network equipped
with ResNet-50.

Figure 7. The pipeline of feature sampling for each feature map
fk.

Due to the extreme variance of scales, the loss of
small text has a negligible influence on the gradient back-
propagation compared with the loss of large text. Hence, we
adjust the GWD loss into a scale-invariant form as follows:

L̂rbox =
1

Nr

∑
x

(1− 1

τ + f(d2( ûx

|t̂x|
, t̂x
|t̂x|

))
), (12)

where ûx denotes the predicted rotated bounding box, t̂x
denotes the target one, and |t̂x| denotes its area. Nr is the
number of bounding boxes after pair-wise matching. The



Figure 8. The bad cases of “text overlapping” in our method. The
red bounding boxes denote the wrong predictions, and the green
ones are the right predictions.

elements with ̂ denote the matched bounding boxes or
the target ones after pair-wise matching. f(·) represents a
non-linear function, and τ is a hyper-parameter to modulate
the loss. According to the GWD loss [58], we set f(d2) =
log (d2 + 1) and τ = 3. By normalizing ûx and t̂x with the
area of t̂x, we can decrease the negative effect of the scale
imbalance.

A.3. Training

In the training period, the data argumentation for train-
ing data includes: (1) Random Rotation, flipping, and per-
spective transformation; (2) Color argumentation; (3) Ran-
dom cropping. In addition, both sides of the training images
are randomly resized in the range between 640 × 640 and
1680 × 1680 with an interval of 64. In our loss function,
we use λc, λd, and λf to adjust the influences of different
losses. Specifically, we set λc to 0.5 and λd to 1. For λf ,
we initialize it to 1e−2, and decay it by a factor 0.1 at the
35th and 45th epoch, respectively.

A.4. Inference

In the inference period, we keep the aspect ratio of test
images and resize the shorter sides to 768 (for TD500 and
MTWI) or 1024 (for others), while the upper limit of the
longer sides is 2048. Moreover, we can easily obtain the
detection results without any complex post-processing. By
setting a proper threshold, we only keep the predicted boxes
with scores higher than the threshold. Specifically, we set it

Method
Sampling F-measure
Number IC15 TD500 MTWI

FPN+FC 64+128+256 85.7 85.5 70.6
FPN+GCN 64+128+256 87.9 87.0 72.5

Ours (RBox) 64+128+256 89.1 88.1 75.2

Table 9. The ablation study on feature grouping with non-
transformer structures.

to 0.45 for the IC15 dataset, and 0.5 for others.

B. Experiments
B.1. Qualitative Results

As shown in Fig. 9, we provide more qualitative results
for visualization, including multi-oriented text, long text,
multi-lingual text, small text, dense text, and curved text.
Moreover, we also provide some bad cases of our method
shown in Fig. 8. The red bounding boxes are the wrong
predictions. It is hard for our method to deal with the case of
“text overlapping”, because the features of the overlapping
text instances are quite complex and tangled. Our feature
grouping module sometime fails in these cases.

As shown in Fig. 10, we show the feature grouping re-
sults of the predicted rotated bounding boxes in red. We vi-
sualize the attention weights for one text instance’s features
in the last transformer layer. The weight value increases
from 0 to 1 as the color changes from blue to red. It means
that the output features for text instances in red bounding
boxes are mainly aggregated from the inner features (red
ones).

B.2. Constrained Deformable Pooling

To demonstrate the effectiveness of our constrained de-
formable pooling, we construct an ablation study on the
IC15 and the MLT17 datasets. As shown in Tab. 10, our
constrained deformable pooling outperforms average pool-
ing and the original deformable pooling. It achieves 89.1%
and 79.5% f-measure on the IC15 and the MLT17 datasets,
respectively.

B.3. Loss for Rotated Bounding Boxes

As shown in Tab. 11, we compare the original GWD [58]
loss with our proposed scale-invariant form on the IC15 and
the MLT17 datasets. Our scale-invariant GWD loss outper-
forms the original one by 0.7% and 0.5% on the IC15 and
the MLT17 datasets.

B.4. Compared with Non-Transformer Structure

To evaluate sampling and grouping with non-transformer
methods, we replace our transformer module with
GCN [17] (FPN+GCN) and FC layers (FPN+FC). As
shown in Tab. 9, these two settings achieve lower f-measure



Figure 9. The qualitative results of our proposed method in different cases, including multi-oriented text, long text, multi-lingual text,
low-resolution text, curved text, dense text. For curved text detection, the Bezier curves’ control points are drawn in red.

Figure 10. The visualization of feature sampling and grouping.
We visualize the attention weights for one text instance’s features
in the last transformer layer. The weight value increases from 0 to
1 as the color changes from blue to red. The output feature for the
text instance in a red bounding box is mainly aggregated from the
inner text point features.

Methods
IC15 MLT17 val

P R F P R F
Average Pooling 89.5 87.2 88.3 86.6 72.6 79.0

Deformable Pooling 89.9 87.3 88.6 86.8 72.8 79.2
Ours (RBox) 90.9 87.3 89.1 86.8 73.4 79.5

Table 10. The abalation study on the constrained deformable pool-
ing. “P”, “R”, and “F” represent Precision, Recall, and F- measure,
respectively.

L̂rbox
IC15 MLT17 val

P R F P R F
GWD 90.2 86.6 88.4 86.7 72.6 79.0

Ours (RBox) 90.9 87.3 89.1 86.8 73.4 79.5

Table 11. The ablation study on the loss for rotated bounding
boxes.

than ours. This phenomenon validates the effectiveness of
our proposed sampling and grouping framework based on
transformers.
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