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Abstract

The nonuniform quantization strategy for compressing
neural networks usually achieves better performance than
its counterpart, i.e., uniform strategy, due to its supe-
rior representational capacity. However, many nonuni-
form quantization methods overlook the complicated pro-
Jection process in implementing the nonuniformly quantized
weights/activations, which incurs non-negligible time and
space overhead in hardware deployment. In this study, we
propose Nonuniform-to-Uniform Quantization (N2UQ), a
method that can maintain the strong representation abil-
ity of nonuniform methods while being hardware-friendly
and efficient as the uniform quantization for model infer-
ence. We achieve this through learning the flexible in-
equidistant input thresholds to better fit the underlying
distribution while quantizing these real-valued inputs into
equidistant output levels. To train the quantized network
with learnable input thresholds, we introduce a gener-
alized straight-through estimator (G-STE) for intractable
backward derivative calculation w.r.t. threshold param-
eters. Additionally, we consider entropy preserving reg-
ularization to further reduce information loss in weight
quantization. Even under this adverse constraint of im-
posing uniformly quantized weights and activations, our
N2UQ outperforms state-of-the-art nonuniform quantiza-
tion methods by 0.5 ~ 1.7% on ImageNet, demonstrating
the contribution of N2UQ design. Code and models are
available at: https://github.com/liuzechun/
Nonuniform-to-Uniform—Quantization.

1. Introduction

Deep Neural Networks (DNNs) have demonstrated great
success in various real-world applications [18, 43]. De-
spite their remarkable results, the large model size and high
computational cost hinder pervasive deployment of DNNSs,
especially on resource-constrained devices. A number of
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Figure 1. (a) Previous nonuniform quantization function outputs
weights and activations in in-equidistant levels, which requires the
post-processing of mapping floating-point levels to binary digits in
order to obtain the speed-up effect of quantization [1, 13,52]. (b)
The proposed N2UQ learns input thresholds to allow more flexibil-
ity, while outputs uniformly quantized values, enabling hardware-
friendly linear mappings and efficient bitwise operations. The in-
tractable gradient computation w.z.z. input thresholds is tackled
with the proposed generalized straight-through estimator (G-STE).

approaches have been proposed to compress and acceler-
ate DNNs, including channel pruning [29, 31], quantiza-
tion [33,49, 52], neural architecture search [0, 45], etc.

Among these methods, quantization-based methods have
shown promising results in compressing the model size by
representing weights with fewer bits, and faster inference
by replacing computationally-heavy convolution operations
with efficient bitwise operations [38,49]. Despite these ad-
vantages, quantized DNNs still have a non-negligible per-
formance gap from their full-precision counterparts, espe-
cially with extremely low-bit quantization. For example,
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the 2-bit classic uniformly quantized ResNet-50 achieves
67.1% top-1 accuracy [52] on ImageNet dataset, a drop of
9.9% compared to a real-valued ResNet-50. This perfor-
mance gap mainly results from the quantization error in rep-
resenting real-valued weights and activations with a limited
number of quantized levels and the inflexibility for uniform
quantizers to adapt to different distributions of input values.

To better fit underlying distributions and mitigate quan-
tization errors, several previous studies proposed nonuni-
form quantization by adjusting the quantization resolution
according to the density of real-valued distribution [48,49].
However, the accuracy improvement of nonuniform quanti-
zation usually comes at the expense of hardware implemen-
tation efficiency [13, 52]. Since the output of the nonuni-
form quantization are floating-point weights and activa-
tions, their multiplication can no longer be directly acceler-
ated by the bitwise operation between binaries [24]. A com-
mon solution to address this issue has been building look-up
tables (LUTs) to map floating-point values to binary dig-
its [16, 48], as shown in Fig. 1(a). This post-processing
incurred by nonuniform quantization costs more hardware
area and consumes additional energy compared to uniform
quantization [1, 13].

The goal of this study is to develop a new quantization
method maintaining the hardware projection simplicity as
uniform quantization and meanwhile offering the flexibility
to achieve the merit on performance of nonuniform quanti-
zation. Despite that it is desirable to enforce a quantizer’s
outputs (i.e., quantized weights/activations) to have uniform
quantization levels in order not to incur additional post-
processing tasks, each of the output levels does not nec-
essarily need to represent an equal range of the real-valued
input. As shown in Fig. 1 (b), we enforce the output quan-
tization levels to be equidistant while learning the thresh-
olds on the input values to incorporate more flexibility in
fitting the underlying real-valued distributions for quanti-
zation. We name this quantizer design as Nonuniform-to-
Uniform Quantizer (N2UQ).

However, it is challenging to optimize such a non-
uniform-to-uniform quantizer, which can automatically
learn to adapt the input thresholds through network train-
ing for higher precision. Because the gradient computation
w.r.t. the threshold parameters is intractable, and cannot
be resolved by the existing gradient estimation method for
quantization, i.e., the straight-through estimator (STE) [2].
STE simply estimates the incoming gradient to a threshold
operation to be equal to the outgoing gradient, which by
definition is unable to incorporate the threshold difference
in training neither to update the threshold with gradients.

To circumvent this challenge, we revisit the earliest
derivation of STE from the stochastic binarization [2] and
derive a novel and more flexible backward approxima-
tion method for quantization. We name it as Generalized

Straight-Through Estimator (G-STE). It degenerates to STE
when all the input intervals are equal-sized, while for the
scenarios that require nonuniform input thresholds, it auto-
matically adapts the thresholds with gradient learning and
provides a finer-grained approximation to the quantization
function. Specifically, G-STE encodes the expectation of
stochastic quantization into the backward approximation to
the forward deterministic quantization functions, which nat-
urally converts the intractable gradient computation w.r.z.
the input threshold parameters to that w.rz. the slopes, and
encodes the influence from input threshold difference to the
remaining network in the backward gradient computation.

Moreover, we propose the weight regularization that
considers the overall entropy in a weight filter to further re-
duce the information loss arising from weight quantization.
We extensively evaluate the effectiveness of the proposed
N2UQ with the collective contributions of the threshold-
learning quantizer via G-STE and the weight regularization
on ImageNet with different architectures and different bit-
width constraints. Under all deployment scenarios, N2UQ
consistently improves the accuracy by a significant margin
compared to the state-of-the-art methods, including both
uniform and nonuniform quantization.

The contribution of this paper includes four aspects:
e We propose Nonuniform-to-Uniform Quantizer (N2UQ)
for improving the quantization precision via learning input
thresholds, while maintaining hardware-friendliness in im-
plementation similar to uniform quantization.
e We propose Generalized Straight-Through Estimator (G-
STE) to tackle intractable gradient computation w.r.t. in-
put threshold parameters in N2UQ. G-STE calculates the
expectation of the stochastic quantization as the backward
approximation to the forward deterministic quantization.
e Based on entropy analysis, we propose a novel weight reg-
ularization considering the overall weight distribution for
further preserving information in weight quantization.
e We demonstrate that even under the strict constraint of fix-
ing the quantized weights and activations to be uniform and
only learning input thresholds, N2UQ exceeds state-of-the-
art nonuniform quantization method with 0.5~1.7% higher
accuracy on ImageNet. Specifically, the 2-bit ResNet-50
model achieves 76.4% top-1 accuracy on ImageNet, re-
ducing the gap to its real-valued counterpart to only 0.6%,
demonstrating the effectiveness of N2UQ design.

2. Related Work

Model compression is a useful technology for deploy-
ing neural network models to mobile devices with limited
storage and computational power [5, 6], and has attracted
increasing attention. Model compression methods can be
categorized into several major categories, including quanti-
zation [33,49,52,55], pruning [ 1,29, 31], knowledge dis-
tillation [19, 42], compact network design [20, 34,41, 50],



etc. This work is mainly focused on quantization.

Quantization can be further classified to uniform quan-
tization [7, 8, 15, 21, 22, 52] and nonuniform quantiza-
tion [28, 36, 48, 49]. Compared to uniform approaches,
nonuniform quantization may achieve higher accuracy be-
cause it can better capture the underlying distributions by
learning to allocate more quantization levels to important
value regions [13]. For example, PoT [36] uses powers-of-
two levels and ApoT [28] further proposed additive powers-
of-two quantization. However, it is typically difficult to
deploy nonuniform quantization efficiently on the general-
purpose hardware [48], e.g., GPU and CPU. Since to ac-
celerate nonuniform quantization with bitwise operations
requires additional operations or designs like look-up ta-
bles (LUTs) for mapping between floating-point quantiza-
tion outputs and their binary digit representations [ 16, 24],
which is less efficient compared to uniform quantization.
Our proposed N2UQ is motivated to combine the merits
of uniform and nonuniform quantization by outputting uni-
formly quantized levels for hardware-friendly implementa-
tion while allowing effective input thresholds learning to fit
the underlying distributions for higher accuracy.

Moreover, the quantization function is intrinsically a dis-
continuous step function and nearly always has zero gradi-
ents w.r.t. inputs. To circumvent this problem, early work
proposed straight-through estimation (STE) [2] for gradient
estimation, which is widely adopted in subsequent quanti-
zation methods [8,12,21,48,49,52,55]. However, STE sim-
ply backpropagates through the hard threshold function as
if it had been the identity function, which is unable to incor-
porate non-linearities in quantizer’s input and output to fit
various distributions. To deal with this restriction, previous
works manually add non-linear functions before and/or after
the STE-based quantizer. For example, LCQ [48] adds com-
pressing and expanding function to STE-based quantizer
to achieve nonuniform quantization. QIL [25] proposes
to learn a power function before the STE-based quantizer
for controlling quantization interval sizes. However, these
methods relying on STE suffer from the discrepancy be-
tween quantizer’s thresholds and nonlinear function’s turn-
ing points [48] or the inflexibility of using a human-defined
smooth function to control all the quantization intervals
with a single power hyper-parameter [25]. To overcome this
limitation, we proposed Generalized Straight-Through Es-
timator (G-STE) to incorporate flexible non-linearity learn-
ing inside the quantizer, as detailed in Sec. 3.

3. Method

In this section, we first briefly introduce the objective of
quantization in Sec. 3.1. Then we present our nonuniform-
to-uniform quantization (N2UQ) in Sec. 3.2 with three com-
ponents: threshold learning quantizer in the forward pass
in Sec. 3.2.1, its backward approximation with Generalized

Straight-Through Estimator (G-STE) in Sec. 3.2.2 and an
additional weight regularization method in Sec. 3.2.3.

3.1. Preliminaries

Matrix multiplication is the most computation-costly op-
eration in deep neural networks. By quantizing the weights
and activations in the convolutional layers and fully con-
nected layers to fixed bits, the matrix multiplication can be
accelerated with bitwise operations [49,52]:
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Here a and w are binary vectors of the quantized acti-
vation a? and quantized weight w?. M and K denote the
number of bits used in representing a? and w9, respectively.
While Eq. | in general holds true for uniform quantiza-
tion, the situation becomes complicated when considering
the nonuniform quantization.

3.2. Nonuniform-to-Uniform Quantization

To sort out the inner mechanism of quantization, we
summarize two properties of the quantizer:
Property 1 (Quantizer’s output). The premise of quantized
network being accelerated with Eq. 1 is that the quantizer’s
output (i.e., quantized weights w? and activations a?) can
be represented in OR mapped to binary digits within the
fixed bits: a? = Zf\ial ;2% wi = Zf;ol ijj [52].

This property is straightforward since Eq. | takes place
between binary vectors. While uniformly quantized a? and
w? can be easily converted to binaries via linear mappings,
it usually requires additional operations [28] or look-up
tables (LUTSs) [16, 48] for encoding ‘n-bit’ nonuniformly
quantized a? and w? to n-bit binary digits, because outputs
of n-bit nonuniform quantizer are actually 2" in-equidistant
floating-point values, as illustrated in Fig. 1. This post-
processing step incurs larger hardware area and more en-
ergy consumption as mentioned in hardware studies [1,23].
Property 2 (Quantizer’s input): The uniformness in input
and output levels of the quantization function ¢ = Fg(z")
can be detached through a proper quantizer design, i.e.,
uniform quantization levels in output 9 do not necessar-
ily need to represent uniform ranges from the input x".

This property originates from the observation that the
quantizer represents real-valued variables =" with several
quantized levels z9, while the quantized levels are fixed, the
real-valued distributions are diverse. Thus, allowing learn-
able thresholds in dividing z" to fixed quantized levels x9
theoretically can incorporate more representational flexibil-
ity for achieving higher precision.



3.2.1 Forward Pass: Threshold Learning Quantization

Based on these two properties, we develop nonuniform-to-
uniform quantizer (N2UQ) for activation quantization, with
its forward pass formulated as:

0 " <Ty
2 — 1 T <a2" <1y (2)
2" —1 " > Ton_q

where n is the number of bits, 7" represents learnable thresh-
olds, and x", x9 represent the input real-valued variables
and the output quantized variables, respectively. The goal
of N2UQ is to encode threshold learning in the quantizer
to allow more flexibility, while output uniformly quantized
weights and activations to accommodate fast bitwise opera-
tions without the post-processing step between quantization
and matrix multiplication.

3.2.2 Backward Pass: Generalized Straight-Through
Estimator (G-STE)

However, backpropagating through Eq. 2 is difficult be-
cause: (I) The derivatives of Eq. 2 w.r:t. input z, are al-
most zero everywhere. (II) The gradient calculation w.rt.
threshold parameters is intractable.

For challenge (I), previous quantization works adopt
straight-through estimator (STE) to approximate the back-
ward gradients in the quantization functions [8,21, 30, 46,

,52]. STE simply assigns the incoming gradients to a
threshold operation to be the outgoing gradients:
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ables in [*" layer, respectively. This simple approximation
function works well for uniform quantizers. However, STE
implicitly enforces the equal axis aspect ratio in the input
and output intervals of the quantizer because it regards the
quantization function as an identity function in the back-
ward pass. This obstacles the quantizer design from allow-
ing learnable input thresholds while fixing the output levels.
Moreover, STE cannot deal with challenge (II), gradient
computation w.r.. learnable thresholds since STE basically
just bypasses the gradients as if the quantization function
does not exist. Thus, to come up with a finer-grained and
more flexible backward approximation that can tackle the
gradient computation w.rt. input thresholds, we revisit STE
in stochastic binarization and derive the proposed General-
ized Straight-Through Estimator (G-STE).

Lemma 1. [In binarization, straight-through estimation
(STE) for gradient approximation to the forward determin-
istic binarization function can be derived from the expecta-
tion of the stochastic binarization function [21].

t

x?, and 27, denote the i'" quantized / real-valued vari-

The concept of stochastic binarization and determinis-
tic binarization are first proposed in [2, 9, 10]. In stochas-
tic binarization, real-valued variables are binarized to —1/1
stochastically according to their distances to —1/1:

o
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’ 1 with probability p = clip(* 24,0, 1)

where EE?’Z denotes the stochastic binary variables. To up-
date W;;; (weights in layer [ connecting neuron j in layer
[ — 1 to neuron ¢ in layer [), the expected gradients through
the stochastic binarization function are computed:
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where E, E%lgl and E /3, are respectively, the expectation
over the whole network, only the stochastic binary vari-
ables and other parts except the stochastic binary variables.
Specifically,
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This arrives at the common straight-through estimator for
the binarization functions [3, 38, 53], which transmits the
gradients identically near the threshold and disregards the
gradients when the real-valued inputs are too far from the
threshold (i.e., " > 1 or z" < —1). Meanwhile, the
widely-adopted deterministic binarization function in for-
ward pass [4,9,30,32,33] can be attained via setting a hard
threshold on the probability (i.e., p = 0.5) in Eq. 4:

o, = { L P@ =1y > 05 { —L e <0 o
bl 1 p{ii),L:*l} < 0.5 1 x;‘,l 2 0
To this end, we show that STE encodes the expectation of
stochastic binarization in the backward approximation to
the forward deterministic binarization functions.
Lemma 2. A quantization function x? can be regarded
as a summation of binarization functions x° with different
thresholds: x9 = xé’hrel + xfhrez + ...+ xfhre".

This lemma is self-evident, as illustrated in Fig. 2 (b).
From here, we extend the concept of stochastic binarization
to quantization for deriving G-STE to solve the threshold
learning problem in nonuniform-to-uniform quantizer.

We start with the first quantization segment. We denote
the initial point as s and its length as a;. For simplifica-
tion, we omit the subscripts here. Following the concept
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Figure 2. (a) The deterministic binarization function and straight-
through estimation (STE) as the backward approximation. (b)
Quantization can be viewed as a summation of segments of
binarization functions, which derives the proposed generalized
straight-through estimator (G-STE).

of stochastic binarization, in the range of [s, s + a1], real-
valued variables can be quantized to 0/1 stochastically with
the probability proportional to their distance to s/s + ay:

., ()

0 with probability p=clip(2+t@=2" 0, 1)
5‘1{0.1} — N ai
1 with probability p=clip(¥—==2,0,1)

ay

90,1} is the stochastic quantization output within this seg-
ment. Similar to Eq. 6, the derivation of this quantization
segment can be computed from the expectation of Eq. 8:

gFeon 9
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In this way, the influence of the threshold parameter a; to
the network is decently encoded in the backward approx-
imation function Eq. 9 by altering the slopes. Further in
the forward pass, instead of using stochastic quantization
which requires random seeds generating process [44], de-
terministic quantization are adopted and derived by setting
the probability threshold to be p = 0.5,

. (10)

01} — 0 P{za=0} > 0.5 _ 0 z'<s+ %
1 piza—oy <05 1 2">s+ %

Likewise, the forward deterministic quantization functions
and the corresponding backward approximation functions
for the remaining segments can be obtained from this prob-
abilistic sense. Then, the nonuniform-to-uniform quantizer
with its backward approximation for n-bit quantization can

be naturally derived by summing up 2™ —1 segments, as il-
lustrated in Fig. 2. We name this proposed backward gradi-
ent approximation method as Generalized Straight-Through
Estimator (G-STE) and obtain the following theorem.
Theorem 1 Generalized straight-through estimator:
Ox? 0z 0 iy
oxm E[axr] N 8xTE[£ ]
o (Edmt i 1) dig <ot <d; (1)

a
= ie{1,...,2n—1}

b

0 otherwise

as the backward gradient approximation function to an n-
bit nonuniform-to-uniform quantizer:

0 " <dy + %
ali darg<rcdes

ie{1,....2n—2}

2" —1 " > don_o + Lg_l

tackles the threshold learning problem by using the ex-
pectation of the stochastic version of the nonuniform-to-
uniform quantizer as its backward approximation. Here
do = S, d; = s+ 23:1 aj, RS {1, ey 2™ — 1}

The essence of the nonuniform-to-uniform quantizer
with G-STE backward approximation is to encode the mean
of stochastic quantization in the backward approximation
function while having deterministic quantization function
with hard thresholds in forward pass. This helps assimi-
late the influence of threshold parameters of forcing outputs
into particular values in the forward pass into approximat-
ing the squeezed or expanded probability of quantization in
the backward pass, in which the influence of the threshold
parameters a; to the remaining neural networks is reflected
in the slopes of the backward function. In turn the gradients
w.r.t. threshold parameters can be easily computed as,

—redien g <t < d

aj

83:‘1 _ aE[Z‘q] _ _a%_ d_j—l < xT < dj ) (13)
Oa; Oa; jefi+l,...,.2n—1}
0 otherwise

We can see that, when all the intervals are equal-sized,
G-STE degenerates to STE, while during training it learns
to automatically adjust the input thresholds with the gradi-
ents calculated from the network. Specifically, the output
levels are scaled to {0,2/(2"—1),...,2}. We additionally
apply two learnable scaling parameters (1, 32 for scaling
the input =" before the quantization: x" := z" x p; and
the output 27 after the quantization: x9 := z9 X 5. 1, P2
are initialized to 1, a; are initialized to 2/(2™ —1) and en-
forced to be positive. The proposed nonuniform-to-uniform
quantizer introduces only 2™ + 2 extra parameters per layer
compared to a classical uniform quantizer, which is negligi-
ble considering the large number of network weights.



3.2.3 Entropy Preserving Weight Regularization

Further, we propose weight regularization to encourage
more information-carrying capacity in quantized weights.
An important observation is that weights in real-valued net-
works are usually small in magnitude, e.g, ~ 10~2 for
weights in a pre-trained ResNet-18 network, but the quan-
tized weights usually expand in the range of [—1,1]. This
mismatch in magnitude will cause quantized weights to col-
lapse to a few quantization levels close to zero. The classic
solution is using a tanh function and dividing the maximum
absolute weight value to rescale weights to [—1, 1] [52].
However, these rescaled weights are likely to be dominant
by a few extrema and still not fully occupy the range of
[—1, 1], as will further be illustrated in Fig. 3, which causes
a huge information loss.

From the perspective of information theory, more in-
formation are preserved when quantized weights con-
tain higher entropy. Thus, we are motivated to regular-
ize the real-valued weights before the quantizer to ob-
tain maximal entrojey in quantized weights: max H =
—p;log(pi),s.t.> ;- pi = 1. Here p; is the proportion
of real-valued weights being quantized to i*" quantization
level and N is the number of quantization levels in total.
Based on the Lagrange multiplier, it is easy to obtain the
optimal p} = %7 i € {1,2,..., N}, meaning that, when
the proportions of real-valued weights being quantized to
multiple quantization levels are equal, the information en-
tropy in the quantized weights reaches its maximum value.

Given the quantization function Fyp = round((clip(
w”,~1,1) +1) x ) x 72 — 1, we empirically solve

. . /
that when real-valued weights are normalized to W™ =
2(n71) ‘WTI
2n—1 Wl

wd = FQ(wT/7 n) are approximately uniformly distributed
in all quantization levels. Here, W7 is the real-valued
weight filter, || denotes the number of entries in W".
Different from activations that are generated from images
and vary from batch to batch, weights are static parame-
ters that have high flexibility to adjust each of their val-
ues. Therefore, instead of learning the threshold parame-
ters to determine all the quantized weights values, we adopt
equidistant thresholds for weight quantization, letting each
weight individually learn its value and scale the weights
based on the overall statistics. More details of the deriva-
tion can be found in Appendix.

W, the corresponding quantized weights

4. Experiments

To verify the effectiveness of the proposed Nonuniform-
to-Uniform Quantization (N2UQ), we conduct experiments
on the ImageNet dataset. We first introduce the dataset and
training strategy in Sec. 4.1, followed by the comparison to
state-of-the-art quantization methods in Sec. 4.2. We then

analyze the effect of each proposed component of N2UQ in
Sec. 4.3. Visualization results on how N2UQ captures fine-
grained underlying distributions are presented in Sec. 4.4.

4.1. Experimental Settings

Dataset The experiments are carried out on the ImageNet-
2012 classification dataset [39], with 1.2 million training
images and 50, 000 validation images in 1000 classes.
Training Strategy We follow the training scheme in [12,
,48,52] to use real-valued PyTorch pre-trained models
as initialization for corresponding quantized networks. We
use Adam optimizer [26] with a linear learning rate decay
scheduler. The initial learning rate is set to 2.5e — 3 for
weight parameters and batch size is set to 512. We set
weight decay to be 0 following [32, 33]. The models are
trained for 128 epochs with the same knowledge distillation
scheme as LSQ [12]. We adopt the basic data augmentation
as ResNet [18]. Training images are randomly resized and
cropped to 224 x 224 pixels and randomly flipped horizon-
tally. Test images are center-cropped to 224 x 224 pixels.
For fair comparison, the floating-point (FP) model results
reported in Table 1 are initialized and fine-tuned with the
same settings as quantized models.
Learnable Parameters For the learnable parameters, s are
initialized to 0, a; are initialized to 2 /(2™ —1) and enforced
to be greater than le—3. The learnable scaling parameters
f1, B2 are initialized to 1. All these learnable parameters
use 1/10 of the learning rate as that for weight parameters.
Network Structure We adopt Pre-Activation structures
(i.e., NonLinear-Conv-BN structure) and use RPReLLU [32]
as non-linear function. All convolution and fully-connected
layers are quantized with N2UQ except for the first and the
last one.

4.2. Comparison with State-of-the-Art Methods

Table |1 summarizes the accuracy of the proposed N2UQ
on ResNet. Compared to uniform quantization, N2UQ al-
lows more flexibility in learning input thresholds, and the
results demonstrate that N2UQ surpasses uniform meth-
ods [8,12,15,52] by a large margin. Moreover, the accu-
racy improvements become more significant with larger bit-
width, as more flexibility can be incorporated with thresh-
old learning. For nonuniform quantization, the state-of-the-
art method LCQ [48] intrinsically uses the same quantizer
as the classic uniform quantizer [8, 52] and learns two ad-
ditional non-linear functions to reshape the real-valued in-
put and quantized output. Instead, the proposed N2UQ
completely integrates the non-linearity learning inside the
quantizer, which avoids the discrepancy between the non-
linear functions’ turning points and the quantizers’ thresh-
olds. Thus, the proposed N2UQ achieves up to 1.7% higher
accuracy than LCQ, showing that N2UQ is well designed
to incorporate threshold learning into the quantizers for



Table 1. Accuracy comparison to the state-of-the-art quantization methods with ResNet structure on ImageNet dataset. Note that W/A
denote the bit-width of weights and activations, respectively. FP denotes the top-1 accuracy of the full-precision models.

Bit-width Accuracy(%) Bit-width Accuracy(%) Bit-width Accuracy(%)

Network Method (W/A) Top-1 Top-5 (W/A) Top-1 Top-5 (W/A) Top-1 Top-5
PACT [7] 22 644 856 33 681 882 44 692 890
DoReFa-Net [52]  2/2 647 844 33 675 8.6 44 681 88.1
LQ-Nets[49]  2/2 649 859  3/3 682 879 44 693 8838

DSQ[15] 2w 652 - 33 687 - 44 69.6 889

FAQ [35] - - - - - - 44 698 89.1

ResNet-18  QIL [25] 2 657 - 33 692 - 44 7001 -
(FP:71.8)  DAQ[27] 2 669 - 33 696 - 44 705 -
DNAS [46] - - - - — = 4~ 706 -

APOT [28] 22 673 875 33 699 892  4/4 707 89.6

LSQ[12] 22 676 876 33 702 894 44 711 900

LCQ [48] 22 689 - 33 706 - 44 715 -

N2UQ (Ours) 272 69.4 884 3/3 719 905 4/4 729 90.9
LQNets [10] 22 698 891 33 719 902 - -

DSQ[15] 22 700 - 33 725 - 44 T28 -

FAQ [35] - - - - - - 44 733 913

QIL [25] 2w 706 - 33 731 - 44 T3 -

?;;N;*Zg‘; APOT [28] 22 709 897 33 734 911 44 738 916
s DAQ [27] 2w 710 - 33 731 - 44 T3 -
DNAS [46] - - - - R VA7 R ZY .

LSQ[12] 22 716 903 33 734 914 44 741 917

LCQ [48] 2w 27 - 33 740 - 44 743 -

N2UQ (Ours) 272 733 912 33 752 923 4/4 760 928
DoReFa-Net [50] 272 67.1 873 33 699 892  4/4 714 898
LQ-Nets [49] 22 715 903  3/3 742 916  4/4 751 924

FAQ [35] - - - - - - 44 763 930

ResNerso  PACTIE] 22 722 905 33 753 926 44 765 932
Ep:770)  APOTL] 22 734 914 33 758 927 44 766 93.1
S LSQ[12] 22 737 915 33 758 927 44 767 932
Auxi [54] 22 738 914 33 754 924 - - -

LCQ [48] 2 7501 - 33 763 - 44 766 -

N2UQ (Ours) 272 758 923 33 775 93.6 44 780 939

Table 2. Accuracy comparison with MobileNet structure.

Network Method  Topl Acc (%) TopS Acc (%)
DSQ [15] 64.8 -
MobileNet-V2 LLSQ[51] 674 88.0
(EP: 72.0) LCQ [48] 70.8 89.7
T PROFIT [37] 71.6 90.4
N2UQ(Ours) 72.1 90.6

higher flexibility and better performance. Moreover, com-
pared to nonuniform quantization, N2UQ not only saves
the parameters by fixing the output levels, but also results
in uniformly quantized weights and activations for comput-
ing the quantized matrix multiplication, which prevents the
post-processing step of building look-up tables (LUT