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Figure 1. We propose a feature matching method for rigid (left) and deformable (right) point clouds that are captured by range sensors. Re-
sults shown are the initial alignment, the predicted matches (blue/red lines indicate inliers/outliers), and the registration results. Registration
is done by RANSAC for rigid and non-rigid ICP for deformable.

Abstract

We present Lepard, a Learning based approach for
partial point cloud matching in rigid and deformable
scenes. The key characteristics are the following techniques
that exploit 3D positional knowledge for point cloud match-
ing: 1) An architecture that disentangles point cloud repre-
sentation into feature space and 3D position space. 2) A
position encoding method that explicitly reveals 3D rela-
tive distance information through the dot product of vec-
tors. 3) A repositioning technique that modifies the cross-
point-cloud relative positions. Ablation studies demon-
strate the effectiveness of the above techniques. In rigid
cases, Lepard combined with RANSAC and ICP demon-
strates state-of-the-art registration recall of 93.9% / 71.3%
on the 3DMatch / 3DLoMatch. In deformable cases, Lep-
ard achieves +27.1% / +34.8% higher non-rigid feature
matching recall than the prior art on our newly constructed
4DMatch / 4DLoMatch benchmark. Code and data are
available at https://github.com/rabbityl/lepard.

1. Introduction

Matching partial point clouds from range sensors lies at
the core of many 3D computer vision applications includ-
ing SLAM and dynamic tracking and reconstruction. The
former assumes rigid scenes, e.g. [28, 47], while the latter
focuses on scenes that are non-rigidly deforming, e.g. [46].
This work aims at developing a robust point clouds match-

ing method for both rigid and deformable scenes.
Point cloud matching methods often consist of two

phases: point cloud feature extraction followed by nearest
neighbor search in feature space. Recent learning-based
works have made substantial progress for representation
learning in 3D data. State-of-the-art point clouds match-
ing approaches [6,14,26] employ the geometry features ex-
tracted by 3D convolutional networks, such as the KPConv-
based [63] or the Minkowski Engine [13]. These 3D feature
extractors are strictly translation invariant, and, to a certain
extent, also invariant to rotation transformations given the
commonly adopted max-pooling layers in the networks and
random rotation-based data augmentation during training.

Transformation invariance is well suited for local geom-
etry feature representation. However, it may cause ambi-
guity in scenes that have repetitive geometry patterns. For
instance, the same kind of chairs scattered in different lo-
cations of a floor, or left and right hands of a human could
yield similar geometry features. We argue that such ambi-
guity can be resolved by enhancing geometry features with
the 3D positional knowledge. Intuitively, humans associate
things across observations by referring to not only things’
appearance but also their relative locations.

Motivated by the above observations, we design Lepard,
a novel partial point clouds matching method that exploits
3D positional knowledge. We first build our baseline us-
ing the fully convolutional feature extractor KPFCN [63],
the concept of Transformer [65] with self and cross atten-
tion, and the idea of differentiable matching [55, 62]. Then,
to leverage 3D position information, we introduce the fol-
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lowing techniques: 1) A framework that fully disentangles
the point cloud representations into a features space and
a position space. 2) A position encoding method that ex-
plicitly reveals 3D relative distance information through the
dot product of vectors. 3) A repositioning module that ad-
justs the cross-point-cloud relative positions which benefits
cross attention and differentiable matching. Ablation stud-
ies demonstrate the effectiveness of the above techniques.

In addition, we propose a partial point cloud match-
ing benchmark called 4DMatch, and its low overlap ver-
sion 4DLoMatch. 4DMatch contains point clouds that are
non-rigidly deforming across the time axis. Compared to
the rigid situations, the time-varying geometry in 4DMatch
poses more challenges for both matching and registration.

We apply Lepard for both rigid and deformable point
cloud matching. In rigid cases, Lepard combined with
RANSAC and ICP demonstrates state-of-the-art registra-
tion recall of 93.9% / 71.3% on the 3DMatch / 3DLoMatch.
On the newly proposed 4DMatch and 4DLoMatch bench-
marks, Lepard achieves +27.1% and +34.8% higher non-
rigid matching recall than the prior art.

2. Related work

2.1. Rigid Point Cloud Matching and Registration

Local descriptors prediction followed by the robust
RANSAC-based [24, 57] optimization is a long-studied ap-
proach. Early works employ hand engineered descrip-
tors [29,53,54,64]. Recent learning-based approaches have
made significant progresses for point feature representa-
tion [1, 6, 14–16, 18, 19, 21, 26, 30, 32, 39, 66, 71, 74, 76].
3DMatch [76] made the first attempt to extract descriptors
using the siamese network. FCGF [14] leverages the fully
convolutional network [41] structure for dense feature ex-
traction. D3feat [6] jointly learns feature description with
point saliency detection. Predator [26] adopts the attention
mechanism to predict overlapping regions for feature sam-
pling. CoFiNet [74] learns feature descriptors in a coarse-
to-fine manner.

Another line of research focuses on direct registration.
ICP [8] and FGR [77] optimize the pose using second-
order gradients. Go-ICP [72] achieves global registration
with a SE(3) space searching schema. Recent works in-
corporate learned models into end-to-end pose optimiza-
tion [2, 12, 34, 44, 49, 70, 73]. PointNetLK [2, 34] formulate
point cloud registration as a Lucas Kanade-based [7] opti-
mization task; Wang et al. [67,68] learn registration through
graph neural networks. DGR [12] and 3DRegNet [49] learn
correspondence weighting networks to reject outliers.

This paper is about enhancing the point cloud feature
descriptors with 3D positional knowledge.

2.2. Non-Rigid Correspondence

Estimating non-rigid correspondence from real-world
sensor data is a key task for online non-rigid recon-
struction [10, 20, 27, 37, 46]. DynamicFusion [46] em-
ploys the simple projective correspondence for real-time
efficiency. VolumeDeform [27] incorperates SIFT [42]
descriptor-based correspondence for robust non-rigid track-
ing. Schmidt et al. [56] uses DynamicFusion to super-
vise a siamese network for dense correspondence learning.
DeepDeform [10] learns sparse global correspondence for
patches in non-rigid deforming RGB-D sequences. Li et
al. [35] learns non-rigid features through a differentiable
non-rigid alignment optimization. NNRT [9] focuses on
end-to-end robust correspondence estimation with an out-
lier rejection network. Scene flow estimation, e.g. [33, 40,
50,69], is a closely related technique which usually delivers
inter-frame level correspondence.

Non-Rigid correspondence is also a major topic in ge-
ometry processing where the input data are usually mani-
fold surfaces. Huang et al. [25] filters outliers using isomet-
ric deformation assumption. 3DCODED [22] achieve shape
correspondence through latent code optimization. Func-
tional map [48] have been proposed to produce shape cor-
respondence in [4, 17, 43, 52].

This paper is about developing a general non-rigid fea-
ture matching method for partial point cloud scans.

3. Problem Definition

Given a source point clouds S ∈ Rn×3 and a target
point cloud T ∈ Rm×3, where n,m are the number of
points, our goal is to find a set of matches K, which can
be used to recover the warp function W : R3 7→ R3 that
aligns S to T. In this paper, we focus on both rigid and
deformable point clouds. In rigid cases, the warp func-
tion W is parameterized by a SE(3) transformation. In
deformable cases, W is generalized to the dense per-point
warp field. Given the ground truth warp function Wgt, an
inlier match (Si ∈ R3,Tj ∈ R3) ∈ K should satisfies
||Wgt(Si)−Tj ||2 < σ, where || · ||2 is the Euclidean norm,
and σ is the tolerance radius for a match.

Partial Overlap. In real-world range sensor data, due to
object motion or viewpoint change, a point in S does not
necessarily have a corresponding point in T. This is re-
ferred to as a non-overlapping point. We define the set of
overlapping points OT

S for the source point cloud by:

OT
S = {Si|Si ∈ S ∧ ||Wgt(Si)−NN(W(Si),T)||2 < σ}

where NN(·, ·) is the nearest neighbor search operator. Then
the overlap ratio can be calculated by |OT

S |/|S|. Fig. 4
shows examples of non-rigid point clouds pairs with dif-
ferent overlap ratio.
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Figure 2. Overview of the proposed method. (The symbols are : Positional encoding function Θ(·); : Rigid 3D transformation; :
Matrix-vector multiplication; : Source and target). Given the input point cloud S and T, the KPFCN backbone grid-subsample them to
Ŝ and T̂, and extract geometry features xŜ and xT̂ (Sec. 4.1). The positions informations are encoded as Θ(Ŝ) and Θ(T̂) using the 3D
relative positional encoding function (Sec. 4.2). The position codes and geometry features are then processed by the first TMP layer which
includes a Transformer block with self and cross attentions (Sec. 4.3), a differentiable Matching layer (Sec. 4.4), and a soft Procurestes
layer to estimate the rigid fitting R, t (Sec. 4.6). Based on the rigid fitting estimation, the Repositioning layer adjusts source’s position
code Θ(Ŝ) (Sec. 4.7). Given the updated positions and transformed features, the second TMP layer predicts the final matches.

4. Method

Fig. 2 shows the overview of the proposed method.

4.1. Local geometry feature extraction

Given the input source and target point clouds S and
T, We use the function Φ to extract multi-level geometry
features. Φ does the following two mappings:

(Ŝ,xŜ) = Φ(S), (T̂,xT̂) = Φ(T)

Where Ŝ ∈ Rn̂×3 and T̂ ∈ Rm̂×3 are the output point
clouds, xŜ ∈ Rn̂×d and xT̂ ∈ Rm̂×d are the extracted fea-
tures with dimension d = 528.

We build Φ based on the KPFCN backbone [63].
KPFCN possesses the inductive bias of translation equivari-
ance and locality, which are well suited for local geometry
feature extraction. The default KPFCN has an UNet-like
structure with the same number of pooling/un-pooling lay-
ers in the encoder/decoder. We remove the decoder units
after the 2nd to the last un-pooling layer from the KPFCN
backbone. Thus the output Ŝ and T̂ are the down-sampled
point clouds. See supplementary for details. This down-
sampling is crucial for efficient computation in the follow-
ing transformer (Sec. 4.3) and matching ((Sec. 4.4) layers,
where the time complexity are bothO(n2) of the number of
points.

4.2. Relative 3D Positional Encoding

The KPFCN backbone learns strict translation invari-
ant features. Translation invariant could cause ambiguity in
scenes that have symmetric structures or globally repetitive
geometry patches. To resolve such ambiguity, we enhance
features with the transformation sensitive 3D positional in-
formation.

We use the Rotary positional encoding proposed in [60]
and extend it to the 3D case. Given a 3D point Si =
(x, y, z) ∈ R3, and the it’s feature xS

i ∈ Rd. The position
encoding function PE : R3 × Rd 7→ Rd is defined by

PE(Si,x
S
i ) = Θ(Si)x

S
i =


M1

M2

. . .
Md/6

 xS
i

where Θ(Si) is a block diagonal matrix. Each diagonal
block with size 6× 6 is defined by

Mk =


cosxθk − sinxθk 0 0 0 0
sinxθk cosxθk 0 0 0 0

0 0 cos yθk − sin yθk 0 0
0 0 sin yθk cos yθk 0 0
0 0 0 0 cos zθk − sin zθk
0 0 0 0 sin zθk cos zθk


where θk = 1

100006(k−1)/d , k ∈ [1, 2, .., d/6] encodes the index in
the feature channel.

Compared to the Sinusoidal encoding [11,65], it has two
advantages: 1) Θ(·) is an orthogonal function, the encod-
ing only changes the feature’s direction but not the fea-
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Figure 3. Visualization of self/cross attention heat maps and the rigid fitting based repositioning. In the 2nd TMP layer, self-attention
expands to cover larger context, and cross attention converges to the corresponding region.

ture’s length, which could potentially stabilize the learn-
ing process. 2) The dot product of two encoded features
〈PE(Si,x

S
i ),PE(Sj ,x

S
j )〉 can be derived to:

[Θ(Si)x
S
i ]TΘ(Sj)x

S
j = (xS

i )TΘ(Sj − Si)x
S
j (1)

which means the relative 3D distance information can be
explicitly revealed by the dot product. We adopt this po-
sitional encoding in both the transformer (Sec. 4.3) and
matching (Sec. 4.4) layers. The comparison with Sinusoidal
encoding can be found in Sec. 6.1.

4.3. Transformer

After the local geometry extraction, xŜ and xT̂ are
passed through the transformer block with a self attention
layer to aggregate the global context, followed by a cross
attention layer to exchange information between two point
clouds. Following [65], the attention operation selects the
relevant information by measuring the similarity between
the query vector q, and the key vector k. The output vector
is the sum of the value vector v weighted by the similarity
scores.

Self Attention Layer. In self attention layer, q and (k,v)
are obtained from the same point clouds (either from source
or the target). Below shows the example of self attention for
the source Ŝ. The vectors q,k,v are first computed by

qi = Θ(Ŝi)WqxŜ
i kj = Θ(Ŝj)WkxŜ

j vj = WvxŜ
j (2)

whereWq,Wk,Wv ∈ Rd×d are learnable projection matri-
ces. The feature xŜ

i is finally updated by

xŜ
i ← xŜ

i + MLP(cat[qi,
∑
j

aijvj ]) (3)

where aij = softmax(qik
T
j /
√
d) is the attention weight,

MLP(·) denotes a 3-layer fully connected network, and
cat[·, ·] is the concatenation operator.

Cross-Attention Layer. In cross-attention layer, the input
vectors q and (k,v) are obtained from different point clouds
depending on the direction of cross-attention (Ŝ → T̂ or
T̂ → Ŝ ). After replacing the contents for q, k, and v, the
formations are the same with self attention.

4.4. Position Aware Feature Matching

After the transformer layer, we compute the scoring ma-
trix S between two point clouds as

S(i, j) =
1√
d
〈Θ(Ŝi)WŜxŜ

i ,Θ(T̂j)WT̂xT̂
j 〉 (4)

where WŜ,WT̂ ∈ Rd×d are learnable projection matrices.
The features are position-encoded such that the matching al-
gorithm could take the spatial distance into account. We ap-
ply softmax on both dimensions (kown as the dual-softmax
operation [51, 62]) to convert the scroing matrix to confi-
dence matrix C.

C(i, j) = Softmax(S(i, ·)) · Softmax(S(·, j))

Another option for matching is the sinkhorn optimal trans-
port algorthm as in [55]. The comparison can be seen in
Sec. 6.1.

Match Prediction. Based on the confidence matrix C,
we select matches with confidence higher than a thresh-
old of θc, and further enforce with mutual nearest neighbor
(MNN) criteria. The influence of θc can be found in the
supplemental ablation study.

4.5. Disentanglement between Position and Feature.

As shown in Fig. 2, we hold the position code and geom-
etry features in separated data streams. They are combined
only when a similarity matrix needs to be computed. In the
transformer layers (c.f. Eqn. 2 and 3), position code Θ(·)
is only multiplied to query q and key k but not to the value
v, i.e. Θ(·) can influence the attention weights but can not
be a part of the feature. This technique leads to the Disen-
tanglement between position and feature. Opposed to this
is regarded as Entangled, which does not hold separate data
streams for position and feature, i.e. they are mixed at the
very beginning of the transformer. The comparison is seen
in Sec. 6.1.

4.6. Rigid Fitting With Soft Prucrustes

Given the the confidence matrix C, we select the matches
setKsoft with top n̂matching scores, and then fit them with
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a rigid rotation R ∈ SO3 and translation t ∈ R3 . Here n̂ is
the number of points in the source cloud Ŝ. Following [3],
the rotation is computed from the SVD decomposition of
the matrix H = UΣV T . H ∈ R3×3 is obtained with:

H =
∑

(i,j)∈Ksoft

C̃(i, j)ŜiT̂T
j

where C̃(i, j) is the normalized confidence score. Then the
rotation and is computed by

R = Udiag(1, 1, det(UV T ))V

Then the translation is obtained with

t =
1

|Ksoft|
(

∑
(i,·)∈Ksoft

Ŝi −R
∑

(·,j)∈Ksoft

T̂j)

4.7. Repositioning

The position encoding in Eqn. 1 can reveal 3D relative
distance information between a pair of points. However,
this distance knowledge is often incorrect for point pairs
from two unaligned point clouds. In other words, this posi-
tion encoding benefits self-attention but may become irrel-
evant or noisy signals for cross-attention and matching. To
this end, we adjust the position code Θ(Ŝi) of Ŝ with the
rigid fitting R, t from the soft Procrustes layer by

Θ(Ŝi)← Θ(RŜi + t)

We call it as repositioning. An example is shown in Fig. 3.
Intuitively, repositioning pushs corresponding points closer
in the position space such that it better informs cross atten-
tion and also facilitates position aware matching.

4.8. Supervision

Matching Loss. We minimize the focal loss over the confi-
dence matrix C returned by the matching layer. It is defined
as:

Lm = − 1

|Kgt|
∑

(i,j)∈Kgt

α(1− C(i, j))γ log C(i, j)

where α = 0.25 and γ = 2 are empirically decided focal
loss parameters as in [38], andKgt is the set of ground-truth
matches. During training, we warp Ŝ to T̂ using the ground-
truth wrap functionWgt, and then collect the set of mutual
nearest neighbors of the two-point clouds that are below a
distance threshold as Kgt.

Warping Loss. We minimize the L1 loss for the point
clouds that is warped by the R,t from the Procrustes layer.
It is defined as

Lw =
1

|OT̂
Ŝ
|

∑
i∈OT̂

Ŝ

|Wgt(Ŝi)−RŜi − t|

where OT̂
Ŝ

is the set of overlapping points in Ŝ, andWgt(·)
is the ground truth warp function. Intuitively, in rigid
cases, Lw regularizes the optimization by suppressing false-
positives in Ksoft and also encourages sub-point accuracy
for soft correspondences; in deformable cases, Lw tries to
approximate a “root” pose that aligns the principal part of
the overlapping region, e.g. the deer in Fig. 3.

Total Loss. As shown in Fig. 2, the Transform-Matching-
Procrustes (TMP) block repeats two times. The total loss
combines the matching loss and warpping loss from the 1st
and 2nd TMP blocks: L = (L1

m + L2
m) + λw(L1

w + L2
w)

where λw is the weighting factor of warpping loss. We show
ablation study for λw and the number of TMP blocks (2, 3,
and 4) in supplementary.

5. 4DMatch
We propose 4DMatch, a benchmark for matching and

registration of partial point clouds with time-varying ge-
ometry. 4DMatch is constructed using the sequence from
DeformingThings4D [36] which contains 1,972 anima-
tion sequences with ground truth dense correspondence.
We randomly select 1761 animations and generate partial
point cloud scans by synthesizing depth images. The se-
lected 1761 sequences are divided into 1232/176/353 as
train/valid/test sets. Point cloud pairs in the 353 testing se-
quence are eventually split into either 4DMatch or 4DLo-
Match based on an overlap ratio threshold of 45%. Fig. 4

Figure 4. Examples in 4DMatch/4DLoMatch with different over-
lap ratio. Overlap ratio is computed relative to the source (Blue).
Partial overlap is the joint effect of scene deformation and camera
viewpoint change.

Figure 5. Histogram of the 4DMatch and 4DLoMatch benchmark.
The overlap ratio threshold is set to 45%.
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Figure 6. Qualitative rigid point cloud registration results in 3DLoMatch benchmark. We use T-SNE to reduce the feature dimension
to 3 and then normalize it to [0, 255] as RGB values. We propagate our output feature Θ(Ŝi)WŜx

Ŝ
i and Θ(T̂j)WT̂x

T̂
j as in Eqn. 4

to the raw point clouds via interpolation as Eqn. 6. The feature visualization shows that our approach learns a position-aware feature
representation and also accurately reflects the inter-fragment relative position.

Figure 7. Qualitative deformable point cloud matching results in 4DMatch benchmark. Blue/red lines indicate inliers/outliers. In this
example, the “Flying Dragon” has a bilateral symmetric shape. T-SNE feature visualization shows that Predator [26] learns similar features
for the two wings of the dragon, while our method can discriminate between the left and right wings.

shows examples of point cloud pairs with different overlap
ratios. Fig. 5 is the histogram of overlap ratio. The follow-
ing shows the evaluation metrics for 4DMatch.
Inlier ratio (IR). IR measures the fraction of correct
matches in the predicted correspondences set Kpred. A
match is correct if it lies within a threshold σ = 0.04m af-
ter the transformation using the ground truth warp function
Wgt. It is defined as

IR =
1

|Kpred|
∑

(p,q)∈Kpred

[
||Wgt(p)− q||2 < σ

]
(5)

where || · ||2 is the Euclidean norm and [·] is the Iverson
bracket.
Non-rigid Feature Matching Recall (NFMR). NFMR
measures the fraction of ground-truth matches (u ∈
R3,v ∈ R3) ∈ Kgt that can be successfully recovered
by the predicted correspondences (p ∈ R3,q ∈ R3) ∈
Kpred. Based on Kpred, a sparse 3D scene flow filed
F = {q − p|(p,q) ∈ Kpred} for the set of anchor points
A = {p|(p,q) ∈ Kpred} are constructed. Then the flow
field F is propagated from A to a source point u in Kgt
using the inverse distance interpolation

Γ(u,A,F) =
∑

Ai∈knn(u,A)

Fi||p−Ai||−12∑
Ai∈knn(u,A) ||u−Ai||

−1
2

(6)

where knn(·, ·) denotes the k-nearest neighbors search with
k = 3. Finally, we define NFMR as

NFMR =
1

|Kgt|
∑

(u,v)∈Kgt

[
||Γ(u,A,F)− v||2 < σ

]
Note that NFMR directly measures the fraction of ground-
truth correspondences that are “recalled”. It is a different
concept from the Feature Matching Recall (FMR) in the
rigid case [76].

6. Experimental Results

3DMatch and 3DLoMatch. 3DMatch [76] and 3DLo-
Match [26] are a benchmark of indoor rigid scan matching
and registration. 3DMatch contains scan pairs with overlap
ratios greater than 30%, while 3DLoMatch contains scan
pairs with overlap ratios between 10% and 30%. Following
previous works [26,74], we report the following metrics: In-
lier Ratio (IR), Feature Matching Recall (FMR), rigid Reg-
istration Recall (RR), Relative Rotation Error (RTE), and
Relative Translation Error (RTE). RR is widely recognized
as the ultimate metric because it measures the fraction of
successfully registered scan pairs.

Impementation details. Our method is implemented us-
ing Pytorch and trained using SGD on Nvidia A100 (80G)
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GPU. We use a batch size of 8 and apply padding and mask-
ing to handle different point clouds sizes. On 3DMatch, we
follow the train/validation split as Predator [26]. The train-
ing on 3DMatch and 4DMatch both converge around the
15th epoch. We save the model with the best validation loss.
More implementation details are seen in the supplementary.

6.1. Ablation Study

–Does disentangling position and feature help? For non-
rigid cases, disentangling position and feature achieve simi-
lar results to the entangled version on 4DMatch and achieve
significantly better results on 4DLoMatch (c.f. Tab. 1). Fea.
& Pos. disentanglement also gain +1.1% / +2.5% RR on
3DMatch / 3DLoMatch (c.f. Tab. 3).

–Positional encoding: absolute vs relative. Our relative
3D positional encoding yields +3.8% higher NFMR on
4DLoMatch and +1.5% / +2.3% higher RR on 3DMatch /
3DLoMatch than the absolute sinusoidal encoding [65] (c.f.
Tab. 1, 3).

–Does Repositioning make sense? Repositioning gains
+2.9% / +3.3% NFMR on 4DMatch / 4DLoMatch and
+0.9% / +1.0% RR on 3DMatch / 3DLoMatch (c.f.
Tab. 1, 3). Note that the performances drop significantly
with the Random rotation-based positioning. The Oracle
deformation in Tab. 1 and Oracle rigid fitting in Tab. 3
achieve near perfect results. These results demonstrate the
importance of positional knowledge for point cloud regis-
tration. In Tab. 1, the Oracle rigid fitting refers to the best
rigid fitting for the ground truth deformation. We consider
it as the upper bound of the rigid fitting-based repositioning
approach.

–Matching algorithm: Sinkhorn vs dual softmax. The
dual softmax operator achieves higher scores on all bench-
marks than the Sinkhorn approach.

4DMatch 4DLoMatch
Ablation Target NFMR↑ IR↑ NFMR↑ IR↑

Fea. & Pos. Entangled 84.1 83.5 63.3 51.4
Disentangled* 83.7 82.7 66.9 55.7

PE type Absolute 83.7 82.2 63.1 51.8
Relative* 83.7 82.7 66.9 55.7

Random rotation 79.2 78.2 58.4 46.7
w/o Repositioning 80.8 80.5 63.6 53.7

Positioning Repositioning* 83.7 82.7 66.9 55.7
Oracle rigid fitting 91.5 89.7 80.2 67.2
Oracle deformation 100.0 99.8 100.0 97.6

Matching Sinkhorn 81.7 77.4 59.6 46.1
Dual-Softmax* 83.7 82.7 66.9 55.7

Table 1. Ablation study on 4DMatch. * indicates the default
configuration of our method.

4DMatch 4DLoMatch
Category Method S† NFMR↑ IR↑ NFMR↑ IR↑

Probablistic Model CPD [45] 6.0 5.5 0.4 0.2
BCPD [23] 11.4 10.1 1.2 0.5

Functional Map‡ ZoomOut [43] 4.2 3.8 1.3 0.5
GeoFM [17] X 25.0 20.5 11.7 4.5

Scene Flow
PWC [69] X 21.6 20.0 10.0 7.2
FLOT [50] X 27.1 24.9 15.2 10.7
NSFP [33] 18.5 16.3 1.2 0.5

Feature Matching
D3Feat [6] X 55.5 54.7 27.4 21.5
Predator [26] X 56.4 60.4 32.1 27.5
Ours X 83.7 82.7 66.9 55.7

Table 2. Quantitative Results on 4DMatch. S† denotes
supvervised methods. ‡ Point cloud Laplacian is obtained via [58].

6.2. Comparison with the state-of-the-art

4DMatch & 4DLoMatch. As shown in Tab. 2, our method
acheive +27.1% / +34.8% higher NFMR and +22.3% /
+28.2% higher IR than Predator. Fig. 7 shows the quali-
tative point cloud matching results on 4DMatch. We also
report results from probabilistic registration [23, 45], func-
tional map-based [17, 43], and scene flow methods [33, 50,
69]. Overall, feature matching methods [6, 26] show su-
perior performance than other categories. Existing scene
flow methods, can not handle large global motion. Func-
tional map methods fail because they need connected shapes
to obtain reliable Laplacian matrices, while the shapes in
4DMatch are usually disconnected due to occlusion (c.f.
examples in Fig. 4). The Coherent Point Drift (CPD) mod-
els [23, 45] do not work well on the partial scan data.

3DMatch & 3DLoMatch. Compared to Predator [26], our
method acheives +1.7% / +6.6% higher RR on 3DMatch
/ 3DLoMatch (c.f. Tab. 3). Fig. 6 shows the qualitative
results for a low overlap case. As shown in Tab. 4, Our
method also produces better RRE and RTE than Predator;
the point-to-point ICP-based postprocessing can further im-
prove the registrations.

6.3. Integrating to non-rigid registration.

We further integrate the predicted matches to non-rigid
point cloud registration. For registration, we adopt the non-
rigid iterative closest point (N-ICP) [31, 78] method which
iteratively minimizes the typical energy function:

Etotal(G) = λcEcorr(G) + λrEreg(G)

where Ecorr is the correspondence term, Ereg is the regu-
larization term as in [59], and G is the latent deformation
graph model. The correspondence term Ecorr is defined by
the L2 distance between corresponding points. See the sup-
plementary for formal definitions.

Fig. 8 shows the qualitative results of non-rigid regis-
tration on the dragon and elephant examples. The N-ICP
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Figure 8. Qualitative non-rigid registration results. As shown on the left end, scene deformation is approximated by the deformation graph.
Results shown are the final alignment and the transformed source.

3DMatch [76] 3DLoMatch [26]
FMR↑ IR↑ RR↑ FMR↑ IR↑ RR↑

3DSN [21] 94.7 36.0 81.5 61.9 11.4 36.6
FCGF [14] 95.2 56.9 88.2 60.9 21.4 45.8
D3Feat [6] 95.8 39.0 85.8 69.3 13.2 40.2
Predator [26] 96.7 58.0 91.8 78.6 26.7 62.4

Ours-Entangled 97.8 46.8 92.5 83.8 23.3 66.5
Ours-Absolute 97.4 62.0 92.1 84.1 29.3 67.7
Ours-Random rotation 97.5 60.6 90.8 79.2 25.6 60.3
Ours-w/o repositioning 98.0 57.6 92.8 84.2 27.8 68.0
Ours-Sinkhorn 97.6 46.5 92.2 81.7 17.7 64.9
Ours (Default) 98.3 55.5 93.5 84.5 26.0 69.0

Oracle Rigid fitting 100.0 99.3 100.0 100.0 95.0 99.8

Table 3. Feature matching and RANSAC registration results
on 3DMatch. Refer to Tab. 1 for the configs of Ours (Default).
Note that, in this paper, RR is averaged on all scan pairs to reflect
the true percentage of successful registrations.

3DMatch 3DLoMatch
RRE ↓ RTE ↓ RR ↑ RRE ↓ RTE ↓ RR ↑

Predator RANSAC 2.72 7.8 91.8 4.44 11.6 62.4
Ours 2.48 7.2 93.5 4.10 10.8 69.0

Predator RANSAC+ICP 2.06 6.2 92.3 3.46 9.8 65.2
Ours 1.96 6.0 93.9 3.17 8.9 71.3

Table 4. RRE (°), RTE (cm) and RR (%) on 3DMatch. Point-
to-point ICP can further refine the transformations.

baseline adopts the simple Euclidean space nearest neigh-
bor search-based correspondence. Predator + N-ICP and
Ours + N-ICP replace the correspondence term by the pre-
dicted matches during the beginning 20 iterations and then
run 45 N-ICP iterations for refinements. Our method better
informs non-rigid registration than Predator.

7. Conclusion

By leveraging the positional knowledge, Lepard demon-
strates state-of-the-art feature matching results for both
rigid and deformable point clouds. A promising direction
is extending it to end-to-end registration. A few limita-

tions are yet to be addressed: 1) Lepard is a coarse match-
ing approach. Fine-grained correspondence could be ob-
tained with learning-based refinement, e.g. [62, 74]. 2) In
deformable cases, Lepard does not explicitly handle topo-
logical changes. A potential solution is to jointly learn
matching with motion segmentation. 3) Finally, matching
and registration in the low overlapping cases is particularly
challenging due to data incompleteness. Fig. 9 shows such
failure cases. A potential solution for low-overlap scenar-
ios is to expand the mutual information via data comple-
tion [36,75]. Learning outlier rejection as [5,49] could also
benefit registration.

Figure 9. Failure cases in rigid (top) and non-rigid (bottom)
matching. The low overlapping cases are still challenging, in
particular, if the point clouds have similar patterns in the non-
overlapping region. Given the similar table and chairs (top), and a
similar half-body (bottom), our method fails to treat them as dif-
ferent features.
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Supplementary Material:
Lepard: Learning partial point cloud matching in rigid and deformable scenes

Supplementary material includes: ablation study (Sec. I);
implementation details (Sec. II, III, IV, and V); formal def-
inition of non-rigid registration (Sec. VI); and more results
on 3DMatch and 4DMatch (Sec. VII).

I. Ablation study

–Influence of Warping Loss Weight. Applying warping
loss in general yields higher NFMR and IR 4DMatch and
4DLoMatch. In particular, in the low overlap situations,
the performance grows steadily with the increasing of the
motion loss weight (c.f. Tab. 1). In 3DMatch and 3DLo-
Match, warping loss significantly increases the Inlier Rate
(IR). However, it leads to a decrease in Registration Re-
call (c.f. Tab. 2). We assume that this is because the warp-
ing loss might suppress some border cases correspondences
which could have benefited the RANSAC. In deformable
cases, a high inlier rate is desired for successful non-rigid
registration. However, in rigid cases, the inlier rate is less
important since RANSAC is very robust to noise. There-
fore, we set λw = 0.1 for 4DMatch and λw = 0.0 for
3DMatch.

4DMatch 4DLoMatch
NFMR↑ IR↑ NFMR↑ IR↑

λw = 0 82.9 82.4 62.1 52.2
λw = 0.05 85.3 83.9 65.1 54.5
λw = 0.1 * 83.7 82.7 66.9 55.7

Table 1. Influence of warping loss on 4DMatch.

3DMatch [76] 3DLoMatch [26]
FMR↑ IR↑ RR↑ FMR↑ IR↑ RR↑

λw = 0 98.0 63.7 93.6 85.6 29.5 69.0
λw = 0.05 97.8 66.6 92.9 84.1 36.5 67.9
λw = 0.1 97.6 71.5 92.9 84.6 38.8 68.2

Table 2. Influence of warping loss on 3DMatch.

–Influence of Confidence Threshold. In rigid cases, in-
creasing the confidence threshold of correspondence leads
to a decrease in registration recall (c.f. Tab. 3). Same to
the above ablation, we assume that this is because increas-
ing the confidence threshold inevitably suppresses some
borderline correspondences which could have benefited the
RANSAC. In deformable cases, increasing the confidence
threshold results in a higher IR but getting a lower NFMR

3DMatch (RR↑) 3DLoMatch (RR↑)
θc = 0.05 93.6 69.0
θc = 0.1 92.3 67.9
θc = 0.15 91.7 67.0
θc = 0.2 91.2 65.3

Table 3. Influence of confidence thresholds on 3DMatch and
3DLoMatch.

4DMatch 4DLoMatch
Method |Kpred| NFMR↑ IR↑ |Kpred| NFMR↑ IR↑
D3Feat (1000) 267 51.6 52.7 204 23.6 21.2
D3Feat (3000) 532 55.5 54.7 379 27.4 21.5
D3Feat (5000) 697 56.1 55.3 473 28.1 21.3

Predator (1000) 273 53.3 60.0 205 30.6 29.8
Predator (3000) 534 56.4 60.4 372 32.1 27.5
Predator (5000) 698 56.8 59.3 480 32.1 25.0

Ours (θc=0.2) 523 82.2 85.4 325 63.1 60.4
Ours (θc=0.1)* 596 83.7 82.7 407 66.9 55.7
Ours (θc=0.05) 624 83.9 80.9 447 67.6 52.5

Table 4. Influence of confidence thresholds on 4DMatch and
4DLoMatch. D3Feat [6] and Predator [26] probabilistically
sample points either from a saliency heat map or from a
machability×overlap heat map (numbers in brackets are the num-
bers of sampled points). Ours uses the confidence threshold θc to
get matches from the confidence matrix (c.f. Sec. 4.4). All meth-
ods apply the mutual nearest neighbor criteria to filter matches.
|Kpred| indicates the average number of final predicted correspon-
dences.

(c.f. Tab. 4). We found θc=0.1 a good trade-off between
precision and recall.

–Adding more TMP blocks. We tested 3 and 4 TMP lay-
ers. The corresponding number of the Repositioning layer
is 2 and 3 because it is placed between every two consec-
utive TMP layers. As shown in Tab. 5, in 3DMatch, addi-
tional layers do not improve the results; in 4DMatch, 3 TMP
layers achieve the best results. Adding layers inevitably in-
crease the training time.

Number of TMP layer 2 3 4
Number of Repositioning layer 1 2 3

Rigid
RR(%)↑ on 3DMatch 93.6 92.8 93.0
RR(%)↑ on 3DLoMatch 69.0 68.2 68.8
Training Time (hour)↓ 20 25 31

Deformable
NFMR(%)↑ on 4DMatch 83.7 85.9 84.5.
NFMR(%)↑ on 4DLoMatch 66.9 68.1 59.6
Training Time (hour)↓ 18 21 24

Table 5. Ablation study of number of TMP layers.
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II. Sparse Θ(·) Multiplication
Taking the advantage of the sparsity of Θ(·), given a

position p = (x, y, z) ∈ R3 and a feature x ∈ Rd, the
multiplication Θ(p)x can be efficiently realized by



x(0)
x(1)
x(2)
x(3)
x(4)
x(5)

...
x(d/6− 1)
x(d/6− 1)


⊗



cosxθ0
cosxθ0
cos yθ0
cos yθ0
cos zθ0
cos zθ0

...
cos zθd/6−1
cos zθd/6−1


+



−x(1)
x(0)
−x(3)
x(2)
−x(5)
x(4)

...
−x(d/6− 1)
x(d/6− 1)


⊗



sinxθ0
sinxθ0
sin yθ0
sin yθ0
sin zθ0
sin zθ0

...
sin zθd/6−1
sin zθd/6−1


III. Hyper Parameters

3DMatch 4DMatch

Metric

Inlier threshold 0.1m 0.04m
RR threshold 0.2m –
FMR threshold 5% –
NFMR threshold – 0.04m

Match Prediction Confidence threshold θc 0.05 0.1
Apply MNN False True

KPFCN Config Input subsampling radius 0.025m 0.01m

Supervision GT match radius 0.06m 0.024m
Warping loss weight λw 0.0 0.1

RR: Registration Recall
FMR: Feature Matching Recall
NFMR: Non-rigid Feature Matching Recall
MNN: Mutual Nearest Neighbor

Table 6. The hyper parameters for metric evaluation, match pre-
diction, KPFCN backbone, and training loss

IV. Time and memory expense

Predator [26] Lepard (Ours)

Average time (s) 0.18 0.10
Cuda memory (MB) 13,361 6,595

Table 7. Time and Cuda memory usage of inference on an Nvidia
A100 (80G) GPU. Time is averaged on 2193 testing samples in
4DLoMatch. Lepard is about twice as efficient as Predator on both
time and memory.

KPFCN Self Att. (×2) Cross Att. (×2) Matching (×2) Procrustes (×2)

0.0109 0.0016 (×2) 0.0014 (×2) 0.0023 (×2) 0.0191 (×2)

Table 8. Average time (s) of Lepard function inference on an
Nvidia A100 (80G) GPU. Time is averaged on 2193 testing sam-
ples in 4DLoMatch.

V. KPFCN backbone architecture

Figure 1. Details of the KPFCN backbone architecture.

VI. Non-Rigid Registration
This section introduce the non-rigid registration tech-

nique used in this paper.

Deformation Model. To represent the dense motion from
a source to a target, we adapt the embedded deformation
model of Sumner et al. [61]. The non-rigid deformation
is parameterized by the deformation graph G = {V, E},
where V is the set of node and E is the set of edge. As
shown in Fig. 2, we evenly sample graph nodes V over the
source point cloud surface. Each point in the scene has a
3D location: gi ∈ R3. The motion of a node i ∈ V is
parameterized by a translation vector: ti ∈ R3 and a rota-
tion matrix: Ri ∈ SO3. In addition, we represent rotations
by Ri = exp(ϕ∧i )Ri, where ϕi = [0, 0, 0] represents the
delta of the rotation in axis-angle form. (·)∧operator con-
vert a 3-dimensional vector to a 3 × 3 skew-symmetric ma-
trix. exp : so3 7→ SO3 map the skew-symmetric matrix to
3 × 3 rotation matrix using the Rodrigues formula. Finally,
all unkowns in the graph are

G =
(
ϕ1, · · · , ϕ|V||t1, · · · , t|V|

)
Non-rigid Warping Function Given a point p ∈ R3, the
non-rigid warping functionW is defined as

W(p) =
∑
i∈V

wp,i(Ri(p− gi) + gi + ti)

where wp,i ∈ R is the “skinning weight” that measure the
influence of node i. They are computed as

wp,i = Ce
1

2γ2
||Vi−p||22
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Figure 2. Deformation model. Nodes V (red dot) are evenly sam-
pled over the source surface. Edges E (green lines) are computed
between nodes based on geodesic connectivity. The point cloud
examples in 4DMatch are obtained from depth images. To com-
pute geodesic distance, we construct the surface triangle mesh by
connecting the nearby pixels’ 3D locations. We filter the triangles
with an edge larger than 4cm. During registration, for numerically
stable optimization, we ignore point cloud clusters with fewer than
40 deformation nodes.

where γ is the coverage radius of a node, for which we set to
0.9 cm for 4DMatch examples, C denotes the normalization
constant, ensuring that skinning weights add up to one∑

Vi∈V
wp,i = 1

Energy Function. The energy function of non-rigid iter-
ative closest point (N-ICP) consists of two terms: the cor-
respondence term and the regularization term. Given a set
of matches K, and the confidence of the correspondences
c(ps,pt) where (ps,pt) ∈ K. Correspondence term is de-
fined as

Ecorr(G) =
∑

(ps,pt)∈K

c2(ps,pt)||W(ps)− pt||22

We use ARAP [59] as the regularization term

Ereg(G) =
∑

(i,j)∈E

||Ri(gj − gi) + gi + ti − (gj + tj)||2

The total energy function is

Ereg(G) = λcEcorr(G) + λaEreg(G)

Residual and Partial Derivatives. The followings show
the residuals and partial derivatives for optimization.
Derivative of the wrapping functionW

∂W(p)

∂ϕi
= −wp,i(Ri(p− gi))

∧

∂W(p)

∂ti
= wp,iI3

where I3 is the 3 × 3 identity matrix. Residual term for a
correspondence (ps,pt) ∈ K

rcorr(ps,pt)
=
√
λcc(ps,pt)(W(ps)− pt)

Derivative of correspondence residual rcorr(ps,pt)

∂rcorr(ps,pt)

∂ϕi
= −

√
λcc(ps,pt)wps,i(Ri(ps − gi))

∧

∂rcorr(ps,pt)

∂ti
=
√
λcc(ps,pt)wp,iI3

Residual term for regularization tern (i, j) ∈ E

rreg(i,j) =
√
λc(Ri(gj − gi) + gi + ti − (gj + tj))

Derivative of regularization term rreg(i,j)

∂rreg(i,j)

∂ϕi
= −

√
λa(Ri(gj − gi))

∧

∂rreg(i,j)

∂ti
=
√
λaI3

∂rreg(i,j)

∂tj
= −

√
λaI3

The full Jacobian matrix J ∈ R(3|K|+3|E|)×6|V| is shown as

J =

∂rcorr1

∂ϕ1
· · · ∂rcorr1

∂ϕ|V|

∂rcorr1

∂t1
· · · ∂rcorr1

∂t|V|

...
. . .

...
...

. . .
...

∂rcorr|K|
∂ϕ1

· · · ∂rcorr|K|
∂ϕ|V|

∂rcorr|K|
∂t1

· · · ∂rcorr|K|
∂t|V|

∂rreg1

∂ϕ1
· · · ∂rreg1

∂ϕ|V|

∂rreg1

∂t1
· · · ∂rreg1

∂t|V|

...
. . .

...
...

. . .
...

∂rreg|E|
∂ϕ1

· · ·
∂rreg|E|
∂ϕ|V|

∂rreg|E|
∂t1

· · ·
∂rreg|E|
∂t|V|

where |V| is the number of graph node. |K| is number
of correspondence. |E| is the number of graph edge. Each
block in J is a 3 × 3 matrix. For the sparse nature of this
problem, most blocks are zeros. The full residual vector
r ∈ R3|K|+3|E| is shown as

r =

rcorr1

...

rcorr|K|

rreg1

...

rreg|E|
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where each block is a 3 × 1 vector. The total length is
(|K|+ |E|)× 3.

Non-rigid Optimization. We use Gauss-Newton algorithm
and minimizes the total energy function Etotal. The Gauss-
Newton method is an iterative scheme. In every iteration
n, we re-compute the Jacobian matrix J and the residual
vector r , and get a solution increment ∆G by solving the
update equations:

JTJ∆G = JT r

The above linear system is solved using LU decomposition.

VII. Qualitative Results
Tab. 9 shows the scores for the elephant and dragon

examples from the main paper. Fig. 3 shows the qualita-
tive matching and registration results on 4DMatch. Tab. 10
shows the corresponding scores for results in Fig. 3. Fig. 4
shows the qualitative matching and registration results on
3DLoMatch.

elephant dragon
EPE↓ Acc5↑ Acc10↑ EPE↓ Acc5↑ Acc10↑

N-ICP 0.166 22.4 41.5 0.325 4.5 17.8
Predator [26] + N-ICP 0.092 55.7 66.0 0.514 29.6 32.1
Ours + N-ICP 0.018 90.6 98.0 0.038 68.0 96.0

Table 9. Quantitative non-rigid registration results. The metrics
are 3D end point error (EPE) and motion estimation accuracy
(Acc) (<0.05m or 5%, <0.1m or 10%).

moose mutant
EPE↓ Acc5↑ Acc10↑ EPE↓ Acc5↑ Acc10↑

N-ICP 0.728 0.1 0.7 0.52 0.0 0.6
Predator [26] + N-ICP 0.0283 86.9 99.4 0.217 44.6 60.1
Ours + N-ICP 0.0263 88.5 99.9 0.119 62.6 71.4

Table 10. Quantitative non-rigid registration results. The met-
rics are 3D end point error (EPE) and motion estimation accuracy
(Acc) (<0.05m or 5%, <0.1m or 10%).
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Figure 3. Qualitative point cloud matching and registration results on 4DMatch. The inlier threshold is set to 4cm. The N-ICP-based
refinement can remedy outliers to a certain extent if the outlier matches are not too far away from the ground truth (see the results of
Predator + N-ICP in the Moose example). The N-ICP-based refinement can not handle outliers that connects distant parts. E.g. in the
Mutant example, left and right legs are registered together by both methods.
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Figure 4. Qualitative point cloud matching and registration results on 3DLoMatch.
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