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Abstract

Recently, learned image compression techniques have
achieved remarkable performance, even surpassing the best
manually designed lossy image coders. They are promis-
ing to be large-scale adopted. For the sake of practical-
ity, a thorough investigation of the architecture design of
learned image compression, regarding both compression
performance and running speed, is essential. In this pa-
per, we first propose uneven channel-conditional adaptive
coding, motivated by the observation of energy compaction
in learned image compression. Combining the proposed
uneven grouping model with existing context models, we
obtain a spatial-channel contextual adaptive model to im-
prove the coding performance without damage to running
speed. Then we study the structure of the main transform
and propose an efficient model, ELIC, to achieve state-of-
the-art speed and compression ability. With superior per-
formance, the proposed model also supports extremely fast
preview decoding and progressive decoding, which makes
the coming application of learning-based image compres-
sion more promising.

1. Introduction

In the past years, lossy image compression based on deep
learning develops rapidly [4, 5, 15,20,22,24,29,39,40,49,

]. They have achieved remarkable progress on improv-
ing the rate-distortion performance, with usually much bet-
ter MS-SSIM [47] than conventional image formats like
JPEG [26] and BPG [8], which indicates better subjec-
tive quality. Some very recent works [18-20, 22,49, 50]
even outperform the still image coding of VVC [2], one of
the best hand-crafted image and video coding standards at
present, on both PSNR and MS-SSIM. These results are en-
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Figure 1. Rate-speed comparison on Kodak. Left-top is better.

couraging, as learned image compression has been proved
as a strong candidate for next generation image compres-
sion techniques. In the near future, it is quite possible to
deploy this line of image compression models in industrial
applications. Yet, to make these approaches practical, we
must carefully assess the running speed, especially the de-
coding speed of learned image compression.

One of the most important techniques in learned im-
age compression is the joint backward-and-forward adap-
tive entropy modeling [15,20,22,29,39,40,48-50]. It helps
convert the marginal probability model of coding-symbols
to a joint model by introducing extra latent variables as
prior [5,39,40], leading to less redundancy and lower bit-
rate. However, the backward-adaptive models along spa-
tial dimension significantly break the parallelism, which in-
evitably slows down the decoding. To address the issue,
He et al. [24] proposes to adopt checkerboard convolution
as a parallel replacement to the serial autoregressive context
model, which has a much better degree of parallelism with
constant complexity. Minnen et al. [40] proposes to adopt
a context model along channel dimension instead of the
serial-decoded spatial ones, which also improves the par-
allelism. However, to achieve a non-trivial bit-saving with
this channel-conditional model, the symbols are divided to



10 groups and coded progressively, which still slows down
the overall inference. It is promising to delve into paral-
lel multi-dimension contextual adaptive coding by combing
these two models to achieve better coding ability [24], con-
stituting one of the motivation of our work. In this paper,
we investigate an uneven grouping scheme to speed up the
channel-conditional method, and further combine it with a
parallel spatial context model, to promote RD performance
while keeping a fast running speed.

More and more complex transform networks also slow
down the inference. As learned image compression is for-
mulated as a sort of nonlinear transform coding [3,21], an-
other plot improving coding performance is the develop-
ment of main transform. Prior works introduce larger net-
works [15,20,22,32], attention modules [15,22, 33, 35] or
invertible structures [37, 50] to main analysis and synthe-
sis networks. These heavy structures significantly improve
the RD performance but hurt the speed. We notice that,
with a relative strong and fast adaptive entropy estimation
(i.e. the above mentioned adaptive coding approaches with
hyperprior and context model), we can re-balance the com-
putation between main transform and entropy estimation, to
obtain low-latency compression models. This further moti-
vates us to promote the contextual modeling technique.

Learned image compression is growing mature and tends
to be widely used, but its lack of efficiency is still a critical
issue. In this paper, we contribute to this field from follow-
ing perspectives:

* We introduce information compaction property as
an inductive bias to promote the expensive channel-
conditional backward-adaptive entropy model. Com-
bining it with the spatial context model, we propose
a multi-dimension entropy estimation model named
Space-Channel ConTeXt (SCCTX) model, which is
fast and effective on reducing the bit-rate.

* With the proposed SCCTX model, we further pro-
pose ELIC model. The model adopts stacked residual
blocks as nonlinear transform, instead of GDN lay-
ers [4]. It surpasses VVC on both PSNR and MS-
SSIM, achieving state-of-the-art performance regard-
ing coding performance and running speed (Figure 1
and Table 2).

* We propose an efficient approach to generate preview
images from the compressed representation. To our
knowledge, this is the first literature addressing the
very-fast preview issue of learned image compression.

2. Related works

2.1. Learned lossy image compression

Learned lossy image compression [5, 15,22, 24,35, 39]
aims at establishing a data-driven rate-distortion optimiza-

tion (RDO) approach. Given input image « and a pair of
neural analyzer g, and neural synthesizer g,, this learning-
based RDO is formulated as:

L= R(g) + AD(x,9:(9)) (M

where § = [g,(x) | represents the discrete coding-symbols
to be saved and [-| is the quantization operator. Balancing
the estimated bit-rate R and image reconstruction distortion
D with a rate-controlling hyper-parameter A\, we can train a
set of neural networks g,, gs to obtain various pairs of im-
age en/de-coding models, producing a rate-distortion curve.

Ballé et al. [4] proposes to adopt a uniform noise estima-
tor and a parametric entropy model to approximate the prob-
ability mass function py, so that its expected negative en-
tropy —E[log pg(9)] can be supervised as the R(g) term in
eq. 1 in a differentiable manner with gradient-decent-based
optimization. Later, the entropy model is further extended
to a conditioned Gaussian form [5, 39]:

py1z(912) = [N(p,0?) xU(=0.5,05)] (§) (2)

where the entropy parameters ® = (u, o?) are calculated
from extra computed or stored prior. Ballé et al. [5] adopts
hyperprior 2 to calculate the entropy parameters. 2 is calcu-
lated from unquantized symbols y with a hyper analyzer h,,.
It can be seen as side-information introduced to the neural
coder, acting as the forward-adaptive method.

To painlessly improve the coding efficiency, several
training, inference, and encoding-time optimizing ap-
proaches are proposed [23, 52, 54]. They can improve the
RD performance without slow down the decoding, and can
be used together with various coding architectures.

2.2. Backward-adaptive entropy models

Backward-adaptive coding is also introduced to learned
image compression, including spatial context models [22,

,29,39] and channel-conditional models [40]. Correlating
current decoding symbols with already decoded symbols,
this sort of approaches further save the bits.

A spatial context model refers to observable neighbors
of each symbol vector y; at the ¢-th location:

Yoi ={Y1,-- -, Yi-1} ©)
(I)sp,i = gsp(y<i) (4)

where the context model g, (+) is an autoregressive con-
volution [39, 42].  Each context representation P, ; is
used to jointly predict entropy parameters accompanied by
the hyperprior 2. This approach demands symbol vectors
Y1, -.-,Ygw to be decoded serially, which critically slows
down the decoding [24,35,39]. He et al. [24] proposes to
separate the symbols into anchors and non-anchors:

~ (anchor ~ (nonanc ~ (anchor
G =g, gl = gleen )
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Figure 2. Visualization of sorted channels with the top-10 largest average energy. Left 1: the original image (kodiml19.png). Lighter
regions correspond to larger symbol magnitudes |fj|. It can been seen from the figures that most strong activation concentrates in the first

channel (left 2) and the remained channels become sparse gradually.
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Figure 3. Energy and entropy distribution along channels. The
results are evaluated with Minnen2018 [39] model, on Kodak. The
channels are sorted by energy averaged over all 24 images.

and adopts a checkerboard convolution as g, (+), so the de-
coding of both anchors and non-anchors can be in parallel.

Another scheme to perform parallel backward adaption
is to reduce the redundancy among channels. Minnen et
al. [40] proposes to group the symbol channels to K chunks
as the channel-wise context:

o) = g (g<h) k=2, K (6)
where g<F = {1 ... §*~1D} denotes already decoded
channel chunks. Setting a proper K is essential for this
method to balance the compression performance and run-
ning speed. The larger K is, the better the RD performance
is [40], yet the slower the parameter estimation is (as the
degree of parallelism decreases).

Multi-dimension adaptive coding approaches have been
proposed but all of them still suffer from the slow-speed is-
sue, to our knowledge. Liu ez al. [33] proposes a 3D context
model which performs a 3D convolution passing by all the
channels. Li et al. [3 1] proposes a multi-dimension context
model with non-constant complexity. Guo et al. [22] uses
2-chunk contextual modeling with serial global-and-local
adaptive coding. Ma et al. [360] propose a cross-channel
context model which uses a even denser referring scheme
than 3D context models.

3. Parallel multi-dimension context modeling
3.1. Information compaction property

Energy compaction is an essential property of transform
coding [21], e.g. DCT-based JPEG. With decomposed coef-
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(a) Entropy of each channel. (b) Maximal entropy of each group.

Figure 4. A case study of adopting the 10-slice channel-
conditional adaptive coding [40]. Deeper colors denote larger val-
ues. The entropy of each channel group is implicitly sorted. The
beginning groups contain channels with the largest entropy. The
results are from evenly grouped model trained with A = 0.045,
evaluated on kodim08 from Kodak.

ficients extremely concentrated on lower frequencies, de-
scribing most structural and semantic information of the
original image, higher frequencies can be compressed more
heavily by using larger quantization steps to achieve a better
rate-distortion trade-off.

We find this compaction also exists in learned analysis
transform. We visualize each latent feature map ) of
the mean-scale joint model, Minnen2018 [39], as its scaled
magnitude (Figure 2) and draw the distribution of energy
and entropy along channels (Figure 3). More strongly acti-
vated, the beginning channels have much larger average en-
ergy. Since the entropy distribution correlates to the energy
distribution, it indicates an information compaction prop-
erty. This phenomenon exists in all of the 5 models we test:
Ballé2018 [5], Minnen2018 [39], Cheng2020 [15] and their
parallel versions [24]. The information compaction in those
models is orderless because the supervision conducted on
the analyzer output channels is symmetric.

When adopting a channel-conditional approach, this
property induces a group-level order. See Figure 4. Par-
ticular channels in the earlier encoded groups have much
larger entropy, so they are allocated more bits. As the begin-
ning channels are more frequently referred to by following
channels, the major information implicitly concentrates on
the beginning channels to help eliminate more channel-wise
redundancy. The progressive coding results [40] also ex-
perimentally prove this, since we can reconstruct the main



Figure 5. Proposed uneven grouping for channel-conditional (CC)
adaptive coding. The M-channel coding-symbols ¢ are grouped
into 5 chunks with gradually increased number of channels Cy.

semantics of images only from the beginning channels.

We tend to understand this information compaction
property of learned image compression from the perspective
of sparse representation learning [41,44,45], yet the theo-
retical analysis and explanation of it are beyond the topic of
this paper. We view it as a strong prior knowledge that helps
us introduce inductive bias to improve the model design.

3.2. Unevenly grouped channel-wise context model

The visualization in Figure 4 shows that the later en-
coded channels contain less information, and they are less
frequently used to predict following groups. Therefore,
we can reduce the cross-group reference to speed up, by
merging more later encoded channels into larger chunks.
On the other hand, because of the information compaction,
with less channel, the earlier encoded channel groups may
still well help reduce the entropy of the following chan-
nels. Thus, a more elaborate channel grouping scheme
may further improve this entropy estimation module by re-
balancing the channel numbers of different groups. Yet, ex-
isting approaches often simply group the channels to chunks
with the same size [22, 40] or adopt per-channel group-
ing [33,36].

We propose an uneven grouping scheme, allocating finer
granularity to the beginning chunks by using fewer chan-
nels and grow coarser gradually for the following chunks
by using more channels. Thus, for symbols y with M chan-
nels, we split them along the channel dimension to 5 chunks
g, ..., g®) with 16, 16, 32, 64, M —128 channels respec-
tively. Figure 5 shows the channel-conditional model with
this uneven allocation. It only requires 5 times of parallel
calculation to decode all the slices Q(k), which saves the
running time.

3.3. SCCTX: space-channel context model

Spatial context model and channel-conditional model
eliminate redundancy along spatial and channel axes. As
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Figure 6. Diagram of proposed space-channel context model.

N

Method Type G S (M = 320)
autoregressive [39]  sp. HW 320
checkerboard [24] sp. 2 160HW
10-slice CC. [40] ch. 10 32HW
uneven CC. (ours) ch. 5 (16 - 192)HW
SCCTX (ours) mix 10 (8 = 96)HW

Table 1. Comparison of different backward-adaptive coding ap-
proaches. G denotes the number of groups, and S is the group
size. Symbols in the same group can be processed in parallel. The
sizes are calculated for M x H x W symbols where M = 320.

those dimensions are orthogonal, we assume the redun-
dancy in those dimensions is orthogonal too. Thus, we com-
bine the two models for a better backward-adaptive coding.

Figure 6 shows our space-channel context model (SC-
CTX). In the k-th unevenly grouped chunk, we apply a
spatial context model gs(lg) to recognise spatial redundancy
(eq. 4). It could be an autoregressive convolution [39] or
its two-pass parallel adaption [24]. We introduce g.p, net-
works to model the channel-wise context @gﬁ) (Figure 5
and eq. 6). The output of spatial and channel branches at
the (k, )-th location, i)if)))i and @Eﬁ), will be concatenated
with hyperprior representation W and fed into a location-
wise aggregation network to predict the entropy parameters
@Z(.k) = (pl(»k), o-i(k)) for the following en/de-coding of y§’“).

(k)

Then the just obtained ¢, ’ will be used as context to com-

(k)
pute (I)sp,(i+1

As shown in Table 1, by default we use the parallel
checkerboard [24] model as the spatial context for SCCTX,
which is only applied inside each channel chunk to be more
efficient.

) or @iﬁﬂ), till en/decoding the entire 3.
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Figure 7. The overall architecture of ELIC. RBs denote stacks of residual bottleneck blocks [25] shown in the right. A#tn blocks are attention
modules proposed by Cheng et al. [15]. AE and AD are arithmetic en/de-coder, respectively. TConv denotes transposed convolution. The
blue and red arrows denote the encoding and decoding data flow. The orange ones are shared by both encoding and decoding.

4. ELIC: efficient learned image compression
with scalable residual nonlinearity

4.1. Stacking residual blocks for nonlinearity

For a long period, generalized divisive normalization
(GDN) is one of the most frequently used techniques in
learned image compression [5, 15,22,29,50]. It introduces
point-wise nonlinearity to the model [6], which aggregates
information along the channel axis and scales feature vec-
tors at each location. Different from linear affine normal-
ization techniques like batch normalization or layer nor-
malization, this nonlinear GDN performs more similarly to
point-wise attention mechanism. Thus, we propose to in-
vestigate other nonlinear transform layers as alternatives of
GDN. Note that this is different from existing investigations
that view GDN as activation function [14,15,17,27].

We replace the GDN/IGDN layers with stacks of residual
bottleneck blocks [25]. Earlier works also investigate pure
convolution networks for visual compression [|1-14] and
here we revisit it from the layer-level perspective. We ob-
serve that the performance further improves when the num-
ber of stacked blocks increases, because of the enhanced
nonlinearity. Thus, a network with strong enough nonlin-
earity can express the intermediate features better for rate-
distortion trade-off, even without GDN layers. A similar
structure is also investigated by Chen et al. [11], as a part of
non-local attention module. We experimentally prove that,
even without attention mechanism, the RD performance can
still be improved by simply stacking the residual blocks.

Stacking residual blocks allows us to better conduct scal-
able model profiling. It is also expected to benefit from
modern training and boosting techniques like network ar-
chitecture search [34, 53] and loss function search [30, 46],
though they are out of the bound of this work. Residual
block is also easier to be extended for dynamic or slimmable
inference, while GDN requires special handling [51].

(training)

1:8 preview (inference)

128 128 128 3 3

Figure 8. Structure of the proposed thumbnail synthesizer. Bi-
linear module denotes three bilinear upsampling layers by factor
2.

4.2. Architecture of ELIC

We summarize the above-mentioned techniques in our
proposed model named ELIC (see Figure 7), to build an ef-
ficient learned image compression model with strong com-
pression performance. We use the proposed SCCTX mod-
ule to predict the entropy parameters ® = (u,o) of
a mean-scale Gaussian entropy model [39]. Using this
more powerful backward-adaptive coding allows adopt-
ing lighter transform networks compared with recent prior
works [15,20,22,50]. In the main transforms, we simply
adopt stride-2 convolutions to de/in-crease the feature map
sizes, following earlier settings [5,39].

5. Quickly decoding thumbnail-preview

The major bottleneck of decoding process is the syn-
thesis inference, which runs a heavy network to recon-
struct the full-resolution image. When applying learned im-
age compression, however, we do not always want to de-
code the full-resolution image. For instance, when looking
through images saved on a server, we require the decoder
to quickly generate thousands of thumbnail-preview im-
ages which have much lower resolution but keep the struc-
ture and semantics of the original images. Another case is
progressive decoding preview, investigated in prior litera-
ture [40]. When the image is progressively and partially
decoded step by step, frequently invoking the heavy synthe-
sizer will critically slow down the overall decoding process.



On these occasions, image quality is far less important than
decoding speed. Thus, directly decoding the full-resolution
images using the heavy synthesizer is impractical.

We propose to train an additional tiny network, called
thumbnail synthesizer, to reconstruct low-resolution images
as thumbnail-preview. When adopting SCCTX, most se-
mantic information is compacted in the earlier decoded
channels. Hence we propose to generate the preview im-
age only from the first 4 chunks (i.e. the first 128 channels).

The structure of our proposed thumbnail synthesizer
is shown in Figure 8. After training the main models,
we freeze all the learned parameters and change the main
synthesizer to initialized thumbnail synthesizer. Then we
restart the distortion optimization to train the model.

As the proposed thumbnail synthesizer is extremely
light, its decoding only requires a few microseconds (w.r.t.
768 x 512 images). Compared with obtaining the preview
image by down-sampling from the entirely reconstructed
full-resolution image, using the proposed model to obtain
the thumbnail-preview images is much more efficient.

6. Experiments
6.1. Settings

We train the models on the largest 8000 images picked
from ImageNet [16] dataset. A noising-downsampling pre-
processing is conducted following prior works [5, 24]. We
use Kodak [28] and CLIC Professional [ 1] for evaluation.

The training settings are accordingly sketched from ex-
isting literature [5, 15, 24, 39]. For each architecture, we
train models with various \ standing for different quality
presets. We set A = {4, 8,16, 32, 75, 150, 300,450} x 10~
for each model when optimizing MSE. Empirically, on Ko-
dak, models trained with these A values will achieve aver-
age bits-per-pixel (BPP) ranging from 0.04 to 1.0. We set
the number of channels N = 192 and M = 320 for all
models. We train each model with an Adam optimizer with
B1 = 0.9, B2 = 0.999. We set initial learning-rate to 10~4,
batch-size to 16 and train each model for 2000 epochs (1M
iterations, for ablation studies) or 4000 epochs (2M itera-
tions, to finetune the reported ELIC models), and then decay
the learning-rate to 10~ for another 100-epoch training.

We use mixed quantization estimator to train channel-
conditional models, following Minnen et al. [40]. It
helps optimize the single Gaussian mean-scale entropy
model [39], making it comparable with mixture models
like GMM [15,22,29,35]. Following prior works [24, 39]
and community discussion', we encode each [y — p] to the
bitstream instead of [y] and restore the coding-symbol as
[y — ] + p, which can further benefit the single Gaus-
sian entropy model. When using the autoregressive con-
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Figure 9. Rate-distortion curves of various image compression ap-
proaches. The results are evaluated on Kodak. All shown learned
models are optimized for minimizing MSE.

text model with the two above-mentioned strategies to-
gether, the one-pass encoding [24] doesn’t simply work for
training because of the inconsistency in synthesizer input
([y — p| + p instead of [y]). Therefore, we adopt a two-
stage training. In the beginning 2000/3800 epochs, we sam-
ple uniform noise to estimate ¢ input to SCCTX and use
STE(y) as the input of synthesizer. Thus, the faster one-
pass encoding can be adopted. Then, we fed STE(y—p)+p
to both the synthesizer and SCCTX in the remained epochs.

To obtain a lightweight model, we do not adopt the LRP
network [40], and the low-rate models (A < 0.0075) per-
form worse if trained with target \ values from scratch.
Inspired by prior work [40], we train these models with
A = 0.015 at the beginning, and adapt them using target
A values after decaying the learning-rate.

Please refer to the supplementary material for more de-
tailed experiment settings, including running environment
and raw data accessing.

6.2. Quantitative results

To compare the RD performance of various models, we
present BD-rate [9] computed from PSNR-BPP curves as
the quantitative metric. The anchor RD performance is set
to VVC or BPG accordingly (with an anchor BD-rate 0%).
In the supplementary material we also show BD-rate results
calculated on MS-SSIM.



Inference Latency (ms)

Model Sp. Context  BD-Rate (%) Enc. Tot. Dec. Tot. | YEnc. YDec. ZEnc. ZDec. Param.
ELIC (ours) [P] -7.88 42.44 49.16 31.16 38.33 1.18 1.59 10.10
ELIC-sm (ours) [P] -1.07 22.64 27.80 12.55 17.37 1.07 1.41 9.02
Minnen2020 [40] - 1.11 60.76 65.75 10.60 15.41 1.36 1.54 48.80
Cheng2020[P] [24] [P] 3.89 45.43 53.01 36.84  44.20 0.93 1.15 7.66
Minnen2018[P] [24] [P] 20.00 18.84 24.52 11.63 17.32 1.47 1.46 5.74
Ballé2018 [5] - 40.85 13.07 17.24 11.90 16.14 1.17 1.10 -
Gao2021 [20] [S] -10.94 / / / / / / /
Guo2021 [22] [S] -7.02 190.41 > 103 | 154.08 431.68 3.67 1.61 > 10°
Xie2021 [50] [S] -0.54 61.20 > 10° 5796 162.18 1.28 1.34 > 10°
Cheng2020 [15] [S] 3.35 41.42 > 103 36.99 47.35 0.96 1.12 > 10°
Minnen2018 [39] [S] 14.92 18.14 > 108 12.75 17.34 1.69 1.60 > 103
VVC (YUV 444) [2] - 0.00 - - - - - -
BPG [8] - 27.21 - - - - - -
JPEG [26] - 266.32 - - - - - -

Table 2. RD and inference time of learned image compression models. The BD-Rate data is calculated relative to VVC (YUV 444) from
PSNR-BPP curve on Kodak. The Param. column denotes inference latency of entropy parameter calculation during decoding (e.g. the
running time of SCCTX in our ELIC model). Enc. Tot. and Dec. Tot. denote total network latency for encoding and decoding respectively.
Models marked with [P] adopt parallel checkerboard context model and [S] denotes serial context model. We have not reproduced the very

recent Gao2021 model, yet its speed reported by the authors [

6.2.1 Comparison of coding performance and speed

We compare the RD performance and coding speed of ELIC
with exiting learning based approaches, as shown in Table 2.
Apparently, our ELIC achieves remarkable improvement on
compression quality and speed among learned image com-
pression approaches. We also report BD-rates of manual-
designed image compression approaches, but do not com-
pare the speed of them because they cannot run on GPU.
ELIC outperforms VVC (in YUV 4:4:4 colorspace) on RD
performance regarding PSNR (and also MS-SSIM, see Fig-
ure 9). Without expensive RDO searching process, learned
compression models including ELIC can achieve encoding
speed as fast as decoding speed, which is potentially helpful
to conduct high-quality real-time visual data transmission.
This can be an advantage of learning based approaches,
since currently best conventional image coders like VVC
spend much longer time in encoding than decoding?.

We present a slim architecture ELIC-sm, which is
adapted from ELIC by removing attention modules and us-
ing fewer res-blocks (RB x1). It also achieves a remarkable
RD performance while significantly reducing the latency.

To further present our approach, we highlight Figure |
and Figure 9. Figure 1 shows the RD-latency relationship
of various approaches. It can be seen from the figure that
our ELIC model achieves state-of-the-art performance re-
garding Pareto optimum. We also draw all tested learned
image compression approaches which can decode the Ko-

2https://github.com/InterDigitalInc/CompressAI/
blob/vl.1.8/results/kodak/vtm. json by CompressAl[7]

] is slower than the referred Cheng2020 model (more than 1s/image).

dak image in 100 microseconds in Figure 9, which further
indicates the superiority of ELIC. For completeness, we
present more RD curves and results tested on Kodak and
other datasets in the supplementary material.

6.2.2 Ablation study

Influence of uneven grouping and spatial adaption
in SCCTX. We evaluate the proposed uneven grouping
model and compare it with the previous even grouping ap-

Grouping Param.
Data Scheme BD-Rate Latency
even (10-slice) -3.81 13.46
+ spatial[P] -5.02 19.41
Kodak  uneven -2.78 6.45
+ spatial[P] -5.63 10.10
+ spatial[S] -6.99 > 103
even (10-slice) -12.42 73.59
+ spatial[P] -14.11 85.44
CLIC-P  uneven -11.54 31.88
+ spatial[P] -14.51 46.06
+ spatial[S] -15.51 > 103
vVvC - 0.00 -

Table 3. Performance of different grouping schemes. Since im-
age resolutions in CLIC Professional vary, we report the latency
repeatedly tested on its largest 2048 x 1890 image.



Latency

Model Layer BD-Rate Enc. Dec.
Ballé2018 GDN 823 1227 17.30
Ballé2018 RBx1 568 1245 17.51
Ballé2018 PWRB x3 459 18.15 22.84
Ballé2018 RBx3 -294 23.00 2791
Minnen2018 GDN -5.04 12775 17.34
Minnen2018 RBx1 -6.34 1290 17.44
Minnen2018 PWRBx3 -11.14  18.10 22.78
Minnen2018 RBx3 -13.56 23.01 28.21
BPG - 0.00 - -

Table 4. Comparison of different nonlinear layers, evaluated on
Kodak. The columns marked as Latency Enc./Dec. denote infer-
ence time of main analysis/synthesis. RBxn denotes a stack of n
residual bottleneck blocks [25] (the right in Figure 7). PWRB is
point-wise residual block which removes the 3 x 3 convolution.

proach [40]. For a fair comparison, we train a line of mod-
els with the same architectures for main and hyper auto-
encoders as ELIC. The only difference between them is the
grouping models for backward-adaptive coding. Table 3
shows the results evaluated on Kodak and CLIC Profes-
sional. With the proposed uneven grouping, the latency of
adaptive entropy estimation decreases by half. Introducing
the spatial context model to both even and uneven models
gain RD promotion, with uneven-+spatial[P] running speed
still faster than the 10-slice even grouping models.

Residual blocks versus GDN (Table 4). After replacing
all GDN/IGDN layers with residual bottleneck blocks, the
RD performance improves on both Ballé2018 [5] and Min-
nen2018 [39] baselines while the inference latency is still on
par with GDN version. When stacking more RB blocks as
nonlinear transform, the BD-rates even reduce more, which
proves the scalability. We also try to stack GDN layers but
the training becomes very unstable and eventually fails.

Since the residual bottleneck module has a larger recep-
tive field than GDN, we also evaluate a point-wise version
of it (PWRB) to figure out the influence of a larger receptive
field. It still improves BD-rates on both baselines. Note that
residual blocks with larger receptive fields improve more on
models without spatial context (Ballé2018), implying that
nonlinear transform with larger receptive fields is also help-
ful to remove spatial redundancy.

6.3. Qualitative results

Full reconstruction. We present the high-resolution im-
ages coded by ELIC and prior approaches in the supplemen-
tary material to show the reconstruction performance.

Thumbnail-preview. See Figure 10, where we present
the thumbnail-preview of Kodak images generated from our

Figure 10. Quickly decoded thumbnail-preview images. For each
pair of images, the left one is the downsampled ground-truth and
the right is corresponding thumbnail-preview.

AL
e)k=5

(f) ground truth

k=4
Figure 11. Progressive decoding. Each image is reconstructed
from the first k£ groups. When k£ = 5, the image is fully decoded.

thumbnail synthesizer. Since the thumbnail-preview images
are in low-resolution by design, the relative low reconstruc-
tion quality (PSNR = 23.02 dB evaluated on full-resolution
Kodak) will not do harm to subjective feeling, as major se-
mantic information remains and the artifacts are suppressed
by image downsampling. The inference of thumbnail syn-
thesizer takes about 3 microseconds, which is over 12 times
faster than invoking the full synthesizer of ELIC.

Progressive decoding is an extended application of
channel-conditional models [40]. We also present the pro-
gressive decoding results of ELIC. Different from Min-
nen et al. [40], at the k-th step, we directly fill the non-
decoded channel chunks g**1 ... §®) with 0 before
feeding them to the synthesizer. Therefore, extra calculation
predicting non-decoded symbols is avoided. See Figure 11.
With the beginning 16 channels, the structural information
can be already reconstructed. The following channel groups
further provide chrominance and high-frequency informa-
tion. Since the progressive decoding is usually adopted for
preview, we use the thumbnail synthesizer to quickly recon-
struct the partially decoded (k < 4) images.

7. Discussion and conclusion

With the proposed SCCTX and the residual transform
networks, we obtain state-of-the-art model ELIC, which
better balances compression ability and running speed. Fur-
thermore, we propose to train a thumbnail network for pre-
view decoding, which also improves the utility. In the fu-
ture, we will further investigate the information compaction
phenomenon for improving the architecture.



Note that VVC is majorly designed for YUV 4:2:0 col-
orspace instead of YUV 4:4:4, as the former better reflects
the sensitivity of human perception. We will also delve into
models with both objective and subjective image quality re-
markable, following exiting literature [ 10, 18,38,43].
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Supplementary Material

ELIC: Efficient Learned Image Compression with Unevenly Grouped Space-Channel Contextual Adaptive Coding

1. Detailed network architecture

1.1. Architecture of transform networks

Analyzer g,

Synthesizer g

in: 3-channel image ‘ in: M -channel symbols

Conv b x 5,82, N Attention
ResBottleneck x 3 TConv 5 x 5,82, N
Conv b x 5,82, N ResBottleneck x 3
ResBottleneck x 3 TConv 5 x 5,82, N
Attention Attention
Conv b x 5,82, N ResBottleneck x 3
ResBottleneck x 3 TConv 5 x 5,82, N
Conv 5 x 5,82, M ResBottleneck x3
Attention TConv 5 x 5,52, 3

Table 1. Architecture of ELIC main transform networks.

Analyzer g, ‘ Synthesizer g

in: 3-channel image ‘ in: M -channel symbols

Conv b x 5,82, N TConv 5 x 5,82, N
ResBottleneck x 1 ResBottleneck x 1
Conv 5 x 5,82, N TConv 5 x 5,82, N
ResBottleneck x 1 ResBottleneck x 1
Conv 5 x 5,82, N TConv 5 x 5,82, N
ResBottleneck x 1 ResBottleneck x 1
Conv 5 x 5,82, M TConv 5 x 5,82, 3

Table 2. Architecture of ELIC-sm main transform networks.

As shown in Table 1 and Table 2, our main networks are
adapted from those previously used by Ballé er al. (2018),
Minnen et al. (2018) and Minnen et al. (2020). We replace
GDN/IGDN layers by residual blocks, as mentioned in the
main text. We follow previous works to introduce a vari-
able N representing the channel number of intermediate
features, and lift the output channel number of analyzer to
M. Thus, the coding-symbol y is an H x W x M tensor.

We adopt residual bottleneck structures as nonlinear
transform, which have a dimensional bottleneck which can
both provide larger receptive field and keep the volume of
calculation acceptable. The channel number of intermedi-

ate features before and after 3 x 3 convolution is % We se-
quentially stack 3 such residual blocks after each down/up-
sampling convolution in ELIC (Table 1), and instead use
only one at each position in ELIC-sm (Table 2). We also
use the attention modules adopted by Cheng et al. in the
larger ELIC models to further enhance the nonlinearity.

We simply adopt the three-layer hyper analyzer and syn-
thesizer, following previous works (Minnen et al., 2018;
Minnen et al., 2020; He et al., 2021). The hyper synthe-
sizer output is an H x W x (2M) tensor ¥ as shown in
Figure 7 in the main text.

1.2. Architecture of SCCTX networks

Following Minnen et al. (2020), we use 5 X 5 con-
volutions to analyze cross-channel redundancy. The ar-
chitecture of g, network is frankly sketched from Min-
nen et al. (2020). We follow the suggestions of Min-
nen et al. (2018) and He et al. (2021) and use single-
layer 5 x 5 autoregressive/checkerboard-masked convolu-
tion as spatial context model gs,. Both gég) and ggﬁ) output
H x W x (2M ) features, where M *) is the channel
number of the k-th channel group.

Therefore, we have the concatenated adaptive represen-

tation tensor [@é’;)i, W) W) e REXWx(4M®P+2M) The
parameter aggregation network linearly reduces the dimen-

sions to 2M (%),

2. Detailed experimental settings

We implement, train, and evaluate all learning-based
models on PyTorch 1.8.1. We use NVIDIA TITANXP to
test both RD performance and inference speed. To test the
speeds, we reproduce previously proposed models and eval-
uate them under the same running conditions for fair com-
parison. Since most of the models adopt reparameterization
techniques, we fix the reparameterized weights before test-
ing the speed. We follow a common protocol to test the la-
tency with GPU synchronization. When testing each model,
we drop the latency results (we do not drop them when eval-
uating RD performance) of the first 6 images to get rid of
the influence of device warm-up, and average the running
time of remained images to get the precious speed results.

We do not enable the deterministic inference mode (e.g.
torch.backends.cudnn.deterministic) when
testing the model speeds for two reasons. First, we tend



to believe that the deterministic issue can be well solved
with engineering efforts, such as using integer-only infer-
ence. Thus, the deterministic floating-point inference is un-
necessary. Second, the deterministic mode extremely slows
down the speed of specific operators, like transposed con-
volutions which are adopted by ELIC and earlier baseline
models (Ballé ef al. and Minnen et al.), making the compar-
ison somewhat unfair.

We obtain the RD results of prior works by asking the
authors via emails or accessing released data directly.

2.1. Visualization explanation

We visualize the coding-symbols to investigate the in-
formation compaction property. The visualization results of
the lighthouse image is shown in Figure 2 of the main text.
The /-th gray scale image is the rescaled magnitude f* of
the /-th symbol channel (©):
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Inspired by the concept of energy in the signal process-
ing community, we introduce the term energy to describe
the average square value of each symbol channel:
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In the main text, Figure 2 presents the channels with the
largest energy values. Figure 3-left further shows the loga-
rithmic energy log(e) of each channel.

3. More rate-distortion results

We also calculate the BD-rate over VVC when adopting
MS-SSIM as the distortion metric. The results are shown
in Table 3. Several baselines are skipped since the original
authors do not provide the MS-SSIM results evaluated on
the MSE-optimized models.

For completeness, we evaluate our ELIC model at larger
BPP range (from 1.0 to 1.5 on Kodak). We train these mod-
els with A = {0.08,0.16}. The high-rate models still per-
form well. We draw the results on larger figures (Figure 1
for PSNR and Figure 2 for MS-SSIM) to more clearly show
the superiority of the proposed approach. We also evaluate
the models on CLIC-Professional and report Figure 3.

We further evaluate our model performance when op-
timizing for MS-SSIM, following prior works. Thus, the
distortion term of the loss function is replaced by 1 —
MSSSIM(z). We use A = {3,12,40,120} to train such
models, following Cheng et al. (2020). Figure 4 shows the
results. On Kodak, when achieving the same MS-SSIM,
ELIC optimized for MS-SSIM saves about half of the bit-
rate compared with VVC, which is encouraging.

BD-Rate (%) BD-Rate (%)

Model (PSNR) (MS-SSIM in dB)
ELIC (ours) -7.88 -12.73
ELIC-sm (ours) -1.07 -5.59
Minnen2020 1.11 -
Cheng2020[P] 3.89 -7.19
Minnen2018[P] 20.00 4.23
Ballé2018 40.85 16.41
Gao2021 -10.94 -
Guo2021 -7.02 -
Wu2021 [43] -5.71 -
Xie2021 -0.54 -7.82
Cheng2020 3.35 -3.17
Minnen2018 14.92 -0.68
vvC 0.00 0.00

Table 3. BD-rates over VVC for learned image compression mod-
els. The BD-Rate data is calculated from rate-distortion curves
over data points with BPP < 1 on Kodak. We present results
of two distortion metrics, PSNR and MS-SSIM in dB. Models
marked with [P] adopt parallel checkerboard context model and
[S] denotes serial context model.

Layer YEnc. (s) YDec. (s)
GDN 0.500 1.108
RBx1 0.448 1.165
PWRB x 3 0.583 1.191
RBx3 0.800 1.448

Table 4. Ballé2018 running speed on CPU with different nonlinear
layers, evaluated on Kodak.

YEnc. YDec.

Layer | Param. MACs | Param. MACs
(M) (G) (M) (G)

GDN 3.51 36.89 351 127.63
RBx1 376 47.64 3.75 138.38
PWRB x3 373  46.53 3.73 137.26
RBx3 448  78.71 448 169.44

Table 5. Ballé2018 parameter volumes and MACs with different
nonlinear layers, evaluated on Kodak.

4. Res-blocks v.s. GDN on CPU

For completeness, we also evaluate the latency of mod-
els with various nonlinear blocks on Intel Core i7-7700 (Ta-
ble 4) as well as their parameter volumes and numbers of
multiply-accumulate operations (MACs) (Table 5). To test
parameter volumes and MACs, we use the FLOPs profiler



of DeepSpeed . After replacing GDN blocks with residual
blocks (RB x 1), the adapted Ballé2018 models have slightly
larger MACs yet their en/de-coding speeds are on par with
the original model with GDNs. This is similar to the GPU
results in Table 4 of the main body.

5. Image reconstruction results

See Figures 5,6, we compare the reconstruction results
of the proposed ELIC and Cheng et al. (2020), since their
synthesis latency is close. We also present the decoded im-
age of VIM12.1 for reference.

6. Progressive decoding

In the main text, we present progressive decoding results
with thumbnail synthesizer and zero filling. In Figures 7,8,
We further show progressive decoding results with full syn-
thesizer and/or mean filling.

https : / / www . deepspeed . ai / tutorials / flops -
profiler/
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Figure 1. PSNR-BPP curve on Kodak. All models are optimized for minimizing MSE. All presented learning-based models can decode
the 512 x 768 Kodak image in 100 microseconds.
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Figure 3. PSNR-BPP curve on CLIC-Professional. All models are optimized for minimizing MSE. All presented learning-based models
can decode the 512 x 768 Kodak image in 100 microseconds.
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Figure 4. MS-SSIM RD curve on Kodak (opt. MS-SSIM). All models are optimized for maximizing MS-SSIM. All presented learning-
based models can decode the 512 x 768 Kodak image in 100 microseconds.



(a) Cheng et al. (2020). BPP= 0.129. PSNR= 29.36 (b) Ours. BPP= 0.144. PSNR= 30.42

(c) Ground-truth. (d) VIMI12.1. BPP= 0.151. PSNR= 30.28

Figure 5. Qualitative comparison on reconstructed lighthouse (kodim1 9) image.



(a) Cheng et al. (2020). BPP= 0.155. PSNR= 29.85 (b) Ours. BPP= 0.127. PSNR= 31.66

(c) Ground-truth. (d) VIMI12.1. BPP= 0.151. PSNR= 31.65

Figure 6. Qualitative comparison on reconstructed sculpture (kodiml 7) image.



Figure 7. Progressive decoding results (kodim05).

Line 1 (thumb-zero): the first 4 groups are decoded with thumbnail decoder and zero filling (the same setting as the main text).
Line 2 (thumb-mean): the thumbnail-decoding results with mean filling.

Line 3 (full-zero): all the 5 groups are decoded with full synthesizer, using zero filling.

Line 4 (full-mean): the full-decoding results with mean filling.

Figure 8. Progressive decoding results of the house image (kodim24). The image order is the same as Figure 7.
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