
LC-FDNet: Learned Lossless Image Compression with Frequency
Decomposition Network

Hochang Rhee1, Yeong Il Jang1, Seyun Kim2, Nam Ik Cho1

1Seoul National University, Seoul, Korea
1Dept. of Electrical and Computer Engineering, INMC

2Gauss Labs
hochang,jyicu@ispl.snu.ac.kr, light4u@gmail.com, nicho@snu.ac.kr

Abstract

Recent learning-based lossless image compression meth-
ods encode an image in the unit of subimages and achieve
comparable performances to conventional non-learning al-
gorithms. However, these methods do not consider the per-
formance drop in the high-frequency region, giving equal
consideration to the low and high-frequency areas. In
this paper, we propose a new lossless image compression
method that proceeds the encoding in a coarse-to-fine man-
ner to separate and process low and high-frequency regions
differently. We initially compress the low-frequency compo-
nents and then use them as additional input for encoding the
remaining high-frequency region. The low-frequency com-
ponents act as a strong prior in this case, which leads to im-
proved estimation in the high-frequency area. In addition,
we design the frequency decomposition process to be adap-
tive to color channel, spatial location, and image charac-
teristics. As a result, our method derives an image-specific
optimal ratio of low/high-frequency components. Experi-
ments show that the proposed method achieves state-of-the-
art performance for benchmark high-resolution datasets.

1. Introduction

As the need for high-quality images is increasing,
the importance of image compression is growing accord-
ingly. Driven by the development of deep neural networks
(DNNs), there has been remarkable progress in computer
vision and image processing, including lossy [3,4,8–15,18,
20–23,25,27–29,35,39–42,47,48] and lossless image com-
pression [3,16,24,26,30,33,34,36,37,43]. Although lossy
compression is generally preferred, lossless compression is
also necessary for many applications. Lossless compres-
sion is especially required for medical images, scientific im-
ages, technical drawings, and artistic photos. While meth-
ods such as JPEG2000 (lossless mode) [32] employ trans-

Low Frequency

High Frequency

LFC

HFC

AFDCurrent Subimage

Previous Subimages

Figure 1. Our LC-FDNet consists of Adaptive Frequency Decom-
position (AFD), Low-Frequency Compressor (LFC), and High-
Frequency Compressor (HFC). The current subimage is split into
low/high-frequency regions through the AFD. The LFC first com-
presses the low-frequency region, and then the HFC compresses
the high-frequency area using the low as strong prior.

form coding with discrete wavelet transform (DWT), most
of the standard/non-standard lossless compression meth-
ods [2, 5, 7, 45] use predictive coding. The standard pre-
dictive coding scheme uses a closed-loop prediction where
the current pixel is estimated and compressed using the pre-
viously encoded samples.

In this sense, early learning-based lossless compression
algorithms [24, 26, 30, 33, 36, 43] design DNNs as autore-
gressive models. They rely on the strong power of DNNs in
estimating the probability distribution of a pixel conditioned
on the previous samples. For example, PixelRNN [43], Pix-
elCNN [30], and PixelCNN++ [36] compress each pixel se-
quentially, where the probability distribution is predicted
conditioned on all previous pixels. However, these meth-
ods require neural network computations for the number of
whole pixels, leading to an impractical inference time.

To achieve practicality, recent works [24, 26, 33] pro-
cess the encoding in the unit of an entire image or subim-
ages rather than individual pixels. These methods de-
rive the probability distribution of a subimage conditioned
on the previously encoded subimages, or the distribution

1

ar
X

iv
:2

11
2.

06
41

7v
1

 [
ee

ss
.I

V
]

 1
3

D
ec

 2
02

1

of a whole image conditioned on the lossy compressed
image. They show reduced and practical computation
time compared to pixel-wise encoding methods. However,
these methods consider the low and high-frequency regions
equally, giving the same encoding strategies to the regions
of different characteristics. In general, it is difficult to ob-
tain optimal performance in high-frequency regions near an
edge or texture where the pixel values change rapidly.

We address this challenge and propose Lossless Com-
pression with Frequency Decomposition Network (LC-
FDNet) illustrated in Fig. 1, which consists of Adaptive
Frequency Decomposition (AFD), Low-Frequency Com-
pressor (LFC), and High-Frequency Compressor (HFC).
We also decompose an image into subimages based on
our unique decomposition scheme, and the first subim-
age is compressed by a conventional lossless compressor.
Then, the rest subimages are sequentially compressed by
Fig. 1. Using the previously encoded and current subim-
ages as the input, the AFD decomposes the image into low
and high-frequency regions, and the compressors (LFC and
HFC) encode low and high-frequency regions differently.
Since the low-frequency region is typically well predicted,
we first compress the low-frequency components. On the
other hand, high-frequency regions usually exhibit rela-
tively large prediction errors, and hence we encode them
separately with additional priors, which are the encoded
low-frequency pixels. That is, we feed the low-frequency
components as additional input for compressing the high-
frequency region.

For the image-specific frequency decomposition, the
AFD generates error variance map and error variance
thresholds. Error variance map can be comprehended as
the magnitude of the prediction error produced by the net-
work. By thresholding the error variance map with the error
variance threshold, we can classify the pixels into low and
high-frequency ones. Since the error variance differs de-
pending on the channel, spatial location, and image charac-
teristics, we design the threshold to be adaptive to those fac-
tors. This drives the frequency decomposition process to be
image-specific, where different threshold values are derived
depending on the image property. Experiments show that
the proposed method achieves state-of-the-art performance
for benchmark high-resolution datasets with reasonable in-
ference time.

In summary, the main contributions are as follows:

• We propose a lossless image compression framework
that compresses in a coarse-to-fine manner, using the
low frequency components to boost the performance in
high-frequency regions.

• We design the frequency decomposition process to
be adaptive to channel, spatial location, and image

characteristics. Hence, the encoding becomes image-
specific, improving the compression performance.

• Our method achieves state-of-the-art performance for
benchmark high-resolution datasets with reasonable
inference time.

2. Related Works

Pixel-wise Lossless Compression Learning-based lossless
compression methods generally adopt an autoregressive
model. Early methods proceeded the encoding in the pixel
unit, where each pixel is compressed based on the previ-
ously encoded ones. For example, PixelRNN [43] and Pix-
elCNN [30] modeled a pixel as the product of conditional
distributions p(x) =

∏
i p(xi|x1, ..., xi−1), where xi is a

single pixel. PixelCNN++ [36] was proposed as an ad-
vancement of the above works and achieved performance
enhancement along with faster time. They modeled the pix-
els as a discretized logistic mixture likelihood, used down-
sampling to capture structure at multiple resolutions, and
introduced additional short-cut connections. Despite these
factors, PixelCNN++ still maintains the inherent limitation
of autoregressive models, i.e., network computation is re-
quired for each pixel, requiring impractical inference time.

Subimage-wise Lossless Compression For the lossless
compression in a reasonable time, recent works perform
the encoding in the unit of an entire image or subimages.
Each of these methods has its unique strategy for convert-
ing an image into subimages. MS-PixelCNN [33] first pro-
posed a parallelized PixelCNN using a hierarchical encod-
ing scheme. Specifically, the input image is explicitly di-
vided into four subimages depending on the spatial loca-
tion, and the distribution of a subimage is conditioned on the
previously encoded subimages. However, they used PixelC-
NNs for modeling the dependency between the subimages,
which still required impractical time. L3C [24] proposed a
practical compression framework that utilizes a hierarchical
probabilistic model. The subimages are implicitly modeled
by a neural network and each subimage is conditioned on
the subimage of the previous scale. Here, the initial subim-
age is assumed as a uniform distribution. RC [26] can be
seen as a method that divides the image into two parts: lossy
compressed image and its residuals. The probability distri-
bution of the residuals is modeled based on lossy compres-
sion.

3. Method

3.1. Overview

The overall procedure of our method is illustrated in
Fig. 2. Given the input image x ∈ RH×W×3, we first con-
vert the RGB image into a YUV format through a reversible

2

a b a b

c d c d

a b a b

c d c d

a b a b

c d c d

a b a b

c d c d

a b a b

c d c d

a b a b

c d c d

a a

a a

a a

a a

a a

a a

b b

b b

b b

b b

b b

b b

c c

c c

c c

c c

c c

c c

d d

d d

d d

d d

d d

d d
Input Image

(YUV)

Subimages

Split Compress
d d

d d

Concat

d d

d d

Bitstream

JPEG-XL

a a

a a

a a

a a

a a

a a

Bitstream Bitstream

Concat …

Y U V

𝑥𝑌𝑈𝑉,𝑎

𝑥𝑌,𝑑 𝑥𝑈,𝑑

LC-FDNet𝑌,𝑑 LC-FDNet𝑈,𝑑

Figure 2. The framework of our compression scheme. Depending on the spatial location, each pixel is grouped as either a, b, c, d. The
input image is split into subimages, which are sequentially compressed. The subimage xY UV,a is initially encoded using a conventional
compression algorithm. The remaining subimages are compressed through deep networks, which receive the previously encoded subimages
as input and compress the current subimage. The dotted arrow denotes that the corresponding subimage is currently being compressed.
The compressed subimage is then used as an additional input for encoding the next subimage.

color transform [31]. Then we split the image in a channel-
wise and spatial-wise manner. Specifically, we divide the
input image into 12 subimages xc,s ∈ R

H
2 ×W

2 ×1, where c
denotes the channel index (c ∈ {Y, U, V }) and s denotes
the spatial location index (s ∈ {a, b, c, d}). The subimages
xY UV,a = {xY,a, xU,a, xV,a} are first compressed using a
conventional compression algorithm. Then, the remaining
subimages are compressed one by one with our LC-FDNet,
where previously encoded subimages are used as input. The
order of the subimages to be compressed will be explained
in Sec.3.3.

3.2. Reversible Color Transform

In general, RGB images have significant correlations be-
tween the color channels. Most standard image/video com-
pression methods adopt YUV transformation to decorrelate
the color channels and enhance the compression efficiency.
In the case of lossless compression, the YUV transforma-
tion must be itself lossless, where the inverse of the YUV
back to the RGB should be lossless in integer arithmetic.
In this paper, we adopt the reversible color transform pro-
posed in [31] since it well approximates the conventional
YUV transformation. Note that the Y channel is expressed
in 8 bits and UV channels are expressed in 9 bits.

3.3. Framework

After the reversible color transformation, the input im-
age is divided into subimages depending on the color chan-
nel and the spatial location. Fig. 2 shows how we catego-
rize the pixels into four groups (a, b, c, d) depending on the
spatial location. Pixels in the odd row and odd column are
categorized as a, odd row and even column as b, and so on.

We compress 12 subimages in total, where the compres-
sion of each subimage is conditioned on the previously en-

coded subimages. To be specific, for the compression of
the N -th subimage y ∈ RH

2 ×W
2 ×1, we concatenate the al-

ready encoded N − 1 subimages and use it as the input,
which we denote as xin ∈ R

H
2 ×W

2 ×(N−1). We neglect the
notation of the subimage index N for the sake of simplic-
ity. In this scenario, the order of the subimages is critical to
computational efficiency. The compression performance is
improved as the correlation among the input and the N -th
subimage increases. For instance, encoding subimage xY,d
is much easier when it is conditioned on xY,a rather than
xV,b.

We design the order of the subimages considering the
following two factors : 1) color channel and 2) spatial lo-
cation. In terms of the color channel, we arrange the or-
der as Y −→ U −→ V . This is a straightforward choice
since the Y channel contains more significant features than
U and V . Considering the spatial location, we design the
network to proceed in the order of a −→ d −→ b −→ c.
We figure that this is a better design choice compared to
MS-PixelCNN [33], where they progress in the order of
a −→ b −→ c −→ d. Comparing a −→ d and a −→ b, we
see that d fully utilizes the information of a both horizon-
tally and vertically. In contrast, acquiring b conditioned on
a may have more benefit in terms of the horizontal axis, but
lacks to fully utilize the vertical components. In conclusion,
we proceed the compression of the subimages in the order
of xY,a −→ xU,a −→, xV,a −→ xY,d −→ xU,d −→ ... −→ xV,c.

For the compression of the initial subimage we adopt
a conventional lossless compression algorithm, similar to
RC [26]. Prior works [24,28] provide the initial prior as uni-
form distribution or unit Gaussian distribution. Although
DNNs show great strength in estimating conditional proba-
bility distributions, the strength is limited when weak priors
are given. Conventional algorithms instead show compet-

3

ො𝑦𝐿

𝑦

𝑟𝐿

𝑞𝐿

𝜎𝑦 𝑚𝐿𝑥𝑖𝑛

Q−

≤ 𝜏𝑦

Entropy

Coder

×

Low Frequency Compressor

Entropy

Coder

High Frequency Compressor

𝑥𝑖𝑛

ො𝑦𝐻

Q−
𝑟𝐻

𝑞𝐻

𝜏𝑦

𝑝𝐿

𝑝𝐻
𝑚𝐻 = 1 −𝑚𝐿

Adaptive Frequency Decomposition

Figure 3. The architecture of LC-FDNet. In this figure, we consider the case of compressing y = xY,d given xin = xY UV,a. AFD part
first receives xin and determines each pixel as belonging to either low or high-frequency regions, using error variance map σy and error
variance threshold τy . Afterward, LFC encodes the low-frequency region of subimage y. HFC then receives the encoded low-frequency
region as additional input and compresses the remaining high-frequency region. The decoding process is provided in the Supplementary
Material.

itive performance in this environment, and hence we use
them for compressing the initial subimage xY UV,a. Specif-
ically, we adopt JPEG-XL [2] which yields state-of-the-
art performance among the conventional compression algo-
rithms.

3.4. Architecture

In this section, we present the architecture of LC-FDNet
illustrated in Fig. 3, which shows the details of Fig. 1. The
goal is to compress the N -th subimage y given the input
xin, which is the concatenation of N − 1 previous subim-
ages. Note that LC-FDNet is required for each of the subim-
ages, resulting in 9 LC-FDNets in total (since 3 subimages
are encoded by JPEG-XL). These networks do not share the
parameters since each of them is specific for each subimage.

Throughout the paper, notationsL andH denote low and
high-frequency, respectively. We first explain the notations
in the AFD and LFC parts.

Subimage Prediction ŷL ∈ R
H
2 ×W

2 ×1 is the network pre-
diction of y, where better prediction yields more compact
compression. Given the prediction, the residual is computed
as rL = ŷL−y, which is the difference between the ground
truth subimage and the prediction. Since the obtained resid-
ual is not in the form of integers, we quantize the residual. It
is denoted as qL, which is then passed to the entropy coder.

Probability Distribution pL is the estimated probability
distribution of the quantized residual qL. We directly es-
timate the probability distribution as the probability mass
function (pmf). Hence, the dimension of pL is H

2 ×
W
2 ×C,

where C is 511 for the Y channel, and 1021 for the U, V

channel. Softmax operation is applied before deriving pL,
so that the probabilities sum up to 1.

Error Variance Map The error variance map σy ∈
RH

2 ×W
2 ×1 represents the estimation of the prediction error

magnitude generated by the network. We design the error
variance map to follow the magnitude of the prediction error
through the following loss:

Lev = ‖σy − |y − ŷL|‖1. (1)

Here, each value in the map can be interpreted as the predic-
tion error variance at the corresponding pixel. A large value
implies that the network is likely to make a large predic-
tion error at the point, which means that the pixel belongs
to a high-frequency region. Similarly, smooth regions i.e.,
low-frequency regions yield low error variance values.

Error Variance Threshold With the obtained error vari-
ance map, we apply a simple thresholding to categorize
each pixel into two classes; pixels in low or high-frequency
regions. However, the threshold value should be adjusted
depending on the channel, spatial location and image char-
acteristics. For instance, the error variance is typically
larger in the Y channel compared to U and V . Thus the
threshold should be larger in the Y . Therefore, instead of
a fixed threshold, we let the network derive a specific error
variance threshold τy ∈ R for each subimage. Note that 9
threshold values are derived for a single input image. With
σy and τy in hand, we acquire the low-frequency mask as

mi
L =

{
1 if σi

y ≤ τy
0 else,

(2)

4

where i denotes the pixel index. mL serves as an indicator
of which components are considered in the low-frequency
region.

The quantized residual qL, corresponding probability
distribution pL, and the low-frequency mask mL are passed
to the entropy coder. We compress only the low-frequency
components i.e., pixels corresponding to mi

L = 1. It can
be assumed that pixels belonging to low-frequency regions
will have marginal performance enhancement even when
additional information is given, specifically when it is com-
pressed in the HFC. Instead, the compression efficiency
gain is significant when these components serve as the ad-
ditional input.

After the compression of low-frequency regions in LFC,
HFC encodes the remaining high-frequency regions. Be-
sides xin, HFC additionally receives the low-frequency
component of the currently encoding subimage y � mL.
From the input, HFC generates the following two outputs:
1) ŷH : the prediction of y, 2) pH : the probability distri-
bution of the quantized residual qH . Since low-frequency
components serve as a strong prior for the high-frequency
components, HFC can make more precise predictions. In
addition, the variance of the probability distribution is re-
duced, leading to compression efficiency.

The pipeline of HFC is similar to that of LFC. The
quantized residual qH , corresponding probability distribu-
tion pH , and the high-frequency mask mH = 1 −mL are
fed to the entropy coder. Note that HFC can ignore the esti-
mation of low-frequency components and only focus on the
high-frequency ones.

3.5. Loss Function

LC-FDNet is trained with the following three losses: 1)
Error variance loss defined as Eq. 1, 2) reconstruction loss,
and 3) bitrate loss.
Reconstruction Loss We define reconstruction loss as the
L1 loss between the ground truth and the predicted subim-
age:

Lrec = mL · ‖y − ŷL‖1 +mH · ‖y − ŷH‖1. (3)

Note that we multiply the corresponding frequency mask to
the prediction error of LFC and HFC. This lets only the low-
frequency components contribute to the reconstruction loss
of LFC, and similarly for HFC. This makes the LFC/HFC
to be specified for low/high-frequency regions, respectively.
Although the reconstruction loss is often neglected in other
researches, we figure that adopting this loss leads to stable
training and performance enhancement.

Bitrate Loss Bitrate loss is used to minimize the cross-
entropy between the real probability distribution of the

quantized residual (pqL , pqH) and the estimated (pL, pH),
respectively. Formally, it is defined as

Lbr = mL·‖− log pL(qL)‖1+mH ·‖− log pH(qH)‖1. (4)

The probability distributions pL and pH are trained to clas-
sify the corresponding quantized residuals (symbols) qL and
qH by the cross-entropy loss. This is equivalent to the ex-
pected bits per symbol and thus we can directly minimize
the coding cost. To restrict the contribution of each fre-
quency component as in the reconstruction loss, we mul-
tiply the frequency masks to the corresponding probability
distribution.

Altogether, we train our network with the loss:

L = Lrec + λbrLbr + λevLev (5)

where λev and λbr are the balancing hyperparmeters. In our
experiments, we set both λev and λbr as 1.

4. Experiments
4.1. Experimental Setup

Implementation Detail The detail of the network architec-
ture is provided in the Supplementary Material. For the
quantization, we use the round function i.e., q = round(r).
The derivative is zero except at integers, which cannot be
used in gradient-based optimization. Therefore, we approx-
imate the round function as simple STE [6] i.e., q = r in
the backward pass since [9] has shown that different quan-
tization approximation methods have a minor effect on the
compression performance. The same problem is introduced
when deriving mL with Eq. 2. This is approximated as
mL = sigmoid(−(σy − τy)) in the backward pass. For
our entropy coder, we use “torchac,” which is a fast arith-
metic coding library for PyTorch developed by the authors
of L3C [24].

Dataset We validate our method on three benchmark
datasets, DIV2K, CLIC.p, and CLIK.m. DIV2K [1] is a
super-resolution dataset that consists of 2K resolution high-
quality images, where 800 images are provided for training
and 100 images for evaluation. CLIC mobile (CLIC.m) and
CLIC professional (CLIC.p) are datasets released as part of
the “Workshop and Challenge on Learned Image Compres-
sion” [46]. CLIC.m consists of 61 evaluation images which
are taken using mobile phones. CLIC.p contains 41 evalua-
tion images which are taken by DSLRs. Most of the images
in the CLIC datasets are 2K resolution, but some of them
are low resolution as far as 512× 384.

Training We train our network with DIV2K training images
that are of 2K resolution. We randomly extract a patch of
size 128× 128 from the input image during training. Adam

5

Table 1. Comparison of our method with other non-learning and learning-based codes on high-resolution benchmark dataset. We measure
the performances in bits per pixel (bpp). Best performance is highlighted in bold and the second-best performance is denoted with ∗. The
difference in percentage to our method is highlighted in green.

Method CLIC.m CLIC.p DIV2K

PNG [7] 11.79 +69.2% 11.79 +49.2% 12.69 +55.3%

JPEG-LS [45] 7.59 +8.9% 8.46 +7.1% 8.97 +9.8%

JPEG2000 [32] 8.13 +16.6% 8.79 +11.3% 9.36 +14.6%

WebP [44] 8.19 +17.5% 8.70 +10.1% 9.33 +14.2%

BPG [5] 8.52 +22.2% 9.24 +17.0% 9.84 +20.4%

FLIF [38] 7.44 +6.7% 8.16 +3.3% 8.73 +6.9%

JPEG-XL [2] 7.20∗ +3.3% 8.19 +3.7% 8.49 +3.9%

L3C [24] 7.92 +13.6% 8.82 +11.7% 9.27 +13.5%

RC [26] 7.62 +:9.3% 8.79 +11.3% 9.24 +13.1%

Near-Lossless [3] 7.53 +8.0% 7.98∗ +1.0% 8.43∗ +3.2%

Ours 6.97 7.90 8.17

optimizer [17] is used for the training, with a batch size of
24 for 3,000 epochs. The learning rate is initially set as
1× 10−3 and decays by a factor of 0.1 every 1,000 epochs.
The training takes 36 hours when trained on a GeForce GTX
1080 Ti.

Evaluation We compare our method for both learned and
non-learned compression algorithms. We compare against
the following conventional lossless image codecs: PNG [7],
JPEG-LS [45], JPEG2000 [32], WebP [44], BPG [5],
FLIF [38] and JPEG-XL [2]. As for the learned methods,
we consider L3C [24], RC [26], and Near-Lossless [3]. L3C
and RC are trained with Open Images dataset [19] consist-
ing of 300,000 images. Near-Lossless is trained with the
same dataset as our method, the DIV2K dataset. We use
bits per pixel (bpp) as the evaluation metric, where lower
bpp indicates better compression performance.

4.2. Compression Result

Table 1 presents the comparisons on the described eval-
uation sets. It can be seen that our method shows superior
performance to both engineered and learning-based codecs.
Considering DIV2K, our method achieves a 3.2% gain com-
pared to Near-Lossless, which is also trained with DIV2K.
In the case of CLIC.m, non-learning codecs such as FLIF
and JPEG-XL outperform existing learning-based methods.
Thus, it can be interpreted that learning-based methods are
difficult to be generalized to CLIC.m. Nevertheless, our
method achieves state-of-the-art performance and outper-
forms JPEG-XL by 3.3%. Finally, for CLIC.p, our method
shows the best performance achieving 1.0% gain against
Near-Lossless.

In Table 2, we report the compression result for each
subimage, i.e., each channel and spatial location. Consid-
ering the spatial location, we observe that the compression
efficiency enhances in the order of a −→ d −→ b −→ c.

Table 2. Compression result of each subimage for the DIV2K
dataset. Compression performance of subimage xY UV,a is the re-
sult of JPEG-XL.

bpp a d b c
Y - 0.96 0.81 0.78
U - 0.59 0.45 0.45
V - 0.58 0.44 0.43

Total 2.68 2.13 1.70 1.66

This is straightforward since more information is supplied
as we proceed in the above order. From the perspective of
channels, better compression is presented in the order of
Y −→ UV . This is due to the color transform that reduces
the variance in UV channels. Moreover, V channel shows a
slight improvement compared to U since we use additional
input U when encoding the V .

4.3. Inference Time

We measure the inference time required for encoding a
512×512 image on an GeForce GTX 1080 Ti. First, the
compression of the initial subimage using JPEG-XL re-
quires 199 ms. The forward pass for achieving the quan-
tized residual, probability distribution, and frequency mask
takes 33 ms. Finally, the arithmetic coding using torchac
requires 1.6 s. In total, our method requires 1.8 s. Note that
89% of the time is consumed in arithmetic coding, which
can be shortened if PyTorch-friendly entropy coder is de-
veloped in the future.

4.4. AFD Analysis

We quantitatively and qualitatively demonstrate that the
error variance threshold is adaptive to the channel, spatial
location, and image characteristics. We first show that the
error variance threshold is adaptive to the channel and spa-

6

0.26 0.34 9.05 9.33

Figure 4. From top to down are the visualizations of an input image, error variance map, low-frequency mask, and error variance threshold.
These elements are visualized for the case of the Y channel and d location. We choose the samples from the DIV2K dataset that have the
smallest and largest τy . The error variance map is magnified by 5 for visualization.

tial location through Table 3. In general, the threshold value
decreases in the order of d −→ b −→ c and Y −→ UV . This
is consistent with the order of compression efficiency. If
the subimage is more predictable, the overall values in the
variance map tend to decrease. In this case, the error vari-
ance threshold should also decrease to balance the low to
high-frequency ratio.

Next, we show that the error variance threshold is adap-
tive to the image characteristics. Fig. 4 shows the out-
puts generated from LFC. The first two samples contain a
large portion of the smooth background and a single ob-
ject. These samples produce a small threshold value of 0.26
and 0.34. In contrast, the last two samples are more com-
plicated than the preceding ones and introduce many high-
frequency components. These samples generate a large
threshold value of 9.05 and 9.33. We interpret these obser-
vations that the error variance threshold is proportional to
the number of high-frequency components an image con-
tains.

We also verify the above conclusion quantitatively. We
figure that images with many high-frequency components
tend to introduce large values in the error variance map.
In addition, these images result in low compression rate.
Hence, for samples in DIV2K, we plot the error variance
threshold against the mean value of the error variance map
and bpp in Fig. 5. It can be observed that the error variance
threshold and the two components have a positive correla-

Table 3. Error variance threshold value for each subimage. Since
the threshold is image-specific, we average the threshold for all the
images in DIV2K dataset.

τy d b c

Y 3.57 2.84 2.72
U 2.68 2.24 2.21
V 2.66 2.30 2.24

tion. In conclusion, the error variance threshold is adap-
tive to image characteristics, where the threshold value in-
creases as more high-frequency components are present in
the image.

4.5. Ablation Study

Several ablation experiments are performed to analyze
each component of LC-FDNet. We demonstrate the contri-
bution of each component in Table 4 by excluding the com-
ponents one by one. The comparing networks are trained
and evaluated on the DIV2K dataset. We exclude the por-
tion of JPEG-XL (2.68 bpp) in computing the compression
performance.

Coarse to Fine We first demonstrate the effect of proceed-
ing in a coarse-to-fine manner. We design a comparing net-
work that compresses the low and high-frequency compo-

7

0 2 4 6 8 10 12 14

Mean Value of Error Variance Map

0

2

4

6

8

10

12

E
rr

or
 V

ar
ia

nc
e

T
hr

es
ho

ld

0 0.5 1 1.5

BPP

0

2

4

6

8

10

12

E
rr

or
 V

ar
ia

nc
e

T
hr

es
ho

ld
Figure 5. Graph of image characteristic versus error variance
threshold for DIV2K dataset. We use the samples of DIV2K, chan-
nel of Y , and spatial location of d.

nents together so that the high-frequency components do
not benefit from the low ones. Hence, the network only out-
puts the subimage prediction and probability distribution.
We match the number of parameters for both networks to
demonstrate that the performance gain does not come from
the difference in the network size. The result (first row of
Table 4) shows that we can have a 5.8% performance gain
by the coarse-to-fine processing. Hence, we can conclude
that low-frequency components act as strong priors for esti-
mating the high-frequency components.

Adaptive Error Variance Threshold We show that letting
the error variance threshold be adaptive to image character-
istics leads to performance enhancement. Specifically, we
train a network with fixed τ for every subimage. Since our
framework is sensitive to the value of τ , we should carefully
set the threshold value for a fair comparison. Hence, we use
the average τy of the DIV2K validation set derived from our
full model as our fixed τ . The second row of the table shows
that the compression efficiency decreases by 2.7% with the
fixed τ .

Loss Masking We verify that multiplying the correspond-
ing frequency mask in Eq. 3 and Eq. 4 has a valid contri-
bution. For this, we train a network without the multipli-
cation of frequency mask. In other words, the LFC and
HFC of this network share the same objective and are not
frequency-specific. In this scenario, a performance drop of
2.0% is observed as in the third row, indicating that assign-
ing frequency-specific roles to LFC and HFC has a positive
influence.

4.6. Frequency Component Analysis

We show the performance enhancement in low and high-
frequency regions separately in Table 5 for further analy-
sis of our system. We first compare our full model (C2F)
against the model without the coarse-to-fine processing
(w/o C2F) as in the ablation study. Compared to the net-
work that proceeds without the coarse-to-fine processing,
the low-frequency components have a 3.4% performance

Table 4. Ablation study of our method on DIV2K dataset. C2F
refers to the coarse-to-fine network. X indicates that the corre-
sponding element is used.

C2F Adaptive τ Loss Masking bpp
X 5.81 +5.8%

X X 5.64 +2.7%

X X 5.60 +2.0%

X X X 5.49

Table 5. Performance gain on low and high-frequency regions.
F2C refers to the network proceeding in a fine-to-coarse manner.

Method Low-Freq High-Freq Total
w/o C2F 3.95 +3.4% 1.86 +11.3% 5.81 +5.8%

F2C 3.80 -0.5% 1.85 +10.8% 5.65 +2.9%

C2F 3.82 1.67 5.49

gain, whereas high-frequency components have an 11.3%
increase. This implies that the high-frequency components
benefit significantly from the coarse-to-fine processing. The
low-frequency components indeed act as strong conditions
for the estimation of high-frequency components, as in-
tended.

We train an additional network that proceeds in a fine-
to-coarse manner (F2C). That is, we compress the high-
frequency components first and utilize them for encoding
the low-frequency components. From Table 5, we observe
that the performance gain is 0.5% in the low-frequency
area, which is minor. In contrast, there is a considerable
performance drop of 10.8% in the high-frequency compo-
nents. Altogether, there is a total performance drop of 2.9%
when proceeding in a fine-to-coarse manner. Although low-
frequency components take up a large portion of an image,
the gain is too small to have enough contribution to the over-
all gain. Thus, we conclude that the design choice of coarse-
to-fine manner is indeed favorable.

5. Conclusion

We have proposed LC-FDNet, a lossless image compres-
sion framework that decomposes an input image into low
and high-frequency regions to proceed in a coarse-to-fine
manner. We resolved the performance drop in the high-
frequency areas by first compressing the low-frequency
components and using them as a strong prior for encod-
ing the remaining high-frequency components. Further-
more, we designed the frequency decomposition method
to be adaptive to color channel, spatial location, and im-
age characteristics to derive the image-specific optimal ratio
of low/high-frequency components. Extensive experiments
show that our method achieves state-of-the-art performance
for high-resolution benchmark datasets. We will release our

8

code publicly.

References
[1] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge

on single image super-resolution: Dataset and study. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition workshops, pages 126–135, 2017. 5

[2] Jyrki Alakuijala, Ruud van Asseldonk, Sami Boukortt, Mar-
tin Bruse, Iulia-Maria Coms, a, Moritz Firsching, Thomas Fis-
chbacher, Evgenii Kliuchnikov, Sebastian Gomez, Robert
Obryk, et al. Jpeg xl next-generation image compression
architecture and coding tools. In Applications of Digital Im-
age Processing XLII, volume 11137, page 111370K. Inter-
national Society for Optics and Photonics, 2019. 1, 4, 6

[3] Yuanchao Bai, Xianming Liu, Wangmeng Zuo, Yaowei
Wang, and Xiangyang Ji. Learning scalable ly=-constrained
near-lossless image compression via joint lossy image and
residual compression. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
11946–11955, 2021. 1, 6

[4] Johannes Ballé, Valero Laparra, and Eero P Simoncelli.
End-to-end optimized image compression. arXiv preprint
arXiv:1611.01704, 2016. 1

[5] Bellard. Bpg image format. https://bellard.org/
bpg. 1, 6

[6] Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013. 5

[7] Thomas Boutell and T Lane. Png (portable network graph-
ics) specification version 1.0. Network Working Group,
pages 1–102, 1997. 1, 6

[8] Benoit Brummer and Christophe De Vleeschouwer. End-to-
end optimized image compression with competition of prior
distributions. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1890–
1894, 2021. 1

[9] Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro
Katto. Learning image and video compression through
spatial-temporal energy compaction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10071–10080, 2019. 1, 5

[10] Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro
Katto. Learned image compression with discretized gaussian
mixture likelihoods and attention modules. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7939–7948, 2020. 1

[11] Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Variable
rate deep image compression with a conditional autoencoder.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 3146–3154, 2019. 1

[12] Ze Cui, Jing Wang, Shangyin Gao, Tiansheng Guo, Yihui
Feng, and Bo Bai. Asymmetric gained deep image com-
pression with continuous rate adaptation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10532–10541, 2021. 1

[13] Xin Deng, Wenzhe Yang, Ren Yang, Mai Xu, Enpeng
Liu, Qianhan Feng, and Radu Timofte. Deep homography
for efficient stereo image compression. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1492–1501, 2021. 1

[14] Ge Gao, Pei You, Rong Pan, Shunyuan Han, Yuanyuan
Zhang, Yuchao Dai, and Hojae Lee. Neural image com-
pression via attentional multi-scale back projection and fre-
quency decomposition. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 14677–
14686, 2021. 1

[15] Dailan He, Yaoyan Zheng, Baocheng Sun, Yan Wang,
and Hongwei Qin. Checkerboard context model for effi-
cient learned image compression. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14771–14780, 2021. 1

[16] Emiel Hoogeboom, Jorn WT Peters, Rianne van den Berg,
and Max Welling. Integer discrete flows and lossless com-
pression. arXiv preprint arXiv:1905.07376, 2019. 1

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

[18] Jan P Klopp, Keng-Chi Liu, Liang-Gee Chen, and Shao-
Yi Chien. How to exploit the transferability of learned im-
age compression to conventional codecs. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 16165–16174, 2021. 1

[19] Ivan Krasin, Tom Duerig, Neil Alldrin, Vittorio Ferrari, Sami
Abu-El-Haija, Alina Kuznetsova, Hassan Rom, Jasper Ui-
jlings, Stefan Popov, Andreas Veit, et al. Openimages: A
public dataset for large-scale multi-label and multi-class im-
age classification. Dataset available from https://github.
com/openimages, 2(3):18, 2017. 6

[20] Jooyoung Lee, Seunghyun Cho, and Seung-Kwon Beack.
Context-adaptive entropy model for end-to-end optimized
image compression. arXiv preprint arXiv:1809.10452, 2018.
1

[21] Mu Li, Wangmeng Zuo, Shuhang Gu, Jane You, and David
Zhang. Learning content-weighted deep image compression.
IEEE transactions on pattern analysis and machine intelli-
gence, 2020. 1

[22] Mu Li, Wangmeng Zuo, Shuhang Gu, Debin Zhao, and
David Zhang. Learning convolutional networks for content-
weighted image compression. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 3214–3223, 2018. 1

[23] Haichuan Ma, Dong Liu, Ning Yan, Houqiang Li, and Feng
Wu. End-to-end optimized versatile image compression with
wavelet-like transform. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 2020. 1

[24] Fabian Mentzer, Eirikur Agustsson, Michael Tschannen,
Radu Timofte, and Luc Van Gool. Practical full resolu-
tion learned lossless image compression. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10629–10638, 2019. 1, 2, 3, 5, 6

[25] Fabian Mentzer, Eirikur Agustsson, Michael Tschannen,
Radu Timofte, and Luc Van Gool. Conditional probability

9

https://bellard.org/bpg
https://bellard.org/bpg

models for deep image compression. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 4394–4402, 2018. 1

[26] Fabian Mentzer, Luc Van Gool, and Michael Tschannen.
Learning better lossless compression using lossy compres-
sion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 6638–6647,
2020. 1, 2, 3, 6

[27] Fabian Mentzer, George Toderici, Michael Tschannen, and
Eirikur Agustsson. High-fidelity generative image compres-
sion. arXiv preprint arXiv:2006.09965, 2020. 1

[28] David Minnen, Johannes Ballé, and George Toderici. Joint
autoregressive and hierarchical priors for learned image
compression. arXiv preprint arXiv:1809.02736, 2018. 1,
3

[29] David Minnen, Johannes Ballé, and George Toderici. Joint
autoregressive and hierarchical priors for learned image
compression. arXiv preprint arXiv:1809.02736, 2018. 1

[30] Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse
Espeholt, Alex Graves, and Koray Kavukcuoglu. Con-
ditional image generation with pixelcnn decoders. arXiv
preprint arXiv:1606.05328, 2016. 1, 2

[31] Soo-Chang Pei and Jian-Jiun Ding. Improved reversible
integer-to-integer color transforms. In 2009 16th IEEE In-
ternational Conference on Image Processing (ICIP), pages
473–476. IEEE, 2009. 3

[32] Majid Rabbani. Jpeg2000: Image compression fundamen-
tals, standards and practice. Journal of Electronic Imaging,
11(2):286, 2002. 1, 6

[33] Scott Reed, Aäron Oord, Nal Kalchbrenner, Sergio Gómez
Colmenarejo, Ziyu Wang, Yutian Chen, Dan Belov, and
Nando Freitas. Parallel multiscale autoregressive density es-
timation. In International Conference on Machine Learning,
pages 2912–2921. PMLR, 2017. 1, 2, 3

[34] Hochang Rhee, Yeong Il Jang, Seyun Kim, and Nam Ik Cho.
Lossless image compression by joint prediction of pixel and
context using duplex neural networks. IEEE Access, 2021. 1

[35] Oren Rippel and Lubomir Bourdev. Real-time adaptive im-
age compression. In International Conference on Machine
Learning, pages 2922–2930. PMLR, 2017. 1

[36] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P
Kingma. Pixelcnn++: Improving the pixelcnn with dis-
cretized logistic mixture likelihood and other modifications.
arXiv preprint arXiv:1701.05517, 2017. 1, 2

[37] Ionut Schiopu and Adrian Munteanu. Deep-learning-based
lossless image coding. IEEE Transactions on Circuits and
Systems for Video Technology, 30(7):1829–1842, 2019. 1

[38] Jon Sneyers and Pieter Wuille. Flif: Free lossless image for-
mat based on maniac compression. In 2016 IEEE interna-
tional conference on image processing (ICIP), pages 66–70.
IEEE, 2016. 6

[39] Myungseo Song, Jinyoung Choi, and Bohyung Han.
Variable-rate deep image compression through spatially-
adaptive feature transform. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 2380–
2389, 2021. 1

[40] Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc
Huszár. Lossy image compression with compressive autoen-
coders. arXiv preprint arXiv:1703.00395, 2017. 1

[41] George Toderici, Sean M O’Malley, Sung Jin Hwang,
Damien Vincent, David Minnen, Shumeet Baluja, Michele
Covell, and Rahul Sukthankar. Variable rate image com-
pression with recurrent neural networks. arXiv preprint
arXiv:1511.06085, 2015. 1

[42] George Toderici, Damien Vincent, Nick Johnston, Sung
Jin Hwang, David Minnen, Joel Shor, and Michele Covell.
Full resolution image compression with recurrent neural net-
works. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5306–5314, 2017. 1

[43] Aaron Van Oord, Nal Kalchbrenner, and Koray
Kavukcuoglu. Pixel recurrent neural networks. In In-
ternational Conference on Machine Learning, pages
1747–1756. PMLR, 2016. 1, 2

[44] WebEngines Blazer Platform Version. 1.0 hardware refer-
ence guide, xp-002202892, network engines. Inc., Jun, 1:92,
2000. 6

[45] Marcelo J Weinberger, Gadiel Seroussi, and Guillermo
Sapiro. The loco-i lossless image compression algorithm:
Principles and standardization into jpeg-ls. IEEE Transac-
tions on Image processing, 9(8):1309–1324, 2000. 1, 6

[46] Workshop and challenge on learned image compression.
https://www.compression.cc/challenge/. 5

[47] Fei Yang, Luis Herranz, Yongmei Cheng, and Mikhail G
Mozerov. Slimmable compressive autoencoders for practical
neural image compression. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 4998–5007, 2021. 1

[48] Xi Zhang and Xiaolin Wu. Attention-guided image compres-
sion by deep reconstruction of compressive sensed saliency
skeleton. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 13354–
13364, 2021. 1

10

https://www.compression.cc/challenge/

	1 . Introduction
	2 . Related Works
	3 . Method
	3.1 . Overview
	3.2 . Reversible Color Transform
	3.3 . Framework
	3.4 . Architecture
	3.5 . Loss Function

	4 . Experiments
	4.1 . Experimental Setup
	4.2 . Compression Result
	4.3 . Inference Time
	4.4 . AFD Analysis
	4.5 . Ablation Study
	4.6 . Frequency Component Analysis

	5 . Conclusion

