
POCO: Point Convolution for Surface Reconstruction

Alexandre Boulch1 Renaud Marlet1,2

1Valeo.ai, Paris, France 2LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France

Abstract

Implicit neural networks have been successfully used for
surface reconstruction from point clouds. However, many
of them face scalability issues as they encode the isosur-
face function of a whole object or scene into a single latent
vector. To overcome this limitation, a few approaches in-
fer latent vectors on a coarse regular 3D grid or on 3D
patches, and interpolate them to answer occupancy queries.
In doing so, they lose the direct connection with the in-
put points sampled on the surface of objects, and they at-
tach information uniformly in space rather than where it
matters the most, i.e., near the surface. Besides, relying
on fixed patch sizes may require discretization tuning. To
address these issues, we propose to use point cloud con-
volutions and compute latent vectors at each input point.
We then perform a learning-based interpolation on nearest
neighbors using inferred weights. Experiments on both ob-
ject and scene datasets show that our approach significantly
outperforms other methods on most classical metrics, pro-
ducing finer details and better reconstructing thinner vol-
umes. The code is available at https://github.com/
valeoai/POCO.

1. Introduction
Constructing a surface or volume representation from 3D

points sampled at the surface of an object or scene has nu-
merous applications, from digital twins processing to aug-
mented and virtual reality. Cheaper sensors directly produc-
ing 3D points (depth cameras, low-cost lidars) and mature
multi-view stereo techniques [95, 96] operating on images
offer increasing opportunities for such reconstructions.

Traditional 3D reconstruction approaches [6] generally
express the target surface as the solution to an optimiza-
tion problem under some prior constraints. Possibly lever-
aging visibility or normal information, they are generally
scalable to large scenes and offer a substantial robustness
to noise and outliers [52, 57, 77, 88, 102, 111, 118, 131]. Al-
though some try to cope with density variation [11, 47, 48],
a common limitation of these approaches is their inability
to properly complete parts of the scene that are less densely

Input (65536 pts) SA-ConvONet POCO (ours)

(a) Scene 1 56 min 40 s 10 min 19 s

(b) Scene 2 1 h 38 min 17 min 22 s

Figure 1. MatterPort3D. POCO trains on Synthetic Rooms 10k.

sampled or that are missing (typically due to occlusions). A
variety of hand-crafted priors try to address this complete-
ness issue: local or global smoothness [64], decomposition
into geometric primitives [94] (in particular for piecewise-
planar man-made environments [5, 8, 16, 30, 78]) and struc-
tural regularities [59,85]. Data-driven priors have also been
explored, based on shape retrieval [32], possibly with de-

1

https://github.com/valeoai/POCO
https://github.com/valeoai/POCO

Convolutional
backbone

Input point cloud Latent vector at
input point level

Neighborhood
of query point

Attentive
decoding Occupancy

at query
location

Shape encoding at point level Local decoding

Query
point

Figure 2. Overview of our method (inference). Given 3D points sampled on a surface, we construct latent vectors at each input point.
Then, to estimate the occupancy of a given query point in space, we interpolate with inferred weights the relative occupancy scores in a
neighborhood. Last, a mesh is reconstructed based on occupancy queries (white blur indicates uncertainty) using a form of Marching cubes.

formations [79]. But it remains limited in applicability.
To use richer priors, learning-based methods have been

proposed, using explicit shape representations. Voxel-based
approaches leverage a regular grid structure, extending 2D
image-based techniques to 3D, but suffer from resolution
limitations due to large memory consumption [22, 74, 119].
Directly generating a mesh with a neural network remains
difficult [37] and is limited in practice to template deforma-
tion [39]. Some forms of implicit representations have been
used for point cloud generation, but providing much weaker
geometrical and topological information [31, 61, 127].

More success has been achieved with explicitly-designed
implicit representations, where the network encodes a func-
tion R3 →R expressing a volume occupancy [17, 75] or a
distance to the surface [76,83]. Such models require no dis-
cretization and can address arbitrary topologies. More pre-
cisely, discretization only occurs at mesh generation stage,
using an algorithm such as the Marching cubes [69]. Yet,
due to fully-connected architectures that lack translational
equivariance, most existing approaches only operate on a
single object and cannot apply to arbitrary scenes.

A few recent methods [19, 20, 24, 50, 87, 110], however,
obtain a form of translational equivariance via Convolu-
tional Neural Networks (CNNs). At least in theory, they can
thus scale to larger scenes, possibly benefiting both from lo-
cal and non-local information. But they operate on a vox-
elized discretization whose vertices may be far from the in-
put point cloud. They thus lose the direct connection with
points sampled on the surface of objects. They are also sub-
optimal in that the features or latent vectors holding the oc-
cupancy or distance information are more or less uniformly
distributed in space rather than focused where difficult de-
cisions have to be made, i.e., near the surface.

Our approach, based on point convolution, overcomes

these issues. It is illustrated on Fig. 2. Our contributions are:
• We attach features representing the implicit function to

input points. Not only does it preserve point positions
until later processing stages, rather than abstract them
away too soon, but it concentrates the information to
learn where it matters the most: close to the surface.

• We compute features using point convolution, which
yields a natural coverage and scalability to scenes of
arbitrary size. (Rather than tailor yet another specific
network architecture, we rely on a general point convo-
lution backbone, which offers prospects for improve-
ment when better point convolutions are designed.)

• Rather than relying on hand-designed forms of aver-
aging, we extend prior learning to interpolation, which
we apply to query-relative features rather than global
features, as others do, as it leads to better results.

• We propose an efficient test-time augmentation to treat
inputs of high density or large size.

• While simple, our approach outperforms other meth-
ods both on object and scene datasets, yielding finer
details. It is robust to domain shift (training on ob-
jects, testing on scenes) and faster than methods that
overfit to a scene or infer from scratch for each query.

2. Related work
2.1. 3D representations

Voxels have been a natural choice for learning to rep-
resent 3D volumes [22, 74, 119, 121–123]. However, they
come with a cubic complexity in space, leading to coarse
discretizations due to memory constraints. Multi-scale re-
finement [25, 44] and sparsity-based octrees [91, 92, 106]
only partly reduce the impact of conforming to a 3D grid.

2

Input = 50k pts Ntrain=Ntest=3k Ntrain=Ntest=3k Ntrain=Ntest=10k Ntrain=Ntest=10k Points2Surf
Nview=10 Nview=10

Figure 3. Real World. Model from Real World reconstructed by POCO in different settings and by Points2Surf

Points clouds are also produced as a sparse 3D repre-
sentation, with various density and sampling distribution
[1, 31, 61, 71, 116, 127, 128]. Point processing and gener-
ation do not suffer from the complexity and discretization
induced by 3D grids; yet, the range of applications is lim-
ited regarding representing actual surfaces and volumes.

Meshes are a preferred representation for many uses,
such as visualizations and simulations, but they are harder
to directly produce from a neural network (vertex regres-
sion and face construction) [80]. Most existing approaches
thus prefer to operate by deforming geometric primitives
[39, 62, 112, 115], voxelized approximations [37, 60] or
learned templates [40, 51]. Rather than actually inferring
vertices, a mesh can also be extracted from labels inferred
on a Delaunay tetrahedralization [70].

Implicit representations rely on a neural network to
model a function expressing the occupancy of a given 3D
point [17, 75] or its distance to the surface, either signed
[38, 76, 83], unsigned [20] or sign-agnostic [2, 10]. The
signed or unsigned distance field (SDF, UDF) is often
truncated (TSDF, TUDF) and estimated via a multi-layer
perceptron (MLP). The isosurface can then be extracted
from this occupancy or distance field with various meth-
ods such as Marching cubes [69]. Whereas voxels, points
and mesh vertices are intrinsically discrete representations,
implicit representations offer a virtually infinite resolution.
Moreover, while mesh-based approaches struggle to en-
force watertightness, to limit self-intersections and to ad-
dress complex topologies (non genus-0), meshes recon-
structed from implicit representations are guaranteed to be
watertight and have no self-intersections. Besides, they can
easily model arbitrary complex topologies. These advan-
tages may explain the recent success of this representa-
tion, including to model 3D shapes from images without
3D supervision [66, 81, 101], with texturing [82] or spe-
cific rendering [67]. Departing from occupancy or distance
fields, ShapeGF [12] models a shape by learning the gra-
dient field of its log-density, then samples points on high
likelihood regions of the shape and meshes them. Other
work also study the decomposition of shapes and implicit
surfaces into parts [28, 35, 36, 49, 84, 109], possibly over-

fitting networks to generate or render a single object or
scene [65, 73, 100, 103, 117, 126, 129].

Scalability, however, is an issue for all these methods.
While they can encode reasonably well one object or a class
of objects, they cannot cope with the variability and size of
an arbitrary scene involving several objects. Even consider-
ing a single object and assuming a powerful decoder, the en-
coding of a single or a few latent vectors hardly can develop
into detailed shape information. Using periodic activation
functions [100, 104] or adding a 2D convolutional compo-
nent on input images [93, 124] helps, but is not enough.

A solution is to split the input points on a regular 3D grid
and to optimize one latent vector per voxel [13] (DeepLS),
possibly from overlapping input patches. Patch splitting
can also be irregular and optimization-driven to favor self-
similarities, with a global post-optimization to flip inconsis-
tent local signs [129] (SAIL-S3). But whether these meth-
ods optimize only the latent vectors or a whole network as
well, for patch decoding, they make surface reconstruction
significantly slower, leading to reduced test sets.

Besides, these methods rely on fully-connected architec-
tures whereas, we believe, convolutions, and in particular
point convolutions [7, 9, 45, 58, 68, 72, 108, 113, 120, 125],
are the key to scalability and increased details.

2.2. Convolutions for implicit representations

LIG [50] divides the input point cloud along a regular
3D grid to create 3D patches and capture local geometric
shapes shared by several objects at a medium scale. For
each of these patches, a 3D CNN then computes a local
feature vector, which goes through a reduced IM-NET [18]
for SDF decoding. However, later on, only the learned de-
coder is exploited; no local embedding is inferred. Given
an input point cloud, latent vectors on the grid are opti-
mized from scratch to minimize an objective function sim-
ilar to the loss used for training. LIG additionally requires
to be provided with oriented normals to make use of points
known to be inside or outside the shape. This, however,
may introduce artificial back-faces, which can partly be ad-
dressed in a postprocessing stage. In contrast, we can work
without normals, we directly operate with convolutions on

3

Input SPR Neural Splines LIG Ours
20

pt
s/

m
2

38s 5 min 09 s 5 min 22 s 17 min 32 s

10
0

pt
s/

m
2

1 min 21 s 8 min 11 s 5 min 12 s 18 min 04 s

50
0

pt
s/

m
2

3 min 55 s 25 min 17 s 5 min 00 s 20 min 44 s

10
00

pt
s/

m
2

5 min 05 s 46 min 44 s 5 min 08 s 23 min 59 s
Figure 4. SceneNet. Partial view of a full scene. The color on point clouds indicates the orientation of normals.

surface points rather than on a regular grid, and we directly
use inferred embeddings without any heavy optimization.

IF-Net [19] introduces a multi-scale pyramid of 3D con-
volutional encoders aligned on a discrete voxel grid and
trained on voxels at different scales. The occupancy of a
query point is decided by a decoder taking as input the in-
terpolated features extracted at this point for each pyramid
level. In contrast, we do not discretize into voxels; we use
point cloud convolution. Also, we learn how to interpolate
the latent vectors rather than use a basic trilinear interpola-
tion. Last, we provide results on scenes, not just on objects.

NDF [20] uses the same multi-scale encoding as IF-Net
but relies on a UDF rather than occupancy for decoding. It
allows the generation of very dense points clouds that can
directly be meshed into possibly open surfaces.

SG-NN [24] uses a sparse 3D convolution [21] to learn
a TSDF in a self-supervised setting, training for completion
from partial scans. In contrast, we use point convolution and
infer occupancy rather than SDF, which is easier to learn.

ConvONet [87] also uses a grid-based convolution, train-
ing an autoencoder that predicts occupancy. (It generalizes

ONet [75], which only uses a single encoding and full con-
nection.) For input point clouds, the encoder is a shallow
PointNet [89] operating on points rather than on a voxelized
discretization, and the decoder is a 3D U-Net [23]. The
occupancy of a 3D point is inferred from a trilinear inter-
polation of grid features. Besides 3D convolution, variants
based on a combination of 2D convolutions in a few spa-
tial directions are proposed. DP-ConvONet [63] is a variant
that considers a dynamic family of such directions. SA-
ConvONet [105] overfits a pre-trained ConvONet model on
the input using a sign-agnostic optimization of the implicit
field. It improves accuracy at the cost of computation time.

As inference applies to grids, whose vertices or centers
may be far from input points, the above methods lose the
direct connection with the input surface samples. They are
also suboptimal in that the latent vectors holding the infor-
mation are uniformly distributed in space rather than con-
centrated where it matters the most, i.e., near the surface. To
address these issues, we use point convolution and compute
latent vectors at each input point. We then interpolate occu-
pancy decisions of nearest neighbors using learned weights.

4

SoftMax

Point-wise MLP
Latent vectors Coordinates

32 32

Attention-based weighting

32

32
Linear layer
output size 32

32

64

k
2

Occupancy

Mean

32 3
Sum

Occupancy prediction
(empty or full)

ReLU activation

Matrix
multiplication

Figure 5. Architecture. The latent vectors zp (red squares) produced by the convolution-based encoder E of k neighboring points p of a
query point q are: (1) augmented with the relative query position q−p (yellow squares), (2) re-encoded with a 3-layer point-wise MLP R
(green frame) into relative latent vectors zp,q (green squares), (3) combined (blue frame) with inferred weights sp,q (gray squares) into a
latent vector zq (blue squares), (4) decoded with a linear layer D (pink frame) into occupancy logits oq and probablities oq (pink squares).

AdaConv [110] uses point convolution like us but ag-
gregates multi-scale information on an adaptive voxel grid,
while we attach features to points, closer to the surface. Be-
sides, it requires oriented normals, contrary to us.

RetrievalFuse [98] splits a scene along a regular grid and
encodes each 3D chunk as a latent vector via convolutional
layers. But rather than using them for decoding, it retrieves
similar chunks from the training set and combines their dis-
tance field to create a surface, enhancing the completion ca-
pability. In contrast, we are fully convolutional and the im-
plicit function is directly obtained by interpolating inferred
features, without the need to maintain the dataset samples
used for training and with more generalization capacity.

Points2Surf [29] collects, for each query point, both a
patch of neighbors (which gives a convolution flavor) and
globally-sampled input points to help to provide a sign to
the local distance field. The local patch and the global sub-
sampling go through an MLP to create latent vectors that are
concatenated and decoded into a signed distance. In con-
trast, we directly get non-local information as our receptive
field is much larger. Besides, we are faster as we only com-
pute a limited number of latent vectors (one per input point)
that we later use for interpolation given a query point, while
Points2Surf samples local+global points and goes through
the whole encoder for each query point, i.e., a large number
of times, that grows with the Marching-cubes resolution.

To infer occupancy or distance of a query point, meth-
ods that compute several latent vectors for a single object
or scene either select the most appropriate latent vector to
decode, typically in a multi-scale grid [110], or interpolate
the latent vectors of query neighbors [19,20,50,63,87,105].
We perform interpolation too, based on features computed
on input points. However, given a query point, we do not
interpolate the features themselves but the occupancy logits,
as our experiments shows it leads to better results. Besides,
we use a learned interpolation rather than the usual tri-linear
interpolation [19, 20, 50, 63, 87, 105] or the inverse-distance
distance weighting [90]. Although different in nature, learn-
ing has also been used in [98] to blend retrieved chunks.

3. Our method

Goal. Given as input a set of 3D points P sampled on a
surface, possibly with noise, our goal is to construct a con-
tinuous function ω : R3 → [0, 1] indicating the probability
of occupancy oq =ω(q) at any given query point q ∈ R3.
We learn this function with a neural network using data con-
sisting of point clouds sampled in the whole space and la-
beled with 0 (in empty space) or 1 (within the shape). The
surface of the shape can then be extracted as the isosurface
of the implicit function ω with occupancy level 0.5.

Overview. Our method consist of the following steps:

1. We encode input points p∈P into latent vectors zp.

2. Given an arbitrary query point q, we consider a neigh-
borhood Nq of input points in P to interpolate from.

3. For each neighbor p∈Nq, we construct a relative la-
tent vector zp,q from zp and local coordinates q−p.

4. We extract significance weights sp,q to sum the rela-
tive latent vectors zp,q: zq =

∑
p∈Nq

sp,q zp,q.

5. We decode the resulting feature vector zq as two full-
empty logits oq, and turn them into probabilities oq.

These steps, illustrated on Figure 5, are detailed below.
Absolute encoding. A point convolution first produces a

latent vector zp =E(p) for each input point p∈P . The en-
coder E can be implemented by any point cloud segmenta-
tion backbone, only changing the last layer to yield a vector
of some chosen dimension n as the size of vectors zp. (In
our experiments, the convolution backbone is FKAConv [9]
and n=32.) To also use normals (optionally), the input
points are just augmented with the 3 normal coordinates.

Query neighborhood. Given an arbitrary query point q
(when training or to predict occupancy at test time), we con-
struct a set of neighbors Nq from input points P . (In our ex-
periments, Nq is the k nearest neighbors of q, with k=64.)

Relative encoding. We augment the latent vector zp of
each neighbor p∈Nq with the local coordinates q−p of
query point q relatively to p. These augmented latent vec-
tors are then processed by an MLP R to produce relative la-
tent vectors zp,q = R(zp ∥q−p), where ∥ is the concate-
nation. (In our experiments, zp and zp,q have size n=32.)

5

Feature weighting. As PRNet [114], we observe that the
norm of embeddings zp,q tends to correlate with their sig-
nificance, hinting how much an input point p matters for de-
ciding the occupancy of query point q, given p’s neighbors
and the position of q w.r.t. p. We use it to infer significance
weights for relative latents vectors zp,q. Concretely, we use
an attention mechanism (blue frame in Fig. 5): The relative
embeddings zp,q go through a linear layer parameterized by
a weight vector w, also of size n, producing relative weights
wp,q =w ⊙ zp,q, that are normalized by softmax over Nq

into positive interpolation weights sp,q summing to 1. We
actually use a multi-head strategy to obtain a form of en-
sembling. We learn h independent linear layers, parameter-
ized by h corresponding weight vectors (wi)i=1..h, produc-
ing h relative weights wp,q,i =wi ⊙ zp,q, that are finally
softmaxed as sp,q,i and averaged as sp,q = 1

n

∑
i sp,q,i. (In

our experiments, we use h=64.)
Interpolation. The feature vector zq at query point q is

interpolated from the relative latent vectors zp,q of neigh-
bors p, as the weighted sum zq =

∑
p∈Nq

sp,q zp,q.
Decoding. A linear layer D decodes the feature vector

zq into occupancy scores oq =D(zq), which is a two-logit
vector classifying position q as occupied or not, that is then
turned via softmax into occupancy probabilities oq.

Loss function. To train the network, we use a cross-
entropy loss that penalizes wrong occupancy predictions.
Please note that using a binary cross-entropy, like in IF-Net
[19] or ConvONet [87], leads to identical results.

4. Refinements
Adapting to high density. We train our network with a

fixed number Ntrain of input points for easy mini-batching.
(In our experiments, Ntrain = 3k or 10k.) At test time, if the
surface is more densely sampled, the receptive field of the
backbone may lack enough global context to decide which
side of the surface is full or empty, unless oriented normals
are also provided with points. A way to broaden enough the
receptive field is to downsample the input point cloud, but
it then naturally leads to a loss of details.

To reduce this effect, we rely on test-time augmentation
(TTA) [56], which can be seen as a form of ensembling: we
average several runs on different subsamples. However, ag-
gregating final results, as often done in TTA [97], would be
very time consuming in our case as we would have to do it to
answer the occupancy of each query, basically multiplying
the inference running time by the number of subsamples.

Instead, we perform TTA at latent vector level, thus run-
ning several times only the first step of our approach (ab-
solute encoding), before query decoding. It depends on the
number of input points (to attach a latent vector on), rather
than on the number of query points, which is much larger.
Concretely, we randomly create enough subsamples so that
each point p∈P is seen at least Nview times, and average

GT Input ConvONet POCO (ours)

Figure 6. ShapeNet. The methods train and test on 3k noisy pts.

each zp over all samples. (In experiments, Nview =10.) The
subsamples are randomly generated by sequentially picking
a point p∈P with a priority that is the opposite of the num-
ber of times p appears in previous subsamples.

Adapting to large size. As our method is convolutional,
it naturally adapts to input point clouds P of arbitrary size.
Yet, while P may contain millions of points, GPU mem-
ory limits in practice the number of points Ntest that can be
treated together by the backbone. (We use Ntest = 100k.)

As with semantic segmentation [9], we can use a sliding-
window with overlapping chunks of P of maximum size
Ntest. Alternatively, as above, we can make subsamples of
P by iteratively picking a low-priority point p∈P and its
Ntest−1 nearest neighbors. (In our experiments, Nview =3.)

Scene scaling. At inference time, the scale of the input
point cloud may differ from the scales in the training set.
As point-based backbones can be sensitive to variations of
scale and density, we rescale the input such that the aver-
age distance between a point and its nearest neighbor is the
same both in the training set and in the test point cloud.

5. Experiments
We experiment both on objects and scenes, in different

point density regimes, with or without normal information
depending on the baseline methods we compare with.

Because existing methods often perform well in some
setting but not in others, most published papers tend to eval-
uate on different datasets or in specific configurations: num-
ber of train/test points, added noise, normals, generaliza-
tion, etc. Some methods are also too slow to be evaluated

6

on full datasets and report results only on dataset fractions.
To be fair with these methods, we evaluate in their setting
(when enough information is provided to do so) rather than
impose them specific settings. It also illustrates the ability
of our method to adapt to various configurations.

5.1. Datasets, baselines and metrics

ShapeNet [15], as pre-processed by [22], contains wa-
tertight meshes of shapes in 13 classes, with train/val splits
and 8500 objects for testing. As [87], we sample 3000
points from each mesh (at each epoch) and apply a Gaus-
sian noise with zero mean and standard deviation 0.05.

Synthetic Rooms [87] has 5000 synthetic scenes with
random walls and populated with ShapeNet objects. We use
[87]’s protocol for sampling 10k pts on the meshes to create
train/val/test data, with noise as for ShapeNet. Shapes are
scenes in terms of complexity, objects in terms of size.

ABC [54] is a set of CAD models, mainly mechanical
parts. We use splits and point preprocessing from [29]: 4950
shapes for training, 100 for validation and 100 for testing.

Famous [29] contains 22 shapes of various origins, e.g.,
from the Stanford 3D Scanning Repository [55].

Thingi10k [130], as prepared by [29], has 100 shapes.
SceneNet [42,43] is a synthetic dataset of indoor scenes.

Data prepared in the same way as [46] yield 34 scenes.
MatterPort3D [14] has indoor scenes too. We use the

same 2 scenes as prepared and used by [105]: with 65k pts.
Baselines are drawn among the state-of-the-art methods

presented in Section 2.2. We also compare to SPR [52], a
popular, non-learning-based reconstruction method that re-
quires oriented normals (which is a strong hypothesis) and,
possibly, a trimming parameter tuning (factor 6 in Tab. 4).

Our method, unless otherwise stated, uses the FKA-
Conv backbone [9], feature size n=32 as in ConvONet [87]
or LIG [50], k=64 neighbors, h=64 interpolation heads,
and does not use normals nor TTA.

Mesh Generation, for implicit functions, is done with
the Marching cubes [69] with resolution 2563 for objects,
1 cm for SceneNet, 2 cm for MatterPort3D.

Metrics. We use the following common metrics: vol-
umetric IoU, symmetric Chamfer L1-distance ×102 (CD),
normal consistency (NC), i.e., mean absolute cosine of nor-
mals in one mesh and normals at nearest neighbors in the
other mesh, and F-Score [107] with threshold value 1%
(FS). Surface metrics are approximated by point sampling.

5.2. Alternative and ablation studies

To justify our algorithmic choices, we experiment on
ShapeNet in generalization mode, training on chairs but
evaluating on all the classes. We use the same train/test
split as [75, 87], evaluating on 130 shapes (10 per class).

As can be seen in Table 1(a), the convolutional backbone
FKAConv [9] is more efficient by a large margin than the

(a) Point backbone IoU ↑ CD ↓ NC ↑
Residual PointNet 0.661 10.583 0.817
FKAConv 0.882 4.069 0.929

(b) No. interpolation neighbors IoU ↑ CD ↓ NC ↑
k = 1 0.799 6.951 0.867
k = 8 0.819 6.723 0.912
k = 64 0.882 4.069 0.929
k = 128 0.876 3.611 0.930

(c) Interpol. features glob. rel. IoU ↑ CD ↓ NC ↑
Max ✓ 0.882 4.069 0.929
Mean ✓ 0.883 3.703 0.933
Mean ✓ 0.854 5.331 0.902
Inverse distance ✓ 0.877 3.947 0.935
Inverse distance ✓ 0.851 4.724 0.912
Single-head attention ✓ 0.879 3.686 0.934
Multi-head attention ✓ 0.895 3.702 0.938

Table 1. Alternative study. We train on ShapeNet chairs, with-
out normals, 3k input points, with noise, and unless otherwise
stated, FKAConv backbone, k=64 neighbors, and max interpola-
tion. We test on 10 models from each of the 13 ShapeNet classes.
We interpolate either global features zp or relative features zp,q.

PointNet-based segmentation network with residual con-
nections [75, 89], which loses small scale information [90].

Though interpolating from k=64 neighbors rather than
k=128 has a slightly worse CD and NC (cf. Tab. 1(b)), it
has a better IoU and it is faster; we use this setting in the
following. We note we get better results with a multi-head
attention (using h=64 rather than h=1) and when inter-
polating relative rather than global features (cf. Tab. 1(c)).

Last, Tab. 2 and Fig. 3 show the benefits of the TTA strat-
egy with models trained with 3k and 10k points on ABC.

5.3. Reconstruction

Reconstruction without normals. Because of long run-
ning times, only a few published methods evaluate on the
whole ShapeNet dataset. We outperform them on all met-
rics with a significant margin (Table 3). We reconstruct finer
details (Figure 6) and we do not have the same tendency as
ConvONet to fill volumes; we can instead generate more
easily thin surfaces, which explain our superior IoU. We
outperform other methods as well on Synthetic Rooms (Ta-
ble 4), where also we capture much finer details.

Generalization. LIG is specifically designed for scal-
ability and generality. It learns to reconstruct small shape
patches from a given dataset, and then applies it to any new
object or scene. Points2Surf is a patch-learning method too,
although its requirement for a global view of the input and
its running time make it less suited for scene reconstruction.

We compare to LIG, training both methods on ShapeNet
objects (with normals as LIG requires them) and testing on

7

Test set ABC (100 shapes) Famous (22 shapes) Thingi10k (100 shapes)
Method Noise setting no-n. var-n. max-n. no-n. med-n. max-n. sparse dense no-n. med-n. max-n. sparse dense

DeepSDF [83] 8.41 12.51 11.34 10.08 9.89 13.17 10.41 9.49 9.16 8.83 12.28 9.56 8.35
AtlasNet [39] 4.69 4.04 4.47 4.69 4.54 4.14 4.91 4.35 5.29 5.19 4.90 5.64 5.02
SPR [52] 2.49 3.29 3.89 1.67 1.80 3.41 2.17 1.60 1.78 1.81 3.23 2.35 1.57
Points2Surf [29] 1.80 2.14 2.76 1.41 1.51 2.52 1.93 1.33 1.41 1.47 2.62 2.11 1.35

POCO Ntrain=Ntest=3k 1.87 2.26 2.90 1.56 1.75 2.99 1.99 1.70 1.47 1.64 3.21 2.00 1.55
POCO Ntrain=Ntest=3k, Nview=10 1.77 2.10 2.68 1.40 1.54 2.93 1.78 1.50 1.39 1.46 2.55 1.83 1.40
POCO Ntrain=Ntest=10k 1.72 2.15 2.72 1.57 1.61 3.04 1.92 1.57 1.50 1.57 2.82 2.08 1.51
POCO Ntrain=Ntest=10k, Nview=10 1.70 2.01 2.50 1.34 1.50 2.75 1.89 1.50 1.35 1.44 2.34 1.95 1.38

Table 2. ABC, Famous, Thingi10k. Training on ABC shapes with 10 scans, variable Gaussian noise (σ uniformly picked in [0, 0.05L],
L largest box length). Chamfer distance × 100 on ABC, Famous and Thingi10k test sets, as prepared by [29]: ‘no-n.’ (no noise), ‘var-n.’
(variable noise, as training), ‘max-n.’ (σ=0.05L), ‘med-n.’ (σ=0.01L), ‘sparse’ (5 scans), ’dense’ (30 scans). Only SPR uses normals.

Method IoU ↑ CD↓ NC ↑ FS↑
ONet [75] 0.761 0.87 0.891 0.785
ConvONet [87] 0.884 0.44 0.938 0.942
DP-ConvONet [63] 0.895 0.42 0.941 0.952

POCO (ours) 0.926 0.30 0.950 0.984

Table 3. ShapeNet. The methods train and test on 3k noisy pts.

Method IoU ↑ CD ↓ NC ↑ FS ↑
ONet [75] 0.475 2.03 0.783 0.541
SPR [52] - 2.23 0.866 0.810
SPR trimmed [52] - 0.69 0.890 0.892
ConvONet [87] 0.849 0.42 0.915 0.964
DP-ConvONet [63] 0.800 0.42 0.912 0.960

POCO (ours) 0.884 0.36 0.919 0.980

Table 4. Synthetic Rooms. Learning-based methods train and test
on 10k noisy pts. Only SPR uses normals. Numbers from [63,87].

SceneNet. We generalize better (Tab. 5) at all densities, cap-
turing finer details and not erasing thin objects (Fig. 4).

We compare to Points2Surf, training on ABC in the same
setting. We outperform Points2Surf on most of their set-
tings (Tab. 2), both on ABC and when generalizing to Fa-
mous and Thingi10k. Points2Surf outperforms POCO only
on very noisy or dense inputs, and only with a small margin.

Scene reconstruction without normals. We compare
to SA-ConvONet on MatterPort3D scenes (Fig. 1) in their
same actual setting (downsampling to 65536 pts). Our re-
construction is less smooth than SA-ConvONet but has finer
details. As SA-ConvONet overfits many networks at infer-
ence time on top of ConvONet, it is notably slower too.

5.4. Discussion and limitations

Our approach is suited both for single-object and whole-
scene reconstruction. However, although it can cope with
a substantial variation of point density, it cannot complete
shapes when large parts are missing. Apart from a few

pts/m2 Method CD ↓ NC ↑ FS ↑
20 SPR [52] 5.27 0.772 0.4392

Neural Splines [118] 3.76 0.815 0.6563
LIG [50] 1.52 0.923 0.8757
POCO (ours) 0.84 0.960 0.9600

100 SPR [52] 1.96 0.853 0.7709
Neural Splines [118] 1.15 0.931 0.9228
LIG [50] 0.97 0.961 0.9643
POCO (ours) 0.57 0.984 0.9941

500 SPR [52] 0.86 0.936 0.9787
Neural Splines [118] 0.60 0.982 0.9958
LIG [50] 0.87 0.975 0.9773
POCO (ours) 0.53 0.992 0.9987

1000 SPR [52] 0.73 0.967 0.9957
LIG [50] 0.84 0.978 0.9750
POCO (ours) 0.53 0.993 0.9987

Oracle (4M pts) 0.50 0.995 0.9998

Table 5. SceneNet. LIG and POCO train on ShapeNet with 10k
pts with normals (no noise). Test is on SceneNet with normals (no
noise). Neural Splines uses a grid size of 1024, 10k Nyström sam-
ples, 8×8×8 chunks. Numbers differ from [50] as we had to re-
generate the unavailable watertight meshes: we used [46] with res-
olution 500k, higher than in [50], getting finer and thinner details
where CAD models have no volume; as [50], we ignore scenes
with volume-to-area ratio > 0.13, getting 34 scenes. ‘Oracle’ is
the ground truth evaluated against itself (two different samplings).

methods like [24, 26, 27, 98], only object-targeted methods
can presently do it, for classes known at training time, but
they cannot reconstruct scenes at all.

Inferring surface orientation, when normals are not pro-
vided, requires wide context information. But a high den-
sity may reduce the receptive field, yielding orientation fail-
ures and artifacts. Our TTA only partly addresses the issue;
handling it directly at backbone level would be better.

Nevertheless, POCO reaches the state of the art for both
object and scene reconstruction, with or without oriented

8

normals. It shows good generalization capabilities to shapes
and scenes that are very different from the training set.

More details and visuals on the method and on the ex-
periments are in the supplementary material.
Acknowledgments to Gilles Puy for fruitful discussions.

References
[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and

Leonidas Guibas. Learning representations and generative
models for 3D point clouds. In International Conference
on Machine Learning (ICML), 2018. 3

[2] Matan Atzmon and Yaron Lipman. SAL: Sign agnostic
learning of shapes from raw data. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2020. 3, 17

[3] Matan Atzmon and Yaron Lipman. SALD: Sign agnostic
learning with derivatives. In International Conference on
Learning Representations (ICLR), 2021. 17

[4] Ma Baorui, Han Zhizhong, Liu Yu-shen, and Zwicker
Matthias. Neural-Pull: Learning signed distance functions
from point clouds by learning to pull space onto surfaces.
In International Conference on Machine Learning (ICML),
2021. 17

[5] J.P. Bauchet and F. Lafarge. Kinetic shape reconstruction.
ACM Transactions on Graphics (TOG), 39(5), 2020. 1

[6] Matthew Berger, Andrea Tagliasacchi, Lee M. Seversky,
Pierre Alliez, Joshua A. Levine, Andrei Sharf, and Clau-
dio T. Silva. State of the art in surface reconstruction from
point clouds. In Eurographics Conference (EG), 2014. 1

[7] Alexandre Boulch. ConvPoint: Continuous convolutions
for point cloud processing. Computers & Graphics (CG),
88:24–34, 2020. 3

[8] Alexandre Boulch, Martin de La Gorce, and Renaud Mar-
let. Piecewise-planar 3D reconstruction with edge and
corner regularization. Computer Graphics Forum (CGF),
33(5):55–64, 2014. 1

[9] Alexandre Boulch, Gilles Puy, and Renaud Marlet. FKA-
Conv: Feature-kernel alignment for point cloud convolu-
tion. In Asian Conference on Computer Vision (ACCV),
2020. 3, 5, 6, 7, 14, 23

[10] Alexandre Boulch, Gilles Puy, and Renaud Marlet. Nee-
Drop: Self-supervised shape representation from sparse
point clouds using needle dropping. In International Con-
ference on 3D Vision (3DV), 2021. 3

[11] A. Bódis-Szomorú, H. Riemenschneider, and L. Van Gool.
Efficient volumetric fusion of airborne and street-side data
for urban reconstruction. In International Conference on
Pattern Recognition (ICPR), 2016. 1

[12] Ruojin Cai, Guandao Yang, Hadar Averbuch-Elor, Zekun
Hao, Serge Belongie, Noah Snavely, and Bharath Hariha-
ran. Learning gradient fields for shape generation. In Euro-
pean Conference on Computer Vision (ECCV), 2020. 3

[13] Rohan Chabra, Jan Eric Lenssen, Eddy Ilg, Tanner
Schmidt, Julian Straub, S. Lovegrove, and Richard A. New-
combe. Deep local shapes: Learning local SDF priors for
detailed 3D reconstruction. In European Conference on
Computer Vision (ECCV), 2020. 3, 17

[14] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej
Halber, Matthias Niebner, Manolis Savva, Shuran Song,
Andy Zeng, and Yinda Zhang. Matterport3D: Learning
from RGB-D data in indoor environments. In International
Conference on 3D Vision (3DV), pages 667–676. IEEE,
2017. 7, 23

[15] A.X. Chang, T.A. Funkhouser, L.J. Guibas, P. Hanrahan,
Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su, J.
Xiao, L. Yi, and F. Yu. ShapeNet: An information-rich 3D
model repository, 2015. arXiv preprint arXiv:1512.03012.
7, 23

[16] Anne-Laure Chauve, Patrick Labatut, and Jean-Philippe
Pons. Robust piecewise-planar 3D reconstruction and com-
pletion from large-scale unstructured point data. In Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 1261–1268, 2010. 1

[17] Z. Chen and H. Zhang. Learning implicit fields for gener-
ative shape modeling. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2019. 2, 3

[18] Zhiqin Chen and Hao Zhang. Learning implicit fields for
generative shape modeling. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2019. 3, 17

[19] J. Chibane, T. Alldieck, and G. Pons-Moll. Implicit func-
tions in feature space for 3D shape reconstruction and com-
pletion. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2020. 2, 4, 5, 6, 17

[20] Julian Chibane, Aymen Mir, and Gerard Pons-Moll. Neu-
ral unsigned distance fields for implicit function learning.
In Conference on Neural Information Processing Systems
(NeurIPS), 2020. 2, 3, 4, 5, 17, 23

[21] Christopher Choy, JunYoung Gwak, and Silvio Savarese.
4D spatio-temporal ConvNets: Minkowski convolutional
neural networks. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2019. 4

[22] Christopher B. Choy, Danfei Xu, JunYoung Gwak, Kevin
Chen, and Silvio Savarese. 3D-R2N2: A unified approach
for single and multi-view 3D object reconstruction. In Eu-
ropean Conference on Computer Vision (ECCV), 2016. 2,
7, 23

[23] Ö. Çiçek, A. Abdulkadir, S.S. Lienkamp, T. Brox, and O.
Ronneberger. 3D U-Net: Learning dense volumetric seg-
mentation from sparse annotation. In International Confer-
ence on Medical Image Computing and Computer-Assisted
Intervention (MICCAI), 2016. 4

[24] Angela Dai, Christian Diller, and Matthias Nießner. SG-
NN: Sparse generative neural networks for self-supervised
scene completion of RGB-D scans. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2020. 2, 4,
8, 17

[25] A. Dai, C.R. Qi, and M. Nießner. Shape completion us-
ing 3D-encoder-predictor CNNs and shape synthesis. In
Conference on Computer Vision and Pattern Recognition
(CVPR), 2017. 2

[26] Angela Dai, Charles Ruizhongtai Qi, and Matthias Nießner.
Shape completion using 3D-encoder-predictor CNNs and
shape synthesis. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2017. 8

9

[27] Angela Dai, Daniel Ritchie, Martin Bokeloh, Scott Reed,
Jürgen Sturm, and Matthias Nießner. ScanComplete:
Large-scale scene completion and semantic segmentation
for 3D scans. In Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2018. 8, 17

[28] Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien
Bouaziz, Geoffrey Hinton, and Andrea Tagliasacchi.
CvxNet: Learnable convex decomposition. In Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2020. 3

[29] Philipp Erler, Paul Guerrero, Stefan Ohrhallinger, Niloy J.
Mitra, and Michael Wimmer. Points2Surf: Learning im-
plicit surfaces from point clouds. In European Conference
on Computer Vision (ECCV), 2020. 5, 7, 8, 14, 17, 23

[30] Lafarge F. and Alliez P. Surface reconstruction through
point set structuring. In Eurographics Conference (EG),
2013. 1

[31] H. Fan, H. Su, and L.J. Guibas. A point set generation
network for 3D object reconstruction from a single image.
In Conference on Computer Vision and Pattern Recognition
(CVPR), 2017. 2, 3

[32] Ran Gal, Ariel Shamir, Tal Hassner, Mark Pauly, and Daniel
Cohen-Or. Surface reconstruction using local shape pri-
ors. In Eurographics Symposium on Geometry Processing
(SGP), page 253–262, 2007. 1

[33] Jun Gao, Wenzheng Chen, Tommy Xiang, Clement Fuji
Tsang, Alec Jacobson, Morgan McGuire, and Sanja Fidler.
Learning deformable tetrahedral meshes for 3D reconstruc-
tion. In Conference on Neural Information Processing Sys-
tems (NeurIPS), 2020. 17

[34] M. Garland and P.S. Heckbert. Simplifying surfaces with
color and texture using quadric error metrics. In Visualiza-
tion, pages 263–269, 1998. 14

[35] K. Genova, F. Cole, A. Sud, A. Sarna, and T.A. Funkhouser.
Local deep implicit functions for 3D shape. In Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2020. 3, 17

[36] K. Genova, F. Cole, D. Vlasic, A. Sarna, W.T. Freeman,
and T. Funkhouser. Learning shape templates with struc-
tured implicit functions. In International Conference on
Computer Vision (ICCV), 2019. 3

[37] G. Gkioxari, J. Malik, and J. Johnson. Mesh R-CNN. In In-
ternational Conference on Computer Vision (ICCV), 2019.
2, 3

[38] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and
Yaron Lipman. Implicit geometric regularization for learn-
ing shapes. In International Conference on Machine Learn-
ing (ICML), 2020. 3, 17

[39] T. Groueix, M. Fisher, V.G. Kim, B.C. Russell, and M.
Aubry. AtlasNet: A papier-mâché approach to learning 3D
surface generation. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2018. 2, 3, 8, 16, 23

[40] Thibault Groueix, Matthew Fisher, Vladimir G. Kim,
Bryan C. Russell, and Mathieu Aubry. 3D-CODED: 3D
correspondences by deep deformation. In European Con-
ference on Computer Vision (ECCV), 2018. 3

[41] Ankur Handa, Viorica Patraucean, Vijay Badrinarayanan,
Simon Stent, and Roberto Cipolla. SceneNet: Understand-
ing real world indoor scenes with synthetic data, 2015.
preprint arXiv:1511.07041. 23

[42] Ankur Handa, Viorica Patraucean, Vijay Badrinarayanan,
Simon Stent, and Roberto Cipolla. Understanding real
world indoor scenes with synthetic data. In Conference on
Computer Vision and Pattern Recognition (CVPR), pages
4077–4085, 2016. 7, 23

[43] Ankur Handa, Viorica Patraucean, Simon Stent, and
Roberto Cipolla. SceneNet: An annotated model generator
for indoor scene understanding. In International Confer-
ence on Robotics and Automation (ICRA), 2016. 7, 23

[44] C. Hane, S. Tulsiani, and J. Malik. Hierarchical surface
prediction for 3D object reconstruction. In International
Conference on 3D Vision (3DV), 2017. 2

[45] Binh-Son Hua, Minh-Khoi Tran, and Sai-Kit Yeung. Point-
wise convolutional neural networks. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.
3

[46] Jingwei Huang, Hao Su, and Leonidas Guibas. Robust wa-
tertight manifold surface generation method for ShapeNet
models. arXiv preprint arXiv:1802.01698, 2018. 7, 8, 23

[47] Michal Jancosek and Tomas Pajdla. Multi-view recon-
struction preserving weakly-supported surfaces. In Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2011. 1

[48] Michal Jancosek and Tomas Pajdla. Exploiting visibility in-
formation in surface reconstruction to preserve weakly sup-
ported surfaces. International Scholarly Research Notices,
2014. 1

[49] T. Jeruzalski, B. Deng, M. Norouzi, J.P. Lewis, G.E. Hin-
ton, and A. Tagliasacchi. NASA: neural articulated shape
approximation. In European Conference on Computer Vi-
sion (ECCV), 2020. 3

[50] C. Jiang, A. Sud, A. Makadia, J. Huang, M. Nießner, and
T. Funkhouser. Local implicit grid representations for 3D
scenes. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2020. 2, 3, 5, 7, 8, 14, 17, 23

[51] A. Kanazawa, S. Tulsiani, A.A. Efros, and J. Malik. Learn-
ing category-specific mesh reconstruction from image col-
lections. In European Conference on Computer Vision
(ECCV), 2018. 3

[52] M.M. Kazhdan and H. Hoppe. Screened Poisson surface
reconstruction. ACM Transactions on Graphics (TOG),
32(3), 2013. 1, 7, 8, 17, 23

[53] D.P. Kingma and J. Ba. Adam: A method for stochastic op-
timization. In International Conference on Machine Learn-
ing (ICML), 2015. 14

[54] Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis
Williams, Alexey Artemov, Evgeny Burnaev, Marc Alexa,
Denis Zorin, and Daniele Panozzo. Abc: A big cad model
dataset for geometric deep learning. In The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2019. 7

[55] Venkat Krishnamurthy and Marc Levoy. Fitting smooth
surfaces to dense polygon meshes. In ACM Conference

10

on Computer Graphics and Interactive Techniques (PACM
CGIT), pages 313–324, 1996. 7, 23

[56] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
Imagenet classification with deep convolutional neural net-
works. In Conference on Neural Information Processing
Systems (NeurIPS), 2012. 6

[57] P. Labatut, J. P. Pons, and R. Keriven. Robust and efficient
surface reconstruction from range data. Computer Graphics
Forum (CGF), 2009. 1

[58] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan
Di, and Baoquan Chen. PointCNN: Convolution on X-
transformed points. In Conference on Neural Information
Processing Systems (NeurIPS), 2018. 3

[59] Yangyan Li, Xiaokun Wu, Yiorgos Chrysathou, Andrei
Sharf, Daniel Cohen-Or, and Niloy J. Mitra. GlobFit: Con-
sistently fitting primitives by discovering global relations.
ACM Transactions on Graphics (TOG), 30(4), 2011. 1

[60] Y. Liao, S. Donne, and A. Geiger. Deep marching cubes:
Learning explicit surface representations. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2018. 3

[61] C. Lin, C. Kong, and S. Lucey. Learning efficient point
cloud generation for dense 3D object reconstruction. In
AAAI Conference on Artificial Intelligence (AAAI), 2018.
2, 3

[62] C. Lin, O. Wang, B.C. Russell, E. Shechtman, V.G. Kim,
M. Fisher, and S. Lucey. Photometric mesh optimization for
video-aligned 3D object reconstruction. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2019. 3

[63] Stefan Lionar, Daniil Emtsev, Dusan Svilarkovic, and
Songyou Peng. Dynamic plane convolutional occupancy
networks. In Winter Conference on Applications of Com-
puter Vision (WACV), 2021. 4, 5, 8, 15, 17, 23

[64] Yaron Lipman, Daniel Cohen-Or, and David Levin. Data-
dependent MLS for faithful surface approximation. In
Eurographics Symposium on Geometry Processing (SGP),
2007. 1

[65] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. In Confer-
ence on Neural Information Processing Systems (NeurIPS),
2020. 3

[66] S. Liu, S. Saito, W. Chen, and H. Li. Learning to infer
implicit surfaces without 3D supervision. In Conference on
Neural Information Processing Systems (NeurIPS), 2019. 3

[67] S. Liu, Y. Zhang, S. Peng, B. Shi, M. Pollefeys, and Z. Cui.
DIST: rendering deep implicit signed distance function with
differentiable sphere tracing. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2020. 3

[68] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong
Pan. Relation-shape convolutional neural network for point
cloud analysis. In Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2019. 3

[69] William E. Lorensen and Harvey E. Cline. Marching
cubes: A high resolution 3D surface construction al-
gorithm. ACM SIGGRAPH Computer Graphics (CG),
21(4):163–169, 1987. 2, 3, 7, 14

[70] Yiming Luo, Zhenxing Mi, and Wenbing Tao. DeepDT:
Learning geometry from Delaunay triangulation for surface

reconstruction. In AAAI Conference on Artificial Intelli-
gence (AAAI), 2021. 3

[71] Priyanka Mandikal, K L Navaneet, Mayank Agarwal, and
R Venkatesh Babu. 3D-LMNet: Latent embedding match-
ing for accurate and diverse 3D point cloud reconstruction
from a single image. In British Machine Vision Conference
(BMVC), 2018. 3

[72] Jiageng Mao, Xiaogang Wang, and Hongsheng Li. Inter-
polated convolutional networks for 3D point cloud under-
standing. In International Conference on Computer Vision
(ICCV), 2019. 3

[73] Julien N. P. Martel, David B. Lindell, Connor Z. Lin,
Eric R. Chan, Marco Monteiro, and Gordon Wetzstein.
ACORN: Adaptive coordinate networks for neural scene
representation. ACM Transactions on Graphics (TOG),
40(4), 2021. 3

[74] D. Maturana and S. Scherer. VoxNet: A 3D convolutional
neural network for real-time object recognition. In IEEE
International Conference on Intelligent Robots and Systems
(IROS), 2015. 2

[75] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and
A. Geiger. Occupancy networks: Learning 3D reconstruc-
tion in function space. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2019. 2, 3, 4, 7, 8, 14,
15, 16, 17, 18, 23

[76] M. Michalkiewicz, J.K. Pontes, D. Jack, M. Baktashmot-
lagh, and A. Eriksson. Implicit surface representations as
layers in neural networks. In International Conference on
Computer Vision (ICCV), 2019. 2, 3

[77] Patrick Mullen, Fernando De Goes, Mathieu Desbrun,
David Cohen-Steiner, and Pierre Alliez. Signing the un-
signed: Robust surface reconstruction from raw pointsets.
Computer Graphics Forum (CGF), 29(5):1733–1741,
2010. 1

[78] Liangliang Nan and Peter Wonka. Polyfit: Polygonal sur-
face reconstruction from point clouds. In International
Conference on Computer Vision (ICCV), 2017. 1

[79] Liangliang Nan, Ke Xie, Andrei Sharf, and Shenzhen Vi-
suca. A search-classify approach for cluttered indoor scene
understanding. ACM Transactions on Graphics (TOG),
2012. 2

[80] Charlie Nash, Yaroslav Ganin, S. M. Ali Eslami, and Pe-
ter W. Battaglia. PolyGen: an autoregressive generative
model of 3D meshes. In International Conference on Ma-
chine Learning (ICML), 2020. 3

[81] M. Niemeyer, L.M. Mescheder, M. Oechsle, and A. Geiger.
Differentiable volumetric rendering: Learning implicit 3D
representations without 3D supervision. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2020. 3

[82] M. Oechsle, L. Mescheder, M. Niemeyer, T. Strauss, and A.
Geiger. Texture fields: Learning texture representations in
function space. In International Conference on Computer
Vision (ICCV), 2019. 3

[83] J.J. Park, P. Florence, J. Straub, R.A. Newcombe, and S.
Lovegrove. DeepSDF: Learning continuous signed distance
functions for shape representation. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2019. 2, 3,
8, 16, 17, 23

11

[84] D. Paschalidou, L. van Gool, and A. Geiger. Learning un-
supervised hierarchical part decomposition of 3D objects
from a single RGB image. In Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2020. 3

[85] Mark Pauly, Niloy J. Mitra, Johannes Wallner, Helmut
Pottmann, and Leonidas J. Guibas. Discovering structural
regularity in 3D geometry. ACM Transactions on Graphics
(TOG), 27(3), 2008. 1

[86] Songyou Peng, Chiyu ”Max” Jiang, Yiyi Liao, Michael
Niemeyer, Marc Pollefeys, and Andreas Geiger. Shape As
Points: A differentiable Poisson solver. In Conference on
Neural Information Processing Systems (NeurIPS), 2021.
17

[87] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc
Pollefeys, and Andreas Geiger. Convolutional occupancy
networks. In European Conference on Computer Vision
(ECCV), 2020. 2, 4, 5, 6, 7, 8, 14, 15, 16, 17, 18, 22,
23

[88] Nikolai Poliarnyi. Out-of-core surface reconstruction via
global TGV minimization. In International Conference on
Computer Vision (ICCV), 2021. 1

[89] C.R. Qi, H. Su, K. Mo, and L.J. Guibas. PointNet: Deep
learning on point sets for 3D classification and segmenta-
tion. In Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2017. 4, 7

[90] C.R. Qi, L. Yi, H. Su, and L.J. Guibas. PointNet++: Deep
hierarchical feature learning on point sets in a metric space.
In Conference on Neural Information Processing Systems
(NeurIPS), 2017. 5, 7, 18

[91] G. Riegler, A.O. Ulusoy, H. Bischof, and A. Geiger. Oct-
NetFusion: Learning depth fusion from data. In Interna-
tional Conference on 3D Vision (3DV), 2017. 2

[92] G. Riegler, A.O. Ulusoy, and A. Geiger. OctNet: Learn-
ing deep 3D representations at high resolutions. In Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2017. 2

[93] S. Saito, Z. Huang, R. Natsume, S. Morishima, A.
Kanazawa, and H. Li. PIFu: Pixel-aligned implicit func-
tion for high-resolution clothed human digitization. In In-
ternational Conference on Computer Vision (ICCV), 2019.
3

[94] Ruwen Schnabel, Patrick Degener, and Reinhard Klein.
Completion and reconstruction with primitive shapes. Com-
puter Graphics Forum (CGF), 28(2):503–512, 2009. 1

[95] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016. 1

[96] Johannes Lutz Schönberger, Enliang Zheng, Marc Polle-
feys, and Jan-Michael Frahm. Pixelwise view selection for
unstructured multi-view stereo. In European Conference on
Computer Vision (ECCV), 2016. 1

[97] Divya Shanmugam, Davis Blalock, Guha Balakrishnan,
and John Guttag. Better aggregation in test-time augmen-
tation. In International Conference on Computer Vision
(ICCV), 2021. 6

[98] Yawar Siddiqui, Justus Thies, Fangchang Ma, Qi Shan,
Matthias Nießner, and Angela Dai. RetrievalFuse: Neural

3D scene reconstruction with a database. In International
Conference on Computer Vision (ICCV), 2021. 5, 8, 17

[99] Vincent Sitzmann, Eric R. Chan, Richard Tucker, Noah
Snavely, and Gordon Wetzstein. MetaSDF: Meta-learning
signed distance functions. In Conference on Neural Infor-
mation Processing Systems (NeurIPS), 2020. 17

[100] Vincent Sitzmann, Julien N.P. Martel, Alexander W.
Bergman, David B. Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation func-
tions. In Conference on Neural Information Processing Sys-
tems (NeurIPS), 2020. 3

[101] V. Sitzmann, M. Zollhöfer, and G. Wetzstein. Scene repre-
sentation networks: Continuous 3D-structure-aware neural
scene representations. In Conference on Neural Informa-
tion Processing Systems (NeurIPS), 2019. 3

[102] Raphael Sulzer, Loı̈c Landrieu, Renaud Marlet, and Bruno
Vallet. Scalable surface reconstruction with Delaunay-
graph neural networks. Computer Graphics Forum (CGF),
40(5):157–167, 2021. 1

[103] Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten
Kreis, Charles Loop, Derek Nowrouzezahrai, Alec Jacob-
son, Morgan McGuire, and Sanja Fidler. Neural geomet-
ric level of detail: Real-time rendering with implicit 3D
shapes. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2021. 3

[104] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi
Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier fea-
tures let networks learn high frequency functions in low di-
mensional domains. In Conference on Neural Information
Processing Systems (NeurIPS), 2020. 3

[105] Jiapeng Tang, Jiabao Lei, Dan Xu, Feiying Ma, Kui Jia, and
Lei Zhang. SA-ConvONet: Sign-agnostic optimization of
convolutional occupancy networks. In International Con-
ference on Computer Vision (ICCV), 2021. 4, 5, 7, 15, 17,
23

[106] M. Tatarchenko, A. Dosovitskiy, and T. Brox. Octree gen-
erating networks: Efficient convolutional architectures for
high-resolution 3D outputs. In International Conference on
Computer Vision (ICCV), 2017. 2

[107] M. Tatarchenko, S.R. Richter, R. Ranftl, Z. Li, V. Koltun,
and T. Brox. What do single-view 3D reconstruction net-
works learn? In Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2019. 7

[108] Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J.
Guibas. KPConv: Flexible and deformable convolution for
point clouds. In International Conference on Computer Vi-
sion (ICCV), 2019. 3

[109] Edgar Tretschk, Ayush Tewari, Vladislav Golyanik,
Michael Zollhöfer, Carsten Stoll, and Christian Theobalt.
PatchNets: Patch-based generalizable deep implicit 3D
shape representations. In European Conference on Com-
puter Vision (ECCV), 2020. 3

[110] Benjamin Ummenhofer and Vladlen Koltun. Adaptive sur-
face reconstruction with multiscale convolutional kernels.
In International Conference on Computer Vision (ICCV),
2021. 2, 5, 17, 23

12

[111] Hoang Hiep Vu, Patrick Labatut, Jean Philippe Pons, and
Renaud Keriven. High accuracy and visibility-consistent
dense multiview stereo. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 34(5), 2012. 1

[112] N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu, and Y.G. Jiang.
Pixel2Mesh: Generating 3D mesh models from single RGB
images. In European Conference on Computer Vision
(ECCV), 2018. 3

[113] Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei
Pokrovsky, and Raquel Urtasun. Deep parametric continu-
ous convolutional neural networks. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2018. 3

[114] Yue Wang and Justin M. Solomon. PRNet: Self-supervised
learning for partial-to-partial registration. In Conference on
Neural Information Processing Systems (NeurIPS), 2019. 6

[115] C. Wen, Y. Zhang, Z. Li, and Y. Fu. Pixel2Mesh++: Multi-
view 3D mesh generation via deformation. In International
Conference on Computer Vision (ICCV), 2019. 3

[116] Xin Wen, Tianyang Li, Z. Han, and Yu-Shen Liu. Point
cloud completion by skip-attention network with hierarchi-
cal folding. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2020. 3

[117] Francis Williams, Teseo Schneider, Claudio Silva, Denis
Zorin, Joan Bruna, and Daniele Panozzo. Deep geometric
prior for surface reconstruction. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2019. 3

[118] Francis Williams, Matthew Trager, Joan Bruna, and Denis
Zorin. Neural splines: Fitting 3D surfaces with infinitely-
wide neural networks. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2021. 1, 8, 17, 23

[119] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum.
Learning a probabilistic latent space of object shapes via 3D
generative-adversarial modeling. In Conference on Neural
Information Processing Systems (NeurIPS), 2016. 2

[120] Wenxuan Wu, Zhongang Qi, and Li Fuxin. PointConv:
Deep convolutional networks on 3D point clouds. In
Conference on Computer Vision and Pattern Recognition
(CVPR), 2019. 3

[121] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and
J. Xiao. 3D shapenets: A deep representation for volumet-
ric shapes. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2015. 2

[122] Haozhe Xie, Hongxun Yao, Xiaoshuai Sun, Shangchen
Zhou, and Shengping Zhang. Pix2Vox: Context-aware 3D
reconstruction from single and multi-view images. In In-
ternational Conference on Computer Vision (ICCV), 2019.
2

[123] Haozhe Xie, Hongxun Yao, Shengping Zhang, Shangchen
Zhou, and Wenxiu Sun. Pix2Vox++: Multi-scale context-
aware 3D object reconstruction from single and multiple
images. International Journal on Computer Vision (IJCV),
128, 2020. 2

[124] Q. Xu, W. Wang, D. Ceylan, R. Mech, and U. Neu-
mann. DISN: deep implicit surface network for high-
quality single-view 3D reconstruction. In Conference on
Neural Information Processing Systems (NeurIPS), 2019. 3

[125] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu
Qiao. SpiderCNN: Deep learning on point sets with pa-
rameterized convolutional filters. In European Conference
on Computer Vision (ECCV), 2018. 3

[126] Zike Yan, Yuxin Tian, Xuesong Shi, Ping Guo, Peng Wang,
and Hongbin Zha. Continual neural mapping: Learning an
implicit scene representation from sequential observations.
In International Conference on Computer Vision (ICCV),
2021. 3

[127] G. Yang, X. Huang, Z. Hao, M. Liu, S.J. Belongie, and
B. Hariharan. PointFlow: 3D point cloud generation with
continuous normalizing flows. In International Conference
on Computer Vision (ICCV), 2019. 2, 3

[128] Wentao Yuan, Tejas Khot, David Held, Christoph Mertz,
and Martial Hebert. PCN: Point completion network. In
International Conference on 3D Vision (3DV), 2018. 3

[129] Wenbin Zhao, Jiabao Lei, Yuxin Wen, Jianguo Zhang, and
Kui Jia. Sign-agnostic implicit learning of surface self-
similarities for shape modeling and reconstruction from raw
point clouds. In Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2021. 3, 17

[130] Qingnan Zhou and Alec Jacobson. Thingi10k: A
dataset of 10,000 3D-printing models. arXiv preprint
arXiv:1605.04797, 2016. 7, 23

[131] Yang Zhou, Shuhan Shen, and Zhanyi Hu. Detail preserved
surface reconstruction from point cloud. Sensors, 19(6),
2019. 1

13

Contents (Appendix)
A. Implementation details 14

B. Meshing for occupancy 14

C. Running times 15

D. Receptive field 15

E. Experiments 16
E.1. Choice of compared methods and datasets . . 16
E.2. Metrics . 16
E.3. More qualitative results 18
E.4. More quantitative results 18

F. Use of existing assets 23
F.1. Pre-existing code 23
F.2. Datasets . 23
F.3. Methods 23

G. Societal impact 23

Supplementary material

A. Implementation details
Code avalability. The code of our method is available at
https://github.com/valeoai/POCO.

Framework and hardware. Our code uses PyTorch as
deep learning framework. All experiments were done with
a single NVIDIA RTX 2080 Ti GPU with 11GB memory.

Backbone. We used FKAConv [9] as convolutional back-
bone, with default parameters (number of layers, number of
layer channels). Only the latent vector size n, i.e., the output
dimension of the backbone, was changed. It was set to 32,
which is also the output dimension of all linear layers of the
occupancy decoder (except the last one, which outputs the
occupancy). As a comparison, methods like ConvONet [87]
and LIG [50] also use latent vectors of size 32.

Architecture. The network architecture is described in
Figure 5 of the main paper. We phrase here some parts of it.

The input size of the relative encoder (green area in Fig-
ure 5) is the size of the latent vectors (i.e., the backbone out-
put size) plus the size of point coordinates, i.e., 32+3=35.
All linear layers have an output size of 32, except the multi-
head layer for the computation of significance weights, of
output size h=64, and the final occupancy layer, of output
size 2, corresponding to classes empty and full. The layer
activations all are ReLUs. Batch norms are only used in the
backbone, i.e., the absolute encoder E; there are none in the
relative encoder R, nor in the decoder D.

Point sampling at training time is not part of POCO. We
reused existing dataset samplings (from ConvONet [87] and
Points2Surf [29]) to compare on the same training data. The
other datasets are only used for inference.

Training settings. We train using Adam [53] with learning
rate 10−3. The training batch size is 16 for 3k input points
and 8 for 10k input points. We train for 600k iterations.

B. Meshing for occupancy

Mesh generation, for implicit functions, generally relies
on the Marching cubes (MC) algorithm [69], evaluating oc-
cupancy on a regular 3D grid.

Marching cubes based on refinements (MC-refin). Re-
cently, the MC variant used in ONet [75] has often been
used due to its higher speed. It operates on a coarse grid but
locally refines the resolution thanks to a heuristics: Unless
all corners of a cube at a given resolution agree on being
empty of full, i.e., as soon as two corners of a cube disagree
on occupancy, the cube is subdivided into 8 subvoxels. The
initial grid is typically of size 323, and it is typically refined
(subdivided) up to two times, leading to a local resolution
equivalent to a 1283 grid. The resulting mesh, after MC, is
furthermore simplified [34] and refined using first and sec-
ond order gradient information [75]. While the heuristics
may miss thin details, this MC with refinement (MC-refin)
leads to a much faster running time than plain MC, with a
factor up to 82 when using up to two refinement steps.

Marching cubes based on region growing (MC-regro).
To ensure we have little chances of missing refinements,
in particular for locally complex surfaces or thin volumes,
we use a different strategy. We consider from the outset a
fine-grained resolution but, to prevent many useless queries
in large empty or full regions, we adopt a region-growing
approach (MC-regro). The seeds are the input points, for
which we compute the occupancy. We then compute the
occupancy for query points that are both in the close neigh-
borhood (voxels at distance at most 2 grid steps) of both a
location in the empty volume and a location in the full vol-
ume, i.e., close to the surface. And we iterate.

Besides, with the Marching cubes algorithm, a vertex
is placed on the edge of a cube by linearly interpolating
the two scalar values at the edge’s endpoints. But contrary
to distance fields, occupancy fields may have sharp tran-
sitions. Consequently, opposite-side endpoints frequently
have values close to 0 and 1, and vertices tend to be placed
in the middle of segments, creating discretization effects.
To prevent it, we perform a dichotomic search along edges
to better locate the occupancy transition. We operate 10 di-
chotomies, which is more than enough in most cases.

In general, reconstructions with MC-regro are qualita-
tively better than MC-refin on scenes, but similar on ob-
jects. In fact, quantitative results on ShapeNet show a sim-
ilar reconstruction accuracy of POCO with either MC-refin
or MC-regro. The reason probably is that thin details have
little impact on the different metrics. This ability to capture

14

https://github.com/valeoai/POCO

Method and setting Time

Points2Surf
Full reconstruction (single thread) 23 min 48 s
Full reconstruction (1 thread per model) 10 min 15 s

POCO (Ntrain =Ntest =3k, Nview =10)
Only inference of latent vectors 38 s
Full reconstruction (single thread) 4 min 27 s

Table 6. Running time for reconstructing the 4 models of the
Real-World dataset (50k pts each) using Points2Surf or POCO.

thin details makes MC-regro generally slower than MC-
refin (see Section C, Table 7).

C. Running times
Some running times are given in Figures 1 and 4 in the

paper, as well as here in Tables 6 and 7.
The time for the backbone to extract features is negligi-

ble (< 1%). The bottleneck is the decoding, as we have to
respond to many occupancy queries depending on the reso-
lution of the Marching cubes (MC). And to answer an MC
query, the bottleneck is the computation of nearest neigh-
bors, which currently is not optimized, requiring communi-
cations between the GPU and the CPU. (It could probably
be optimized by pre-computing neighbors at low MC reso-
lution to reduce the GPU-CPU communication overhead.)

In contrast, grid-based methods such as those based on
ConvONet [63,87,105] do not need such an optimization as
they do not depend on nearest neighbors. However, while
our approach requires extracting one feature per point for
encoding (typically a few thousands points for an object),
these other methods extract one feature per grid cell, typi-
cally 643 ≈ 262k. Besides, as we show in the paper, losing
input points induces a loss of details.

Impact of test-time augmentations. Although in this
case, because of the high point-cloud density (50k pts),
we apply the test-time augmentation (TTA) strategy and
run the latent vector inference on many different point
cloud subsamples (such that each point is seen at least
Nview =10 times), our method is still significantly faster
than Points2Surf.

In fact, as our encoding time is negligible compared to
the numerous decoding queries for meshing with MC, our
TTA strategy at feature level brings little slowdown, e.g.,
+5% for Nview =10, compared to Nview =1.

Overall reconstruction time. In Table 7, we report the av-
erage reconstruction time of different methods. To be fair,
given that mesh generation via occupancy queries is a run-
ning time bottleneck, we compare the methods using the
same MC algorithm, namely MC-refin with a coarse grid
of size 323 that can be refined up to twice, i.e., into a grid

Method MC-refin MC-regro Time

SA-ConvONet ✓ 245.7 s
LIG (5k iter.) ✓ 104.5 s
LIG (3k iter.) ✓ 66.2 s
Points2Surf ✓ 38.4 s
SPR ✓ 14.9 s
Neural Splines ✓ 12.7 s
ConvONet ✓ 0.6 s

POCO ✓ 10.7 s
POCO ✓ 2.5 s

Table 7. Average reconstruction time of different methods for
ShapeNet shapes from 3k points using the same 1283 grid size
for the Marching cubes (MC), although with different heuristics
and MC variants. MC-refin is the commonly-used MC variant in
[75] that operates on a 323 grid and potentially refines it locally
twice into a local resolution equivalent to a 1283 grid. MC-regro
is our region-growing variant of the Marching cubes that directly
operates on a 1283 grid, although sparsely (see Section B).

of size 1283. We also report the running time of POCO
with our MC-regro variant on a grid of size 1283. As said
in Section B, the quantitative results of POCO with either
MC-refin or MC-regro are similar.

On ShapeNet with medium-density points clouds (3k
points per shape), we rank second behind ConvONet for
speed. Note however that LIG is faster on denser scenes
(see Figure 4 of the main paper) as the computation time per
patch is constant, while our kNN search based on a kd-tree
gets slower. (It could be faster by precomputing neighbors
in the data loader, to limit GPU-CPU exchanges.)

D. Receptive field
A question that naturally arises to understand the power

and benefits of different approaches is the size of the recep-
tive field for inferring occupancy features.

Because it is based on nearest neighbors, the receptive
field of the backbone varies based on the scene geometry.
It naturally tends to augment with the number of layers but
sometimes, as when a separate group of points are mutual
neighbors, the local receptive field does not increase.

To evaluate the actual (in fact, maximum) receptive field
of a given point, we apply the following procedure:

1. We use a variant of the network without ReLUs and
where the convolutions are replaced with averaging.

2. We apply the loss on a single output location.
3. We back-propagate the loss signal.
4. We identify input points receiving a non-zero gradient.

On a SceneNet living-room scene, with density 100 pts/m2,
we obtain an average receptive field of 29k points when
looking at non-zero gradient (see Figure 7). If we only look
at points for which the back-propagated gradient has a norm

15

Train Test Train set Test set

object object ShapeNet ShapeNet

object object ABC ABC, Thingi10k,
RealWorld, Famous

object scene ShapeNet SceneNet

scene scene Synthetic Synthetic Rooms,
Rooms MatterPort3D

Table 8. Datasets used for training and testing. Italic: datasets
used in a generalization setting, including from objects to scenes.

greater than 10−7 (i.e., a significant gradient), then the re-
ceptive field encompasses 16k points.

Figure 7. Receptive field of the FKAConv backbone on a point
cloud from SceneNet with density 100 pts/m2. The receptive field
of the point marked in green is colored in red.

E. Experiments
E.1. Choice of compared methods and datasets

Following the success of methods such as AtlasNet [39]
and DeepSDF [83], a dozen of new learning-based recon-
struction methods have been published every year.

As said in the main paper, existing methods often per-
form well in some settings but not in others. Consequently,
most published papers tend to evaluate on different datasets
(see Table 9) or in specific configurations: low or high den-
sity of train/test points, with or without added noise and out-
liers, with or without oriented normals, training specifically
for a class of shapes or generalizing to any shape, address-
ing single object or whole scene reconstruction, etc. Some
methods are also too slow to be evaluated on full datasets
and report results only on dataset fractions. Last, although
most methods make code available, some do not offer pre-
trained models, or scripts, or parameters (at the time of writ-
ing). This makes comparisons particularly difficult.

We chose to compare to some of the most cited or most
recent methods. To be fair with these methods, we evalu-
ate in their setting (when enough information is provided to
do so) rather than impose them other specific settings. It
also illustrates the ability of our method to adapt to various
configurations. Method codes are referenced in Section F.3.

The datasets that we used in our experiments are listed
in Table 8. Datasets references are in Section F.3.

• On SceneNet, we chose points with normals, which
allows comparing to LIG (which requires normals).

• On MatterPort3D, we chose points without normals,
allowing comparison to SA-ConvONet but not to LIG.

• On ShapeNet, we chose in the main paper points with-
out normals and with noise, allowing comparison to
ConvONet; in this supplement, we use points with nor-
mals and without noise, allowing to compare to LIG.

E.2. Metrics

We use exactly the same evaluation metrics as Con-
vONet [87], as specified formally in the supplementary ma-
terial. However, for our report to be more self-contained,
we reformulate here explicitly the metrics that we use.

The surface metrics measure different forms of devia-
tions between two surfaces, i.e., the deviation between the
reconstructed surface and the ground-truth surface. In prac-
tice, the metrics are approximated by replacing the contin-
uous distances by the distances between points sampled on
both surfaces. In particular, the distance of a point p to a
surface S is approximated by the distance of p the near-
est point q sampled on surface S. In our experiments, we
sample on each surface: 100k points for ShapeNet and Syn-
thetic Rooms; 10k for ABC, Famous and Thingi10k; and
4M points for SceneNet. As can be seen by the perfor-
mance of ‘Oracle’ in Table 5 of the paper, which compares
the ground-truth against itself via two different samplings,
this discretization is a reasonable approximation, although
POCO gets close to the error margin when the point cloud
is dense and the normals are provided.

Chamfer distance (CD). The Chamfer distance between
two point clouds P1, P2 is defined as follows:

Chamfer(P1, P2) =
1

2 |P1|
∑

p1∈P1

min
p2∈P2

d(p1, p2)

+
1

2 |P2|
∑

p2∈P2

min
p1∈P1

d(p1, p2)

where d(p1, p2) is the distance between points p1, p2. In the
paper, following ONet [75] and ConvONet [87], we use the
L1-norm. What we name ‘CD’ in tables is Chamfer× 102.

Normal consistency (NC). The normal consistency be-
tween two point clouds P1, P2 is defined as follow:

NC(P1, P2) =
1

2 |P1|
∑

p1∈P1

np1
.nclosest(p1,P2)

+
1

2 |P2|
∑

p2∈P2

np2
.nclosest(p2,P1)

16

Objects Scenes

no
rm

al
s

re
qu

ir
ed

co
de

un
av

ai
la

bl
e

pr
e-

tr
ai

ni
ng

un
av

ai
la

bl
e

3D
W

ar
eh

ou
se

A
B

C

D
-F

au
st

Fa
m

ou
s

Sh
ap

eN
et

T
hi

ng
i1

0K

T
hr

ee
D

Sc
an

s

3D
Fr

on
t

M
at

te
rP

or
t3

D

Sc
an

N
et

Sc
en

eN
et

Sy
nt

he
tic

R
oo

m
s

Ta
nk

s
an

d
Te

m
pl

es

AdaConv [110] ✓ ✓ ■⊥

ConvONet [87] ■ □ ■ ■

DeepLS [13] ✓ ✓ □

DeepSDF [83] ✓ ■

DefTet [33] ✓ ✓ ■

DP-ConvONet [63] ■ ■

IF-NET [19] ■

IGR [38]

IM-NET [18] □

LDIF [35] ✓ ■

LIG [50] ✓ ■⊥ ■⊥ ■⊥

MetaSDF [99] ✓ □

NDF [20] ✓ □

Neural-Pull [4] □ □

Neural Splines [118] ✓ □⊥

ONet [75] ■⊥

Points2Surf [29] □ □ □

RetrievalFuse [98] ✓ ■ ■* ■*

SA-ConvONet [105] □ □ □ □

SAIL-S3 [129] ✓ ✓ □ □

SAL [2] ■

SALD [3] ✓ ✓ ■

SAP [86] ■

ScanComplete [27] ■*

SG-NN [24] ■*

SPR [52] ✓

POCO (ours) □ □ ■ □ □ ■⊥ ■

Table 9. Datasets used for the evaluation of 3D reconstruction methods from point clouds in their published paper, if freely available
and > 10 shapes are used, and availability of code or pre-trained models suited for testing on the datasets (at the time of writing).

■: test on all/many shapes of the dataset (> 1000), □: test on a few shapes (≤ 100 or a single category), ⊥: test with ground-truth
normals as input, *: actual scans rather than uniformly sampled points.

Tests on a given dataset may however be done in different settings (number of sampled points, amount of added noise or outliers,
use many shapes but excluded classes or objects, etc.). For instance, many different numbers can be found in various publications for the
performance of ONet on the ShapeNet dataset.

17

where

closest(p, P) = argmin
p′∈P

d(p, p′)

is the closest point to p in point cloud P and where np is the
normal at point p, given by the orientation of the mesh face
on which the point is sampled.

F-Score (FS). The F-Score between two point clouds P1

and P2 at a given threshold t is given by:

FS(t, P1, P2) =
2Recall Precision
Recall + Precision

where

Recall(t, P1, P2) =

∣∣∣∣{p1 ∈ P1, s.t. min
p2∈P2

d(p1, p2) < t

}∣∣∣∣
Precision(t, P1, P2) =

∣∣∣∣{p2 ∈ P2, s.t. min
p1∈P1

d(p2, p1) < t

}∣∣∣∣
In the paper, following ONet [75] and ConvONet [87], we
use t = 0.01.

Intersection over Union (IoU). Compared to the previous
metrics, which evaluates the quality of the generated sur-
face, the IoU is a volume metric.

Noting TP (resp. FP and FN) the number of true pos-
itive, i.e., the number of points correctly predicted as full
(resp. the number of points wrongly predicted as full, and
the number of points wrongly predicted as empty), the IoU
is defined as follows:

IoU =
TP

TP + FP + FN

E.3. More qualitative results

POCO vs LIG on ShapeNet (various densities). We pro-
vide on Figure 8 more visualizations of ShapeNet recon-
structions, comparing LIG to POCO at various densities of
input points (with normals). LIG reconstructions were done
using the best parameter setting for the method, i.e., with
part size 0.20 for 512 and 2048 points, and part size 0.10
for 8192 points. Nevertheless, POCO reconstructs surfaces
with more robustness and much sharper details.

POCO vs SPR and LIG on SceneNet (various densities).
As a complement to Table 5 in the main paper, we provide
here on Figure 9 the visualization of a reconstruction frag-
ment of a SceneNet scene, also with varying input point
densities, comparing SPR, LIG and POCO. As can be seen,
POCO provides a better robustness at low point densities
and more details at high point densities.

POCO vs SPR (generalization ability). In fact, POCO
out-of-the-box adapts well to new shape domains without
retraining (Figures 1, 3, 4 and Table 2), especially when
given normals (Table 5). SPR only works well on high-
density point clouds (Figure 4, Tables 2, 4, 5).

POCO vs ConvOnet on Synthetic Rooms. As a comple-
ment to Table 4 in the main paper, we provide here on Fig-
ure 10 the visualization of reconstructions on the Syntheti-
cRooms dataset (2 first scenes of each data bunch), com-
paring ConvOnet and POCO. In general, we provide more
and sharper details; we are also more robust to thin surfaces,
e.g., selves of the bookcase in “Room 05 - scene 801” and
coffee table in the foreground of “Room 08 - scene 801”.

E.4. More quantitative results

POCO vs PointConv, ONet and ConvOnet on ShapeNet.
As a complement to Table 3 in the main paper, we provide
here in Table 10 classwise quantitative results on ShapeNet,
comparing POCO to PointConv, ONet and ConvONet (the
3× 642 variant, that performs best on ShapeNet).

PointConv is a baseline method which is defined in the
ConvONet paper [87]. It proceeds as follows: point-wise
features are extracted using PointNet++ [90], interpolated
using Gaussian kernel regression and feed into the same
fully-connected network used in ConvONet [87]. While this
baseline uses local information, it does not exploit convolu-
tions. ONet [75] is not convolutional either; it operates on
shapes as a whole.

As can be seen in the table, POCO largely outper-
forms the compared methods on all categories, especially on
classes featuring complex details such as lamp, rifle, vessel
and, to a lesser extent, airplane, car, chair and loudspeaker.
Yet, the most difficult classes are more or less the same for
all methods, including POCO: lamp and car.

18

512 pts 2048 pts 8192 pts
Input LIG POCO Input LIG POCO Input LIG POCO

Figure 8. ShapeNet reconstructions (input with normals), LIG (part size 0.20 for 512 and 2048 pts, 0.10 for 8192 pts) and POCO (ours).19

Figure 9. Reconstruction fragment of a SceneNet scene with varying input point densities for SPR, LIG and POCO.

Input SPR LIG POCO

20
pt

s/
m

2
10

0
pt

s/
m

2
50

0
pt

s/
m

2
10

00
pt

s/
m

2

Ground truth

20

Figure 10. Synthetic Rooms reconstructions using ConvONet and POCO (ours), from 10k points with noise.

Input ConvONet POCO Input ConvONet POCO

Room 04 - scene 801 Room 04 - scene 802

Room 05 - scene 801 Room 05 - scene 802

Room 06 - scene 801 Room 06 - scene 802

Room 07 - scene 801 Room 07 - scene 802

Room 08 - scene 801 Room 08 - scene 802

21

IoU ↑ CD↓
Category PointConv ONet ConvONet POCO PointConv ONet ConvONet POCO

Airplane 0.579 0.734 0.849 0.902 1.40 0.64 0.34 0.23
Bench 0.537 0.682 0.830 0.865 1.20 0.67 0.35 0.28
Cabinet 0.824 0.855 0.940 0.960 1.15 0.82 0.46 0.37
Car 0.767 0.830 0.886 0.921 1.49 1.04 0.75 0.41
Chair 0.667 0.720 0.871 0.919 1.29 0.95 0.46 0.33
Display 0.743 0.799 0.927 0.956 1.06 0.82 0.36 0.28
Lamp 0.495 0.546 0.785 0.877 2.15 1.59 0.59 0.33
Loudspeaker 0.807 0.826 0.918 0.957 1.48 1.18 0.64 0.41
Rifle 0.565 0.668 0.846 0.897 0.98 0.66 0.28 0.19
Sofa 0.811 0.865 0.936 0.963 1.04 0.73 0.42 0.30
Table 0.654 0.739 0.888 0.924 1.13 0.76 0.38 0.31
Telephone 0.856 0.896 0.955 0.968 0.61 0.46 0.27 0.22
Vessel 0.652 0.729 0.865 0.927 1.38 0.94 0.43 0.25

Mean 0.689 0.761 0.884 0.926 1.26 0.87 0.44 0.30

NC ↑ FS↑
Category PointConv ONet ConvONet POCO PointConv ONet ConvONet POCO

Airplane 0.819 0.886 0.931 0.944 0.562 0.829 0.965 0.994
Bench 0.811 0.871 0.921 0.928 0.617 0.827 0.964 0.988
Cabinet 0.895 0.913 0.956 0.961 0.719 0.833 0.956 0.979
Car 0.845 0.874 0.893 0.894 0.577 0.747 0.849 0.946
Chair 0.851 0.886 0.943 0.956 0.618 0.730 0.939 0.985
Display 0.910 0.926 0.968 0.975 0.679 0.795 0.971 0.994
Lamp 0.779 0.809 0.900 0.929 0.453 0.581 0.892 0.975
Loudspeaker 0.894 0.903 0.939 0.952 0.647 0.727 0.892 0.964
Rifle 0.796 0.849 0.929 0.949 0.682 0.818 0.980 0.998
Sofa 0.900 0.928 0.958 0.967 0.697 0.832 0.953 0.989
Table 0.878 0.917 0.959 0.966 0.694 0.824 0.967 0.991
Telephone 0.961 0.970 0.983 0.985 0.880 0.930 0.989 0.998
Vessel 0.817 0.857 0.919 0.940 0.550 0.734 0.931 0.989

Mean 0.858 0.891 0.938 0.950 0.644 0.785 0.942 0.984

Table 10. Classwise ShapeNet reconstruction. All models are trained on 3k noisy points. Results for methods other than POCO are
reported from the supplementary material of ConvONet [87].

22

F. Use of existing assets

F.1. Pre-existing code

The implementation of our approach has several depen-
dencies, that are all free to use for research purposes. The
main dependencies of our code are as follows:

• FKAConv1 [9], under Apache License v2.0.

• PyTorch2, under the Apache CLA,

• PyTorch-Geometric3, under the MIT License,

The code of POCO4 itself is freely available, under Apache
License v2.0.

F.2. Datasets

For the experiments, we used several datasets that are
freely available for research purpose:

• ABC5 is under the Onshape Terms of Use6. We used
the subset preprocessed and made available by the au-
thors of Points2Surf18 [29].

• Famous is a set of shapes of various origins, among
which the Stanford 3D Scanning Repository7 [55].
This set of shapes is described, preprocessed and made
available by the authors of Points2Surf18 [29].

• MatterPort3D8 [14] is under a user license agreement
for academic use. We used scenes preprocessed by the
authors of SA-ConvONet19 [105].

• Real-World point clouds used in the paper are de-
scribed, preprocessed and made available by the au-
thors of Points2Surf18 [29].

• SceneNet9 [41–43] is under the CC BY-NC 4.0, for
research purposes only. We made meshes watertight
using Watertight Manifold10 [46], that enables code
use under mild conditions.

• ShapeNet11 [15] has a licence for non commercial re-
search or educational purposes. We used the version
of ShapeNet as preprocessed by the authors of ONet12

[75], which itself reuses the preprocessing of the au-
thors of 3D-R2N213 [22].

1https://github.com/valeoai/FKAConv
2https://pytorch.org/
3https://pytorch-geometric.readthedocs.io/
4https://github.com/valeoai/POCO
5https://deep-geometry.github.io/abc-dataset/
6https://www.onshape.com/en/legal/terms-of-use
7http://graphics.stanford.edu/data/3Dscanrep/
8https://niessner.github.io/Matterport/
9https://robotvault.bitbucket.io/

10https://github.com/hjwdzh/Manifold
11https://shapenet.org/
12https://github.com/autonomousvision/occupancy_

networks
13https://github.com/chrischoy/3D-R2N2

• Synthetic Rooms15 is a dataset created by the authors
of ConvONet [87] based on ShapeNet models.

• Thingi10K14 [130] is a freely available collection of
shapes under various licences. We used the subset
preprocessed and made available by the authors of
Points2Surf18 [29].

F.3. Methods

We compared to a number of reconstruction methods,
reusing the code made available by their authors:

• ConvONet15 [87] under the MIT License.

• LIG16 [50] probably under Apache License v2,

• Neural Splines17 [118] under the MIT License,

• Points2Surf18 [29] under the MIT License,

• SA-ConvONet19 [105] under the MIT License,

• SPR20 [52] under the MIT License.

We also compared to AtlasNet [39], DeepSDF [83], DP-
ConvONet [63], ONet [75], but only reusing the numbers
mentioned in [63, 87].

Here are some methods we would have liked to compare
to, but could not in practice:

• AdaConv21 [110]: The repository provides raw code
but no pre-trained model nor instructions or scripts to
train or to test, which may lead to misuses and wrong
comparisons.

• NDF22 [20]: The repository provides code but only
a pre-trained model for ShapeNet cars. For scene re-
construction, it does not offer preprocessed data or
any data preprocessing procedure to retrain a model,
nor instructions to run NDF using a sliding window
scheme, as alluded to in the supplementary material.

As indicated in Table 9, some authors also have not made
their code or their model available to allow comparisons.

G. Societal impact
We believe our 3D reconstruction approach has very lit-

tle potential for malicious uses (including disinformation,
surveillance, invasion of privacy, endangering security), not

14https://ten-thousand-models.appspot.com
15https : / / github . com / autonomousvision /

convolutional_occupancy_networks
16https : / / github . com / tensorflow / graphics /

tree/master/tensorflow_graphics/projects/local_
implicit_grid

17https://github.com/fwilliams/neural-splines
18https://github.com/ErlerPhilipp/points2surf
19https://github.com/tangjiapeng/SA-ConvONet
20https://github.com/mkazhdan/PoissonRecon
21https://github.com/isl-org/adaptive-surface-

reconstruction
22https://github.com/jchibane/ndf

23

https://github.com/valeoai/FKAConv
https://pytorch.org/
https://pytorch-geometric.readthedocs.io/
https://github.com/valeoai/POCO
https://deep-geometry.github.io/abc-dataset/
https://www.onshape.com/en/legal/terms-of-use
http://graphics.stanford.edu/data/3Dscanrep/
https://niessner.github.io/Matterport/
https://robotvault.bitbucket.io/
https://github.com/hjwdzh/Manifold
https://shapenet.org/
https://github.com/autonomousvision/occupancy_networks
https://github.com/autonomousvision/occupancy_networks
https://github.com/chrischoy/3D-R2N2
https://ten-thousand-models.appspot.com
https://github.com/autonomousvision/convolutional_occupancy_networks
https://github.com/autonomousvision/convolutional_occupancy_networks
https://github.com/tensorflow/graphics/tree/master/tensorflow_graphics/projects/local_implicit_grid
https://github.com/tensorflow/graphics/tree/master/tensorflow_graphics/projects/local_implicit_grid
https://github.com/tensorflow/graphics/tree/master/tensorflow_graphics/projects/local_implicit_grid
https://github.com/fwilliams/neural-splines
https://github.com/ErlerPhilipp/points2surf
https://github.com/tangjiapeng/SA-ConvONet
https://github.com/mkazhdan/PoissonRecon
https://github.com/isl-org/adaptive-surface-reconstruction
https://github.com/isl-org/adaptive-surface-reconstruction
https://github.com/jchibane/ndf

more, e.g., than image enhancement methods in the 2D data
case, and not more than hundreds of previously published
3D reconstruction methods. Besides, we are not bound nor
promoting any dataset that would lead to unfairness in any
sense. The use of our method has a modest environmental
impact as the training time (a few days on a single GPU for
a large dataset) and the inference times (minutes, or hours
for very large point clouds) are somewhat moderate, and
favorably compare to many learning-based approaches.

On the contrary, applications of our method can be found
in various domains, with positive societal impacts:

Heritage preservation. Digitizing cultural objects and
monuments allows a form of heritage preservation and en-
ables virtual museums to make works of art and culture
more widely accessible.

Infrastructure and building maintenance. Recon-
structing models of existing infrastructures and buildings is
of high interest for the construction industry. These models
are particularly useful to plan and organize maintenance.
This is particularly useful in a context of aging infrastruc-
tures and building renovation for energy-saving insulation.

Augmented and virtual reality. Surface and volume
reconstruction are useful assets for augmented and virtual
reality, whether it is for professional use (e.g., on-site main-
tenance of equipment) or entertainment (video games, spe-
cial effects for the film industry), which is however to be
consumed in moderation.

24

	1 . Introduction
	2 . Related work
	2.1 . 3D representations
	2.2 . Convolutions for implicit representations

	3 . Our method
	4 . Refinements
	5 . Experiments
	5.1 . Datasets, baselines and metrics
	5.2 . Alternative and ablation studies
	5.3 . Reconstruction
	5.4 . Discussion and limitations

	A . Implementation details
	B . Meshing for occupancy
	C . Running times
	D . Receptive field
	E . Experiments
	E.1 . Choice of compared methods and datasets
	E.2 . Metrics
	E.3 . More qualitative results
	E.4 . More quantitative results

	F . Use of existing assets
	F.1 . Pre-existing code
	F.2 . Datasets
	F.3 . Methods

	G . Societal impact

