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Abstract

Long-tailed data is still a big challenge for deep neural
networks, even though they have achieved great success on
balanced data. We observe that vanilla training on long-
tailed data with cross-entropy loss makes the instance-rich
head classes severely squeeze the spatial distribution of the
tail classes, which leads to difficulty in classifying tail class
samples. Furthermore, the original cross-entropy loss can
only propagate gradient short-lively because the gradient
in softmax form rapidly approaches zero as the logit dif-
ference increases. This phenomenon is called softmax sat-
uration. It is unfavorable for training on balanced data,
but can be utilized to adjust the validity of the samples in
long-tailed data, thereby solving the distorted embedding
space of long-tailed problems. To this end, this paper pro-
poses the Gaussian clouded logit adjustment by Gaussian
perturbation of different class logits with varied amplitude.
We define the amplitude of perturbation as cloud size and
set relatively large cloud sizes to tail classes. The large
cloud size can reduce the softmax saturation and thereby
making tail class samples more active as well as enlarging
the embedding space. To alleviate the bias in a classifier,
we therefore propose the class-based effective number sam-
pling strategy with classifier re-training. Extensive experi-
ments on benchmark datasets validate the superior perfor-
mance of the proposed method. Source code is available at
https://github.com/Keke921/GCLLoss.

1. Introduction
Deep neural networks (DNNs) have been widely utilized

in a variety of visual recognition problems [6, 7, 21, 28]
by virtue of the large-scale, high-quality, and annotated
datasets. DNNs usually require the training dataset to be
artificially balanced and have sufficient samples of each
class. Unfortunately, from a practical perspective, object
frequency usually follows a power law and typically ex-
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Figure 1. t-SNE visualization of the distorted embedding space.
(Color for the best view.) The embeddings are calculated with
ResNet-32 on a subset with four classes of CIFAR-10-LT. We ran-
domly select four classes with the training numbers 500, 200, 100,
and 50, respectively. The gray areas show the obscure regions be-
tween different classes.

hibits a long-tailed distribution. Naive learning on such data
is prone to undesirable bias towards the head classes which
occupy the majority of the training samples [37]. Since
tail classes have few training samples that cannot cover the
real distribution in embedding space, their spatial span is
severely compressed by head classes. In addition, a vast
number of head class samples generate overwhelming dis-
couraging gradients for tail classes. Thus, the learning of
a classifier is biased towards the head classes. As a result,
directly training on long-tailed data brings two key prob-
lems: 1) the distorted embedding space, and 2) the biased
classifier.

In the literature, most of the recently proposed ap-
proaches focus on addressing the second problem only, i.e.,
the biased classifier. For example, Menon et al. [17] and
Hong et al. [8] applied post-adjust strategy to the trained
model to calibrate the class boundary. Nevertheless, the
distorted embedding cannot be adjusted with the post-hoc
calibration, which is not conducive to further improving the
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model performance. Most recently, the two-stage decou-
pling methods [2, 10, 31, 35, 40] have been proposed to ob-
tain good embeddings in the first stage and then re-balance
the classifier in the second stage. These methods obtain the
representation by cross-entropy (CE) loss, which, however,
leads to a severely uneven distributed embedding space. We
implement a toy experiment to illustrate the distortion of the
embedding space as shown in Fig. 1, where t-SNE [25] is
utilized to visualize the features of a long-tailed subset from
CIFAR-10 dataset. We can observe that the tail class occu-
pies a much small spatial span than the head class. This is
because the tail class with fewer samples cannot cover the
ground truth distribution. Moreover, Fig. 1 also shows that
there are obscure regions (i.e., the grey area) between dif-
ferent classes. Softmax saturation [3] is one of the factors of
these obscure regions because it leads to insufficient train-
ing. These obscure regions have a severe effect on the tail
classes but little on the head classes. Since tail class samples
clustered around the class boundary aggravate their spatial
squeezing, while the head class samples with enough vari-
ety can already cover the true distribution.

Softmax saturation refers to the inopportune early gra-
dients vanishing produced by the softmax [3, 36], which
weakens the validity of training samples and impedes model
training. However, from another perspective, the seemingly
harmful softmax saturation has the ability to balance the
valid samples of different classes and thus help calibrate
the distortion of embedding space. Specifically, we disturb
the logit of different classes with different amplitudes. We
name the disturbed logit as Gaussian clouded logit (GCL)
and the amplitude of the disturbance as cloud size, because
we set the disturbance to a Gaussian distribution. The tail
classes have few training samples and thus the training sam-
ples of them should be more valid. We therefore disturb
the logit of tail classes with large relative cloud sizes to re-
duce the softmax saturation. In this way, tail class samples
can provide more gradients without overfitting and thus in-
directly affect their embedding space. In addition, a large
cloud size of the tail class logit corresponds to the large
cloud size on feature in the direction of the class anchor.
Therefore, tail classes can have large margins towards the
class boundary, so as to alleviate the severe uneven distribu-
tion between the head and tail classes. Conversely, the head
classes are set to small cloud sizes, so that they can be auto-
matically filtered out during training. Eventually, as shown
in Fig. 2, the tail class samples can be pushed more away
from the class boundary so as the distortion of the embed-
ding space can be calibrated.

To address the biased classifier, we re-balance the train-
ing data with a class-wise sampling strategy. As training
with GCL makes the validity of different classes vary, the
so-called “effectiveness” [4] of them are different. Existing
class-wise balanced sampling strategies will lead to exces-

Figure 2. An overview of GCL. (Color for the best view.) The
tail class logit is assigned to a larger sample cloud size than the
head class, which corresponds to a large relative cloud size of the
feature in the direction of the tail class anchor. In this way, the
distortion of the embedding space can be calibrated well.

sive training of tail classes for GCL. We thereby propose
the class-based effective number (CBEN) sampling strat-
egy, which is based on sample validity and label frequen-
cies to re-balance the classifier. This simple but effective
sampling strategy helps mitigate the classifier bias towards
the head classes and further boost the performance of GCL.

Extensive experiments on multiple commonly used long-
tailed recognition benchmark datasets demonstrate that the
proposed GCL surpasses the recently proposed counter-
parts. In summary, the key contributions of our work are
three-fold:

• We propose the GCL adjustment loss function, which
utilizes softmax saturation to balance the sample valid-
ity of different classes. An evenly distributed embed-
ding can be obtained with the proposed GCL.

• We propose a simple but effective class-based effective
number (CBEN) sampling strategy for re-balancing
the classifier to avoid repeat training of tail classes.
This sampling strategy can further boost the perfor-
mance of GCL.

• Extensive experiments on popular long-tailed datasets
demonstrate that the proposed method outperforms the
state-of-the-art counterparts.

2. Related Works
Long-tailed classification is one of the long-standing re-

search problems in machine learning. Several kinds of ap-
proaches have been proposed to address it. This section
briefly introduces the most related three regimes, namely
loss modification, logit adjustment, and decoupling repre-
sentation.

2.1. Loss Modification

Modifying the loss function through re-weighting is the
most natural method. Sample-wise re-weighting meth-
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ods [15, 20] attempt to make the model pay more atten-
tion to the difficult samples by introducing fine-gained co-
efficients in the loss for imbalanced learning. For exam-
ple, focal loss [15] introduces a tunable focusing parameter,
which is negatively correlated with the predicted probabil-
ity of the target class. This focusing parameter helps the
model training focus on hard samples and prevents the nu-
merous easy negatives from overwhelming. Class-wise re-
weighting methods [4,9,11,23] assign the standard CE loss
with category-specific parameters that are inversely propor-
tional to the class frequencies. For example, Tan et al. [23]
proposed equalization loss, which utilizes a weight term to
randomly ignore the discouraging gradients of head class
samples. These methods can alleviate the data imbalance to
a certain extent. However, the classification difficulty of a
sample is not directly related to its corresponding class size.
Further, another side effect of assigning higher weights to
difficult samples/tail classes is overly focusing on harmful
samples (e.g., noisy data or mislabeled data) [13].

2.2. Logit Adjustment

Logit adjustment assigns relatively large margins for tail
classes. Most recently, Menon et al. [17] have proposed a
logit adjustment (LA) method which is consistent with min-
imizing the balanced error. The logit shifting in LA of dif-
ferent classes is based on label frequencies of training data.
Differently, LADE [8] calibrates the logit to the test set us-
ing the label distribution of test data, so that the test set can
also be imbalanced. Tang et al. [24] adopted causal inter-
vention to remove the “bad” SGD momentum and keep the
“good” one to avoid the harmful causal effect for tail pre-
diction. DisAlign [35] adjusts the logit by calibrating the
model prediction to a reference distribution of classes that
favors the balanced prediction. These methods well adjust
the model logits through post-hoc shifting but without con-
sidering calibrating the embedding space. Another type of
approach [1, 2] addresses long-tailed data by leaving large
relative margins for tail classes during training. For exam-
ple, label-distribution-aware margin (LDAM) loss proposed
by Cao et al. [2] utilizes Rademacher complexity to theoret-
ically prove that the margin should be inversely proportional
to a quarter power of label frequencies. The hard margin on
target logit helps make the intro-class samples more com-
pact, but does not truly enlarge the tail class span in embed-
ding space.

2.3. Decoupling Representation

Many recent works have focused on improving the
long-tailed visual recognition performance by decoupling
the representation and classifier. Most recently, LDAM-
DRW [2] has been proposed, which learns features in the
first stage and adopts the deferred re-weighting (DRW) to
fine-tune the decision boundary in the second stage. It

significantly improves the long-tailed prediction accuracy,
but the theoretical explanation of DRW is not clear. After
that, Kang et al. [10] precisely pointed out that the learn-
ing process of representation and classifier can be decou-
pled into two separate stages. The representation learn-
ing is conducted on the original long-tailed data in the
first stage and the classifier learning is performed on class-
balanced re-sampling data in the second stage. A lot of
works [31, 32, 35, 39] have further refined this strategy. For
example, Zhang et al. [35] proposed an adaptive calibration
function to calibrate the predicted logits of different classes
into a balanced class prior in the second stage. Zhong et
al. [39] proposed label distribution-based soft label to deal
with different degrees of over-confidence for classes and
can improve the classifier learning in the second stage. An-
other alternative direction is proposed by Zhou et al. [40],
which splits the network structure into two branches that fo-
cus on learning the representation of head and tail classes,
respectively. This method incorporates feature mixup [27]
into a cumulative learning strategy and also achieves the
state-of-the-art results. Following [40], Wang et al. [30] in-
troduced contrastive learning into this bilateral-branch net-
work to further improve the long-tailed classification per-
formance.

3. Proposed Approach: GCL

The key idea of our proposed GCL is to utilize the soft-
max saturation to automatically balance the valid samples
of head and tail classes. The theoretical motivation and the
formulation of the loss function of the proposed approach
are presented as follows.

3.1. Motivation

Fig. 1 shows that the obscure region among different
classes, especially the tail class, is large. One important
factor of this obscure region is the softmax saturation in
CE loss [3]. Suppose {x, y} ∈ T represents a sample
{x, y} from the training set T with the total N samples in C
classes, and y ∈ {1, . . . , C} is the ground truth label. The
softmax loss function for the input image x can be written
as:

L(x) = − log py, with py =
ezy∑C
j=1 e

zj
, (1)

where zj represents the predicted logit of class j. We use
the subscript y (j ̸= y) to represent the target class. That is,
zy indicates the target logit and zj(j ̸= y) is the non-target
logit.

In backward propagation, the gradients on zj is calcu-
lated by:

∂L
∂zj

=

{
pj − 1, j = y
pj , j ̸= y.

(2)
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Without loss of generality, we use the binary classification
as an example. Supposing x is from class 1, the gradients
on z1 is then calculated by:

∂L
∂z1

= − 1

1 + ez1−z2
. (3)

Eq. (3) indicates that the gradient of the target class rapidly
approaches zero with the increase of the logit difference.
Softmax can only slightly separate various classes, and
lacks the power to evenly distribute each class in the em-
bedded space. Therefore, there are many overlapping areas
among the classes. In particular, under the circumstances of
long-tailed classification, the tail class features are not suffi-
cient to cover the real distribution in embedding space. The
early gradient vanish caused by softmax saturation exacer-
bates the squeezing of their embedding space. A straightfor-
ward approach is to introduce hard margin [2, 5, 36]. How-
ever, the hard margin will cause the samples to shrink to-
wards the class anchor and easy to overfit tail classes, which
cannot evenly distribute the embedding space well. Fortu-
nately, softmax saturation can help filter out the head class
samples and make the tail class samples fully participate in
training. In this way, the tail classes can be pushed away
from the head classes and indirectly enlarge their embed-
ding space.

3.2. Embedding Space Calibration

Suppose the features of different class samples satisfy
Gaussian distribution. We can obtain a disturbed feature
f cld of the input by Gaussian sampling, which is represented
as:

f cld ≜ f + δE, (4)

where f ∈ RD is the feature obtained from the embedding
layer with the dimension of D. E ∼ N (u,Σ) is the dis-
turbance sampled from Gaussian distribution, and the mean
vector and covariance matrix are represented by u ∈ RD

and Σ ∈ RD× D, respectively. δ > 0 is a parameter that is
used to adjust the amplitude of disturbance. In addition, δ
should be a small number because a large disturbance will
mislead the model. This disturbed feature is the input of the
classifier. We use W = {w1,w2, · · · ,wC} ∈ RD×C to
represent the weight matrix of the classifier, where wj rep-
resents the anchor vector of class j in the classifier. Then,
the corresponding disturbed logit zcldj of class j is calcu-
lated by:

zcldj = wT
j f

cld + bj

= wT
j f + bj +wT

j (δE)

= zj + δ(wT
j E).

(5)

As the range of zcldj is enlarged with random Gaussian dis-
turbances, we call it Gaussian clouded logit, and δ(wT

j E) is

the clouded term. Please note that the clouded term has the
different degrees of influence on the final predicted results
based on different predicted logits. It has a relatively small
impact on zcldj when the original logit zj is large. On the
contrary, it will play a key role for zcldj when zj is small.
As a result, we need to normalize the effect caused by dif-
ferent predicted logits and maintain the consistency of the
influence of the clouded term. Inspired by [5, 28, 29], we
normalize the clouded logits based on cosine distance. In
this way, the norm of the feature and the class anchor can
be normalized to the fixed numbers. We use s1 and s2 to
represent these two numbers. The normalized clouded logit
is named clouded cosine logit, which is calculated by:

z̃cldj =
s1w

T
j · s2f cld

∥wT
j ∥∥f cld∥

= s · (
wT

j f

∥wT
j ∥∥f + δE∥

+ δ
wT

j E

∥wT
j ∥∥f + δE∥

)

,

(6)
where s = s1 · s2 is a constant. In the first term of Eq. (6),
∥f + δE∥ ≈ ∥f∥ because δ is a small number. In the second
term, the norm of feature is normalized to s1. Thus, z̃cldj

can be simplified as:

z̃cldj ≈ s · (
wT

j f

∥wT
j ∥∥f∥

+
δ

s1
IjE), (7)

where Ij is the identity vector that has the same direction
as wT

j . In order to simplify the calculation, we make the
clouded cosine logit still satisfy the Gaussian distribution.
Thus, we introduce a constant σ and set the covariance ma-
trix Σ = σI, where I ∈ RD× D is the identity matrix.
Then, IjE is the projection of the noise sampled by Gaus-
sian in the direction of the anchor vector of class j. We de-
note its magnitude by εj . Therefore, z̃cldj can be calculated
by:

z̃cldj = s · (z̃j + δ
s1
εj)

⇔ s · (z̃j + δjε)
, (8)

where z̃j = cos θj is the cosine distance, and θj is the angle
between f and wj . δj is the logit cloud size that depends on
different classes.

To achieve the two goals mentioned in Sec. 3.1, i.e., 1)
encourage tail class samples to participate more in train-
ing; 2) enlarge the embedding space for the tail classes, the
size of logit cloud should be negatively correlated with the
number of training samples. For the most frequent class,
the diversity of training samples is sufficient and we set its
logit cloud size to zero, while utilizing larger cloud sizes
for tail classes. The merits of this large relative cloud size
of tail classes are three-fold: 1) reduce the softmax satura-
tion and thereby increase the training degree of tail classes;
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2) different values are sampled randomly from the Gaus-
sian cloud so as to avoid overfitting; 3) enlarge the margin
of class boundary for tail classes and can calibrate the dis-
tortion of the embedding space. We therefore empirically
set the cloud size for class j as:

δj = log nmax − log nj , (9)

where nmax is the sample numbers of the most frequent
class. We experimentally verify the effectiveness of this
cloud size adjustment strategy in Sec. 4.5.2 .

The Gaussian clouded logit difference ∆y j between the
target and non-target classes is:

∆y j = zcldy − zcldj

= zy − zj + ε(δy − δj)
. (10)

If ε > 0, ∆y j for tail classes will be increased. However,
our goal is to reduce the logit difference to alleviate the soft-
max saturation for tail classes. In addition, a reduced logit
corresponds to the feature that is relatively far from the class
anchor. If the relatively distant feature can be predicted cor-
rectly, the closer one will be able to assign the right label.
Therefore, we require ε to be negative. Subsequently, the
clouded cosine logit can be written in the following form:

z̃cldj = s · (z̃j − δj∥ε∥). (11)

Taking the clouded cosine logit into the original softmax,
we can obtain the loss function of GCL:

LGCL = − 1

N

∑
i

log
ez̃

cld
yi∑

j e
z̃cld
j

. (12)

3.3. Classifier Re-balance

The gradients derived in Eq. (2) demonstrate that the
sample of the target class y punishes the classifier weights
wj of non-target class j, j ̸= y w.r.t. pj . The head classes
have enormously greater training instances than tail classes.
Therefore, the classifier weights of tail classes receive much
more penalty than positive signals during training. Conse-
quently, the classifier will bias towards the head classes,
and the predicted logits of the tail classes will be seri-
ously suppressed, resulting in low classification accuracy
of the tail classes. A straightforward approach is to use
the re-sampled data to re-train the classifier. We apply the
classifier re-training (cRT), which was adopted by Kang et
al. [10] and Wang et al. [31]. As the GCL loss enables
different class samples to participate in training to different
degrees, the effectiveness of different class samples is var-
ied. Class-balanced sampling will lead to repeat training for
tail classes. Drawing on the effective number proposed by
Cui et al. [4], we propose the class-based effective number
(CBEN) sampling to avoid excessive training of tail classes.

Algorithm 1: Gaussian clouded logit

Input: Training dataset T ;
Output: Predicted labels;

1 Initialize the model parameters ω of the CNN
network ϕ((x, y);ω) randomly ;

2 for iter = 1 to I0 do
3 Sample a batch samples B from the original

long-tailed data T with batch size b;
4 Obtain the logit cloud size:

δj ← log nmax − log nj ;
5 Calculate the loss by Eq. (12):

L((x, y);ω) = 1
b

∑
(x,y)∈B LGCL(x, y);

6 Update model parameters:
ω = ω − α∇ωL((x, y);ω).

7 end
8 for iter = I0 + 1 to I0 + I1 do
9 Calculate sampling rate:

βj ← b× δj−δmax

δmax−δmin
+ a; ρj ←

1−β
nj
j

1−βj
;

ρj ← ρj∑
i ρi

;

10 Sample a batch samples B′ with the sampling
probability ρj and the batch size b;

11 Calculate the loss by Eq. (12):
L((x, y);ω) = 1

b

∑
(x,y)∈B′ LGCL(x, y);

12 Update classifier parameters ωcls (representation
parameters are frozen):
ωcls = ωcls − α∇ωcls

L((x, y);ωcls).
13 end

The sampling probability ρj of a sample from class j is cal-
culated by:

ρj =
1− βj

1− β
nj

j

. (13)

Since the sum of the sampling probability for all data needs
to be 1, we normalize ρj by ρj ← ρj∑

i ρi
. βj reflects the

validity of different class samples. The class samples with
large cloud size participate more in training. Therefore, βj

is positively correlated with cloud size δj . We set βj as:

βj = b× δj − δmin

δmax − δmin
+ a, (14)

so that βj can be in the region [a, a+ b], where a and b are
the range hyper-parameters.

The overall training procedure of the proposed method is
summarized in Algorithm 1.

4. Experiments
4.1. Datasets

We use five benchmarks: long-tailed CIFAR datasets
that include CIFAR-10-LT and CIFAR-100-LT, long-tailed
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ImageNet-2012 (ImageNet-LT), iNaturalist 2018 [26] and
long-tailed Places-2 (Places-LT). The original version of
CIFAR-10/100 [14], ImageNet-2012 [22] and Places-2 [41]
are all balanced datasets. We follow Cao et al. [2] and Cui et
al. [4] to create long-tailed versions of CIFAR-10/100 and
use the long-tailed versions of ImageNet-2012 and Places-2
produced by Liu et al. [16].

CIFAR-10/100-LT. The original CIFAR-10 and CIFAR-
100 consist of 10 and 100 classes, respectively. They both
have 60,000 color images of size 32×32. 50,000 of them are
used for training and the remaining images are for valida-
tion. Following [2, 4], we down-sampling training samples
per class with the exponential function ni = noi×µi, where
i is the class index (0-indexed), noi is the number of training
samples in original CIFAR and µ ∈ (0, 1). The validation
sets are kept unchanged. The imbalance ratio γ is defined as
the ratio of the sample size of the most and the least frequent
classes, i.e. γ = max (ni)/min (ni), i = 0, 1, ..., C − 1. γ
is set at its common values, i.e. γ = 50, 100 and 200, in our
experiments.

ImageNet-LT and Places-LT. The balanced versions
of ImageNet-2012 and Places-2 are large-scale real-world
datasets for classification and localization. We follow Liu
et al.’s work [16] to construct the long-tailed version of
these two datasets by truncating a subset with the Pareto
distribution with the power value α = 6 from the balanced
versions. The original balanced validation sets remain un-
changed. Overall, ImageNet-LT has 115.8K training im-
ages from 1,000 categories with γ = 1, 280/5. Places-LT
contains 62.5K training images from 365 categories with
γ = 4, 980/5.

iNaturalist 2018. The 2018 version of iNaturalist is a
real-world fine-grained dataset for classification and detec-
tion, which exhibits extremely imbalanced distribution. It
contains 437.5K training images and 24.4K validation im-
ages from 8,142 categories. We follow the official splits of
training and validation sets in the experiments.

4.2. Experimental Setting

The pre-setting parameters in the first stage were the
Gaussian distribution parameters (µ, σ2) and the region
[a, b] of sample validity βj . We know that z̃i ∈ [−1, 1], thus
the maximum feature cloud size cannot exceed 1. Since
Gaussian distribution has a probability of about 99.7%
falling in [µ − 3σ, µ + 3σ], we set µ = 0 and σ = 1

3 .
We further clamped the ε to [−1, 1] to prevent its ampli-
tude from exceeding 1. We set βj ∈ [0.999, 0.9999], i.e.
a = 0.999 and b = 0.0009. Moreover, we normalized
δi, i = {1, 2, · · · , C} by δi ≜ δi/δmax to ensure that
the maximum value of δi did not exceed 1. Similar with
Zhong et al. [39], the mixup [33] strategy was also adopted
in our experiments.

We utilized PyTorch [19] to implement all the back-

bones. SGD optimizer with momentum of 0.9 and the
multi-step learning rate schedule were adopted. All
the models were trained from scratch except ResNet-152
that was pre-trained on the original balanced version of
ImageNet-2012. For the first stage, we selected ResNet-32
as the backbone network and followed the setting in Cao et
al. [2] for CIFAR-10/100-LT. For the large-scale dataset,
namely ImageNet-LT, iNaturalist 2018, and Places-LT, we
mainly followed Kang et al. [10] except the learning rate
schedule. For the second stage, i.e., re-balancing the classi-
fier, we followed Kang et al. [10] for all datasets.

4.3. Competing Methods

To verify the effectiveness of the proposed method, we
have conducted extensive experiments to compare with the
previous methods, including the following two groups:

Baseline Methods. We implemented vanilla training
with cross-entropy (CE) loss as one of our baseline meth-
ods. Many visual recognition works [12, 18, 34, 38] have
shown the efficacy of mixup, CE loss cooperated with
mixup was therefore also compared.

State-of-the-art Methods. The recently proposed repre-
sentation learning method, namely OLTR [16] and logit ad-
justment method, namely De-confound-TDE inference [24]
were compared. We also compared with the two-stage
methods including LDAM-DRW [2] and MisLAS [39],
which both achieve satisfactory classification accuracy on
the aforementioned long-tailed datasets. For CIFAR-
10/100-LT datasets, we made comparison with BBN [40]
and contrastive learning [30]. For the large-scale datasets,
we compared with the most recently proposed two-stage
methods, including decoupling [10], logit adjustment [17]
and DisAlign [35]. For a fair comparison, we additionally
conducted the comparison experiment with the two-stage
strategy which added classifier re-training (cRT) [10] to CE
loss + mixup on all datasets.

4.4. Comparison Results

Comparative studies have been conducted to show the
efficacy of the proposed GCL. The results are presented in
Tab. 1 and Tab. 2. We use top-1 accuracy on test sets as the
performance metric. For the results from those papers that
have yet to release the code or relevant hyper-parameters,
we directly quote their results from the original papers.

4.4.1 Experimental Results on CIFAR-10/100-LT

The results on CIFAR-10/100-LT datasets are summarized
in Tab. 1. We can observe that our proposed GCL out-
performs the previous methods by notable margins with
all imbalanced ratios. Especially for the largest one, i.e.,
γ = 200, the proposed approach has obvious improvement.
We get 79.03% and 44.88% in top-1 classification accuracy
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Table 1. Comparison results on CIFAR-10/100-LT in terms of top-1 accuracy (%), where the best and the second-best results are shown
in underline bold and bold, respectively. *indicates that the results are quoted from the corresponding references. The other results are
obtained by re-implementing with the official codes.

Dataset CIFAR-10-LT CIFAR-100-LT
Backbone Net ResNet-32

Imbalance ratio 200 100 50 200 100 50
CE loss 65.68 70.70 74.81 34.84 38.43 43.9

CE loss + mixup [33] (2018) 65.84 72.96 79.48 35.84 40.01 45.16
LDAM-DRW [2] (2019) 73.52 77.03 81.03 38.91 42.04 47.62

De-confound-TDE * [24] (2020) - 80.60 83.60 - 44.15 50.31
CE loss + mixup + cRT [10] (2020) 73.06 79.15 84.21 41.73 45.12 50.86

BBN [40] (2020) 73.47 79.82 81.18 37.21 42.56 47.02
Contrastive learning * [30] (2021) - 81.40 85.36 - 46.72 51.87

MisLAS [39] (2021) 77.31 82.06 85.16 42.33 47.50 52.62
GCL 79.03 82.68 85.46 44.88 48.71 53.55

Table 2. Comparison results on ImageNet-LT, iNaturalist 2018 and Places-LT in terms of top-1 accuracy (%), where the best and the
second-best results are shown in underline bold and bold, respectively. *indicates that the results are quoted from the corresponding
references. The other results are obtained by re-implementing with the official codes.

Dataset ImageNet-LT iNaturalist 2018 Places-LT
Backbone Net ResNet-50 ResNet-50 ResNet-152

CE loss 44.51 63.80 27.13
CE loss + mixup [33] (2018) 45.66 65.77 29.51

LDAM-DRW [2] * (2019) 48.80 68.00 -
OLTR * [16] (2019) - - 35.9

Decoupling [10] (2020) 47.70 69.49 37.62
CE loss + mixup + cRT [10] (2020) 51.68 70.16 38.51

Logit adjustment * [17](2021) 51.11 66.36 -
DisAlign * [35] (2021) 52.91 70.06 39.30
MisLAS [39] (2021) 52.11 71.57 40.15

GCL 54.88 72.01 40.64

for CIFAR-10-LT and CIFAR-100-LT with γ = 200, which
surpasses the second best method, i.e., MisLAS by a signif-
icant margin of 1.72% and 2.55%, respectively.

4.4.2 Experimental Results on Large-scale Latasets

The results on three large-scale long-tailed datasets, i.e.,
ImageNet-LT, iNaturalist 2018, and Place-LT, are reported
in Tab. 2. Our approach is superior to prior art on all
datasets. On ImageNet-LT, our method achieves 54.88%
top-1 accuracy, outperforming DisAlign by a large margin
at 1.97% and MisLAS at 2.77%, respectively. On iNatu-
ralist 2018, the proposed approach achieves 72.01% top-
1 accuracy, which outperforms the second-best method by
0.44%. On Place-LT, our method achieves 40.64% top-1
classification accuracy, with a performance gain at 0.49%
over MisLAS. Although the performance gain compared
with MisLAS on iNaturalist 2018 and Place-LT is not as
high as other datasets, our method does not require hyper-
parameters searching for different datasets, and thus it is
relatively easy to implement.

4.5. Model Validation and Analysis

We conduct a series of ablation studies to further analyze
the proposed method.

4.5.1 The Role of Gaussian Clouded Logit

In order to obtain additional insight, we utilized t-SNE pro-
jection of the embedding for visualization. Since the loss
functions of baseline and MisLAS are both CE loss and
MisLAS performed the second-best in most cases we have
tried so far, we visualized CE loss embedding for compari-
son. The embeddings were calculated from the samples in
CIFAR-10-LT with γ = 100. Fig. 3 shows the visualiza-
tion results on the training and test set. From the result of
the training set (Fig. 3a), we can see that the embeddings
obtained via GCL of different classes are more scattered.
Therefore, the GCL embedding of each class is much eas-
ier to separate. The results of the test set shown in Fig. 3b
justify the efficacy of our proposed approach. The obscure
region of CE loss embedding is larger than that of GCL em-
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(a) On training set

(b) On test set

Figure 3. Visualization of the embedding via t-SNE from CIFAR-
10-LT with γ = 100, where backbone network is ResNet-32.
(Color for the best view.)

Table 3. Ablation experiment of different cloud size adjustment
strategies (AS) on CIFAR-10-LT with γ = 100.

AS Expression Acc.(%)

cos. cos(nj/nmax ·π/2) 79.21

pow. diff. (e:1/3) n
1/3
max − n

1/3
j 80.80

pow. diff. (e:1/4) n
1/4
max − n

1/4
j 82.31

log. diff. log nmax − log nj 82.68

bedding. Good embedding helps improve the model perfor-
mance. We only re-fine the classifier with the simple cRT
without any other complicated technologies, but the classi-
fication accuracy can be improved a lot.

4.5.2 Cloud Size Adjustment Strategy

We explored several different cloud size adjustment strate-
gies (AS), which included cosine form (cos.), power differ-
ence (pow. diff.) with different exponents (e:1/3 and e:1/4),
and logarithmic difference (log. diff.). For a fair compar-
ison, the sampler and re-training strategy were selected as
CBEN and cRT, respectively. Tab. 3 shows the results. We
choose the log. diff. strategy according to Tab. 3.

4.5.3 Classifier Re-balance Strategies

We compared different strategies of data re-sampling and
the classifier re-training to better analyze our proposed
method. The re-sampling strategy (sam.) included: in-
stance balance (IB) [10], class balance (CB) [10], class

Table 4. Ablation experiment
of different re-sampling strategy
on CIFAR-10-LT with γ = 100.

Sam. RT Acc.(%)

IB cRT 80.41
CB cRT 82.43
EN cRT 82.47

CBEN cRT 82.68

Table 5. Ablation experiment
of different re-training strategies
on CIFAR-10-LT with γ = 100.

Sam. RT Acc.(%)

- w/o RT 80.52
CBEN LWS 82.25
CBEN τ -nor. 82.16
CBEN cRT 82.68

balance with effective number (EN) [4], and our proposed
class-based effective number (CBEN). For a fair compar-
ison, the re-training strategies for all samplers were cRT.
Tab. 4 shows the effectiveness of CBEN. For the selection
of classifier re-training strategy, we first trained the back-
bone without any classifier re-training technology. Then,
we fixed the representation and re-balance the classifier
with learnable weight scaling (LWS) [10], τ -normalization
(τ -nor.) [10], and cRT, respectively. Tab. 5 presents the top-
1 accuracy of CIFAR-10-LT with γ = 100. We can observe
that, even without any classifier re-training technique, our
approach can still beat most state-of-the-arts including two-
stage methods. For example, our GCL without classifier re-
training suppresses BBN by 0.7%. Further, cRT performs
the best among the classifier re-training strategies, which
improves the top-1 accuracy by 1.64%. From Tab. 4 and
Tab. 5, we can observe that IB+cRT degrades model perfor-
mance, which indicates that training the classifier with IB
may lead to classifier overfitting.

5. Conclusion
In this paper, we have found that softmax saturation re-

duces sample validity, which has different effects on head
and tail classes. This implies that, from another perspec-
tive, softmax saturation can be utilized to automatically ad-
just the training sample validity of different classes. Sub-
sequently, we have proposed the GCL. The tail class logits
are set to relatively large cloud sizes to encourage more tail
class samples to participate in training as well as leave large
margins, which help obtain evenly distributed embedding
space. The effectiveness of different classes is varied via
GCL. Then, the simple but effective CBEN sampling strat-
egy incorporated with cRT for classifier balancing has been
proposed, which can further boost the model performance.
Extensive experiments on various benchmark datasets have
demonstrated that the proposed GCL has superior perfor-
mance compared to the existing state-of-the-art methods.
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