
Cross-domain Few-shot Learning with Task-specific Adapters

Wei-Hong Li, Xialei Liu*, and Hakan Bilen
VICO Group, University of Edinburgh, United Kingdom

github.com/VICO-UoE/URL

Abstract

In this paper, we look at the problem of cross-domain
few-shot classification that aims to learn a classifier from
previously unseen classes and domains with few labeled sam-
ples. Recent approaches broadly solve this problem by pa-
rameterizing their few-shot classifiers with task-agnostic and
task-specific weights where the former is typically learned
on a large training set and the latter is dynamically predicted
through an auxiliary network conditioned on a small support
set. In this work, we focus on the estimation of the latter, and
propose to learn task-specific weights from scratch directly
on a small support set, in contrast to dynamically estimating
them. In particular, through systematic analysis, we show
that task-specific weights through parametric adapters in ma-
trix form with residual connections to multiple intermediate
layers of a backbone network significantly improves the per-
formance of the state-of-the-art models in the Meta-Dataset
benchmark with minor additional cost.

1. Introduction

Deep learning methods have seen remarkable progress
in various fields where large quantities of data and compute
power are available. However, the ability of deep networks
to learn new concepts from small data remains limited. Few-
shot classification [23,33] is inspired from this limitation and
aims at learning a model that can be efficiently adapted to
recognize unseen classes from few samples. In particular, the
standard setting for learning few-shot classifiers involves two
stages: (i) learning a model, typically from a large training
set, (ii) adapting this model to learn new classes from a given
small support set. These two stages are called meta-training
and meta-testing respectively. The adapted model is finally
evaluated on a query set where the task is to assign each
query sample to one of the classes in the support set.

Early methods [16, 35, 37, 43, 45, 49] pose the few-shot
classification problem in a learning-to-learn formulation by
training a deep network over a distribution of related tasks,

*Xialei Liu is the corresponding author.

One/Multiple domains

(d) Task adaptation with attached
adapters learned from support set

Learn task-agnostic parameters
in meta-training

Adapt with task-specific
parameters in meta-testing

(c) task-agnostic network

Few-shot learning task
from unseen domain

(a) task-agnostic network +
auxiliary network

(b) Task adaptation with adapters estimated
by the auxiliary network on support set

Support Set Query Set

...

+

Figure 1. Cross-domain Few-shot Learning considers to learn
a model from one or multiple domains to generalize to unseen
domains with few samples. Prior works often learn a task-agnostic
model with an auxiliary network during meta-training (a) and a
set of adapters are generated by the auxiliary network to adapt
to the given support set (b). While in this work, we propose to
attach adapters directly to a pretrained task-agnostic model (c),
which can be estimated from scratch during meta-testing (d). We
also propose different architecture topologies of adapters and their
efficient approximations.

which are sampled from the training set, and transfer this ex-
perience to improve its performance for learning new classes.
Concretely, Vinyals et al. [49] learn a feature encoder that
is conditioned on the support set in meta-training and does
not require any further training in meta-test thanks to its non-
parametric classifier. Ravi and Larochelle [37] take the idea
of learning a feature encoder in meta-train further by also
learning an update rule through an LSTM that produces the
updates for a classifier in meta-test. Finn et al. [16] pose the
task as a meta-learning problem and learn the parameters of
a deep network in meta-training such that a network initial-
ized with the learned parameters can be efficiently finetuned
on a new task. We refer to [18,51] for comprehensive review
of early works.

1

https://github.com/VICO-UoE/URL

Despite the significant progress, the scope of the early
methods has been limited to a restrictive setting where train-
ing and test samples come from a single domain (or data
distribution) such as Omniglot [24], miniImageNet [49] and
tieredImageNet [40]. They perform poorly in the more chal-
lenging cross-domain few-shot tasks, where test data is sam-
pled from an unknown or previously unseen domain [48].
This setting poses an additional learning challenge, not only
requires leveraging the limited information from the small
support set for learning the target task but also selectively
transferring relevant knowledge from previously seen do-
mains to the target task.

Broadly, recent approaches address this challenge by pa-
rameterizing deep networks with a large set of task-agnostic
and a small set of task-specific weights that encode generic
representations valid for multiple tasks and private repre-
sentations are specific to the target task respectively. While
the task-agnostic weights are learned over multiple tasks,
typically, from a large dataset in meta-training, the task-
specific weights are estimated from a given small support
set (e.g. 5 images per category) [3, 15, 26, 27, 29, 41, 47]. In
the literature, the task-agnostic weights are used to parame-
terize a single network that is trained on large data from one
domain [3, 14, 41] or on multiple domains [27], or to be dis-
tributed over multiple networks, each trained on a different
domain [15, 29, 47] 1. The task-specific weights are utilized
to parameterize a linear classifier [26], a pre-classifier feature
mapping [27] and an ensemble of classifiers at each layer of
a deep neural network [1].

Recently, inspired from [36], task-specific adapters [3,
41], small capacity transformations that are applied to multi-
ple layers of a deep network, have been successfully used to
steer the few-shot classifiers to new tasks and domains. Their
weights are often estimated dynamically through an auxiliary
network conditioned on the support set [3, 29, 41, 47] (see
Fig. 1.(a,b)), in a similar spirit to [4, 20]. As the auxiliary
network is trained on multiple tasks in meta-training, the
premise of estimating the task-specific adapter weights with
it is based on the principle of transfer learning such that it can
transfer the knowledge from the previous tasks to better esti-
mate them for unseen tasks. However, learning an accurate
auxiliary network is a challenging task due to two reasons.
First, it has to generalize to previously unseen tasks and
especially to significantly different unseen domains. Second,
learning to predict high-dimensional weights where each
corresponds to a dimension of a highly nonlinear feature
space is a difficult learning problem too.

Motivated by this shortcoming, as shown in Fig. 1, we
propose to employ a set of light-weight task-specific adapters
along with the task-agnostic weights for adapting the few-
shot classifier to the tasks from unseen domains. Unlike

1Note that the task-agnostic weights can also be finetuned on the target
task (e.g. [8, 13]).

the prior work, we learn the weights of these adapters from
scratch by directly optimizing them on a small support set
(see Fig. 1.(c,d)). Moreover, we systematically study vari-
ous combinations of several design choices for task-specific
adaptation, which have not been explored before, including
adapter connection types (serial or residual), parameteriza-
tions (matrix and its decomposed variations, channelwise
operations) and estimation of task-specific parameters. Ex-
tensive experiments demonstrate that attaching parameteric
adapters in matrix form to convolutional layers with residual
connections significantly boosts the state-of-the-art perfor-
mance in most domains, especially resulting in superior
performance in unseen domains on Meta-Dataset with negli-
gible increase in computations.

More related work. Here we provide more detailed dis-
cussion of the most related work. Both CNAPS [41] and
Simple CNAPS [3] employ task-specific adapters via FiLM
layers (which uses a channelwise affine transformation and
connected to the backbone in a serial way) [36] to adapt their
feature extractors to the target task and estimate them via an
auxiliary network. Compared to them, we propose learning
residual adapters in matrix form directly on the support set.
SUR [15] and URT [29] learn an attention mechanism to
select/fuse features from multiple domain-specific models
in meta-train respectively. As we build on a single multi-
domain feature extractor, our method does not require such
attention but we attach task-specific adapters to the feature
extractor to adapt the features to unseen tasks. URL [27]
learns a pre-classifier feature mapping to adapt the feature
from a single task-agnostic model learned from multiple
domains for unseen tasks. While we build on their fea-
ture extractor and pre-classifier alignment, the pre-classifier
alignment provides very limited capacity for task adapta-
tion, which we address by adapting the feature extractor
with adapters at multiple layers. FLUTE [47] follows a hy-
brid three step approach that first learns the parameters of
domain-specific FiLM layers so called templates, employs
an auxiliary network to initialize the parameters of a new
FiLM layer for unseen task by combining the templates and
finetunes them on the small support set. Different from
FLUTE, our method learns such adaptation in a single step
by learning residual adapters in meta-test.

There are also methods (e.g. [14, 44]) that do not fit into
task-agnostic and task-specific parameterization grouping.
BOHB [44] proposes to use multi-domain data as valida-
tion objective for hyper-parameter optimization such that
the feature learned on ImageNet with the optimized hyper-
parameter generalizes well to multi-domain. CTX [14] pro-
poses to learn spatial correspondences from ImageNet and
evaluates on the remaining (unseen) domains. We also com-
pare our method to them in the setting where we use a stan-
dard single domain learning network learned from ImageNet
and adapt its representations through residual adapters.

2

2. Method
Few-shot classification aims at learning to classify sam-

ples of new categories efficiently from few samples only.
Each few-shot learning task consists of a support set S =

{(xi, yi)}|S|
i=1 with |S| sample and label pairs respectively

and a query set Q = {(xj)}|Q|
j=1 with |Q| samples to be clas-

sified. The goal is to learn a classifier on S that accurately
predicts the labels of Q. Note that this paper focuses on
few-shot image classification problem, i.e. x and y denote
an image and its label.

As in [15, 27, 29], we solve this problem in two steps
involving i) representation learning where we learn a task-
agnostic feature extractor f from a large dataset Db, ii) task
adaptation where we adapt the task-agnostic representations
through various task-specific weights to the target tasks
(S,Q) that are sampled from another large dataset Dt by
taking the subsets of the dataset to build S and Q. Note that
Db and Dt contain mutually exclusive classes.

2.1. Task-agnostic representation learning

Learning task-agnostic or universal representations [5]
has been key to the success of cross-domain generalization.
Representations learned from a large diverse dataset such as
ImageNet [12] can be considered as universal and success-
fully transferred to tasks in different domains with minor
adaptations [15, 29, 38]. We denote this setting as single
domain learning (SDL).

More powerful and diverse representations can be ob-
tained by training a single network over multiple domains.
Let Db = {Dk}Kk=1 consists ofK subdatasets, each sampled
from a different domain. The vanilla multi-domain learning
(MDL) strategy jointly optimizes network parameters over
the images from all K subdatasets:

min
ϕ,ψk

K∑
k=1

1

|Dk|
∑

x,y∈Dk

ℓ(gψk
◦ fϕ(x), y), (1)

where ℓ is cross-entropy loss, f is feature extractor that takes
an image as input and outputs a d dimensional feature. f
is parameterized by ϕ which is shared across K domains.
gψk

is the classifier for domain k and parameterized by ψk
which is discarded in meta-test. We denote this setting as
MDL. The challenge in MDL is to allow efficiently sharing
the knowledge across the domains while preventing neg-
ative transfer between them and also carefully balancing
the individual loss functions ([9]). URL [27], a variant of
MDL, mitigates these challenges by first training individual
domain-specific networks offline and then distilling their
knowledge into a single multi-domain network. We refer
to [27] for more details.

Another way of obtaining multi-domain representations
is to employ multiple domain-specific feature extractors, one

for each domain, and adaptively “fuse” their features for each
task [15, 30, 47]. While these methods are effective, they
require computing features for each image through multiple
feature extractors and are thus computationally expensive.
Due to its simplicity and effectiveness, we conduct experi-
ments with the feature extractor of URL [27] along with the
SDL one.

2.2. Task-specific weight learning

A good task-agnostic feature extractor fϕ is expected to
produce representations that generalize to many previously
unseen tasks and domains. However this gets more challeng-
ing when there is a large domain gap between the training
set Db and test set Dt which requires further adaptation to
the target task. In this work, we propose to incorporate ad-
ditional capacity to the task-agnostic feature extractor by
adding task-specific weights to adapt the representations to
the target task by using the support set. Specifically, we di-
rectly attach task-specific weights to a learned task-agnostic
model, and estimate them from scratch given the support set.
We denote the task-specific weights with ϑ and task-adapted
classifier with p(ϕ,ϑ) that outputs a softmax probability vec-
tor whose dimensionality equals to the number of categories
in the support set S .

To obtain the task-specific weights, we freeze the task-
agnostic weights ϕ and minimize the cross-entropy loss ℓ
over the support samples in meta-test w.r.t. the task-specific
weights ϑ [15, 27, 46]:

min
ϑ

1

|S|
∑

(x,y)∈S

ℓ(p(ϕ,ϑ)(x), y), (2)

where S is sampled from the test set Dt. Most previous
works freeze the task-agnostic weights but estimate the task-
specific weights through an auxiliary network (or a task
encoder) [3, 27, 41, 47], where inaccurate prediction of pa-
rameters can lead to noisy adaptation and wrong prediction.

2.3. Task-specific adapter parameterization (ϑ)

Task adaptation techniques can be broadly grouped into
two categories that aims to adapt the feature extractor or
classifier to a given target task. We use α and β to denote
task-specific weights for adapting the feature extractor and
classifier respectively where ϑ = {α, β}.
Feature extractor adaptation. A simple method to adapt
fϕ is finetuning its parameters on the support set [8, 13].
However, this strategy tends to suffer from the unpropor-
tionate optimization, i.e. updating very high-dimensional
weights from a small number of support samples. In this
paper, we propose to attach task-specific adapters directly to
the existing task-agnostic model, e.g. we attach the adapters
to each module of a ResNet backbone in Fig. 2 (a), and the
adapters can be efficiently learned/estimated from few sam-
ples. Concretely, let fϕl

denote the l-th layer of the feature

3

prediction

Support Set

Query
Set

cos

Support set
Features

Class
Centroids

Query Feature

module1 module2

block1

module1 module2

block2

module1 module2

block4
...

3x3 BN ReLU 3x3 BN ReLU

module1/2 Task adaptation in Meta-test.

3x3 3x3

Serial adapter. Residual adapter.

Different options for

Matrix Channel-wise.
Adapter topologies Adapter parameterization

Figure 2. Illustration of our task adaptation for cross-domain few-shot learning. In meta-test stage (a), our method first attaches a parametric
transformation rα to each layer, where α can be constructed by (b) a serial or (c) a residual topology. They can be parameterized with matrix
multiplication (d) or channel-wise scaling (e). We found that (c) is the best configuration with matrix parameterization which is further
improved by attaching a linear transformation Aβ to the end of the network. We adapt the network for a given task by optimizing α and Aβ

on a few labeled images from the support set, then map query images to the task-specific space and assign them to the nearest class center.

extractor fϕ (i.e. a convolutional layer) with the weights ϕl.
Given a support set S , the task-specific adapters rα parame-
terized by α, can be incorporated to the output of the layer
fϕl

as
f{ϕl,α}(h) = rα(fϕl

(h),h) (3)

where h ∈ RW×H×C is the input tensor, fϕl
is a convo-

lutional layer in fϕ. Importantly, the number of the task-
specific adaptation parameters α are significantly smaller
than the task-agnostic ones. The adapters can be designed in
different ways.

Next we propose two connection types for incorporating
rα to fϕl

: i) serial connection by subsequently applying it to
the output of layer fϕl

(h) as

f{ϕl,α}(h) = rα ◦ fϕl
(h)

which is illustrated in Fig. 2(b), and ii) parallel connection
by a residual addition as in [39]

f{ϕl,α}(h) = rα(h) + fϕl
(h)

which is illustrated in Fig. 2(c). In our experiments, we found
the parallel setting performing the best when α is learned on
a support set during meta-test (illustrated in Fig. 2(c)) which
we discuss in Sec. 3.

For the parameterization of rα, we consider two options.
Matrix multiplication (illustrated in Fig. 2(d)) with α ∈
RC×C :

rα(h) = h ∗ α,
where ∗ denotes a convolution, α ∈ RC×C and the trans-
formation is implemented as a convolutional operation with

1 × 1 kernels in our code. And channelwise scaling (illus-
trated in Fig. 2(e)):

rα(h) = h⊙ α,

where ⊙ is a Hadamard product and α ∈ RC . Note that
one can also use an additive bias weight in both settings,
however, this has not resulted in any significant gains in
our experiments. While the matrix multiplication is more
powerful than the scaling operation, it also requires more
parameters to be estimated or learned. Note that, in a deep
neural network, the number of input Cin and output chan-
nels Cout for a layer can be different. In that case, one can
still use a non-square matrix: α ∈ RCout×Cin , however, it
is not possible to use a scaling operator in the parallel set-
ting. In our experiments, we use ResNet architecture [17]
where most input and output channels are the same. rα con-
nected in parallel with matrix multiplication form, when its
parameters α are learned on the support set, is known as
residual adapter [39] and rα connected serial in channelwise
is known as FiLM [36].

An alternative to reduce the dimensionality of α in case
of matrix multiplication is matrix decomposition: α = V γ⊤,
where V ∈ RC×B and γ ∈ RC×B , B ≪ C. Using a
bottleneck, i.e. setting B < C/2, reduces the number of
parameters in the multiplication. In this work, we set B =
[C/N] and evaluate the performance for various N in Sec. 3.
Classifier learning. Finally, the adapted feature extractor
f(ϕ,α) can be combined with a task-specific classifier cβ ,
parameterized by β to obtain the final model, i.e. c ◦ f(ϕ,α).

4

Test Dataset CNAPS [41] Simple CNAPS [3] TransductiveCNAPS [2] SUR [15] URT [29] FLUTE [47] tri-M [30] URL [27] Ours

ImageNet 50.8± 1.1 58.4± 1.1 57.9± 1.1 56.2± 1.0 56.8± 1.1 58.6± 1.0 51.8± 1.1 58.8± 1.1 59.5± 1.0
Omniglot 91.7± 0.5 91.6± 0.6 94.3± 0.4 94.1± 0.4 94.2± 0.4 92.0± 0.6 93.2± 0.5 94.5± 0.4 94.9± 0.4
Aircraft 83.7± 0.6 82.0± 0.7 84.7± 0.5 85.5± 0.5 85.8± 0.5 82.8± 0.7 87.2± 0.5 89.4± 0.4 89.9± 0.4
Birds 73.6± 0.9 74.8± 0.9 78.8± 0.7 71.0± 1.0 76.2± 0.8 75.3± 0.8 79.2± 0.8 80.7± 0.8 81.1± 0.8

Textures 59.5± 0.7 68.8± 0.9 66.2± 0.8 71.0± 0.8 71.6± 0.7 71.2± 0.8 68.8± 0.8 77.2± 0.7 77.5± 0.7
Quick Draw 74.7± 0.8 76.5± 0.8 77.9± 0.6 81.8± 0.6 82.4± 0.6 77.3± 0.7 79.5± 0.7 82.5± 0.6 81.7± 0.6

Fungi 50.2± 1.1 46.6± 1.0 48.9± 1.2 64.3± 0.9 64.0± 1.0 48.5± 1.0 58.1± 1.1 68.1± 0.9 66.3± 0.8
VGG Flower 88.9± 0.5 90.5± 0.5 92.3± 0.4 82.9± 0.8 87.9± 0.6 90.5± 0.5 91.6± 0.6 92.0± 0.5 92.2± 0.5

Traffic Sign 56.5± 1.1 57.2± 1.0 59.7± 1.1 51.0± 1.1 48.2± 1.1 63.0± 1.0 58.4± 1.1 63.3± 1.1 82.8± 1.0
MSCOCO 39.4± 1.0 48.9± 1.1 42.5± 1.1 52.0± 1.1 51.5± 1.1 52.8± 1.1 50.0± 1.0 57.3± 1.0 57.6± 1.0

MNIST - 94.6± 0.4 94.7± 0.3 94.3± 0.4 90.6± 0.5 96.2± 0.3 95.6± 0.5 94.7± 0.4 96.7± 0.4
CIFAR-10 - 74.9± 0.7 73.6± 0.7 66.5± 0.9 67.0± 0.8 75.4± 0.8 78.6± 0.7 74.2± 0.8 82.9± 0.7

CIFAR-100 - 61.3± 1.1 61.8± 1.0 56.9± 1.1 57.3± 1.0 62.0± 1.0 67.1± 1.0 63.5± 1.0 70.4± 0.9

Average Seen 71.6 73.7 75.1 75.9 77.4 74.5 76.2 80.4 80.4
Average Unseen - 67.4 66.5 64.1 62.9 69.9 69.9 70.6 78.1

Average All - 71.2 71.8 71.4 71.8 72.7 73.8 76.6 79.5

Average Rank - 6.1 5.5 5.6 5.5 4.8 4.4 2.5 1.6

Table 1. Comparison state-of-the-art methods on Meta-Dataset (using a multi-domain feature extractor of [27]). Mean accuracy, 95%
confidence interval are reported. The first eight datasets are seen during training and the last five datasets are unseen and used for test only.

Based on the recent works, we investigate use of various
linear classifiers in [8, 13, 26, 41], also nonparameteric ones
including nearest centroid classifier (NCC) [32,45] and their
variants based on Mahalanobis distance (MD) [3]. Recently,
it was shown in [27] that nonparametric classifiers can be
successfully combined with a pre-classifier transformation.
Concretely, the transformation in [27] that takes in the fea-
tures computed from the network f{ϕ,α} ∈ Rd and apply
an affine transformation Aβ : Rd → Rd parameterized by
β ∈ Rd×d to obtain the network embedding that is fed into
the classifier, i.e. pϕ,ϑ = c ◦ Aβ ◦ f{ϕ,α}. Note that in the
case of non-parametric classifier, c is not parameterized by
β and we use β to denote the transformation parameters.

In our experiments, the best performing setting uses par-
allel adapters, whose parameters are in the matrix form, to
adapt the feature extractor and followed by the pre-classifier
transformation and NCC.

3. Experiments
Here we start with experimental setup, and then we com-

pare our method to the state-of-the-art methods and rigor-
ously evaluate various design decisions. We finally provide
further analysis.

3.1. Experimental setup

Dataset. We use the Meta-Dataset [48] which is the stan-
dard benchmark for few-shot classification. It contains im-
ages from 13 diverse datasets and we follow the standard
protocol in [48] (more details in the supplementary).
Implementation details. As in [3, 15, 27], we build our
method on ResNet-18 [17] backbone, which is trained over
eight training subdatasets by following [27] with the same
hyperparameters in our experiments, unless stated otherwise.
Once learned, we freeze its parameters and use them as the
task-agnostic weights. For learning task-specific weights (ϑ),
including the pre-classifier transformation β and the adapter

parameters, we directly attach them to the task-agnostic
weights and learn them on the support samples in meta-test
by using Adadelta optimizer [52].

In the study of various task adaptation strategies in Sec-
tion 3.3, we consider to only estimate the adapter parameters
and learn the auxiliary network parameters by using Adam
optimizer as in [3, 41] in meta-train. Note that estimation
of pre-classifier and classifier weights via the auxiliary net-
work leads to noisy and poor results and we do not report
them. Similarly, we found that the auxiliary network fails to
estimate very high-dimensional weights. Hence we only use
it to estimate adapter weights that are parameterized with a
vector for channelwise multiplication but not with a matrix.

3.2. Comparison to state-of-the-art methods

We evaluate our method in two settings, with multi-
domain or single-domain feature extractor and compare our
method to existing state-of-the-art methods. We also evalu-
ate our method incorporated with different feature extractors,
i.e. SDL, MDL, and URL in the supplementary.
Multi-domain feature extractor. Here we incorporate
the proposed residual adapters in matrix form to the multi-
domain feature extractor of [27] and compare its perfor-
mance with the the state-of-the-art methods (CNAPS [41],
SUR [15], URT [29], Simple CNAPS [3], Transductive
CNAPS [2], FLUTE [47], tri-M [30], and URL [27]) in
Tab. 1. To better analyze the results, we divide the table into
two blocks that show the few-shot classification accuracy
in previously seen domains and unseen domains along with
their average accuracy. We also report average accuracy over
all domains and the average rank as in [27, 47].2 Simple
CNAPS improves over CNAPS by adopting a simple Maha-
lanobis distance in stead of learning adapted linear classifier.

2As mentioned in https://github.com/google-research/
meta-dataset/issues/54, we further update the evaluation protocol
and report the updated results of all methods in the supplementary.

5

https://github.com/google-research/meta-dataset/issues/54
https://github.com/google-research/meta-dataset/issues/54

ResNet-18 ResNet-34

Test Dataset Finetune ProtoNet fo-Proto- ALFA+fo-Proto BOHB FLUTE Ours ProtoNet CTX Ours[48] [48] MAML [48] -MAML [48] [44] [47] [14] [14]

ImageNet 45.8± 1.1 50.5± 1.1 49.5± 1.1 52.8± 1.1 51.9± 1.1 46.9± 1.1 59.5± 1.1 53.7± 1.1 62.8± 1.0 63.7± 1.0

Omniglot 60.9± 1.6 60.0± 1.4 63.4± 1.3 61.9± 1.5 67.6± 1.2 61.6± 1.4 78.2± 1.2 68.5± 1.3 82.2± 1.0 82.6± 1.1
Aircraft 68.7± 1.3 53.1± 1.0 56.0± 1.0 63.4± 1.1 54.1± 0.9 48.5± 1.0 72.2± 1.0 58.0± 1.0 79.5± 0.9 80.1± 1.0
Birds 57.3± 1.3 68.8± 1.0 68.7± 1.0 69.8± 1.1 70.7± 0.9 47.9± 1.0 74.9± 0.9 74.1± 0.9 80.6± 0.9 83.4± 0.8

Textures 69.0± 0.9 66.6± 0.8 66.5± 0.8 70.8± 0.9 68.3± 0.8 63.8± 0.8 77.3± 0.7 68.8± 0.8 75.6± 0.6 79.6± 0.7
Quick Draw 42.6± 1.2 49.0± 1.1 51.5± 1.0 59.2± 1.2 50.3± 1.0 57.5± 1.0 67.6± 0.9 53.3± 1.1 72.7± 0.8 71.0± 0.8

Fungi 38.2± 1.0 39.7± 1.1 40.0± 1.1 41.5± 1.2 41.4± 1.1 31.8± 1.0 44.7± 1.0 40.7± 1.1 51.6± 1.1 51.4± 1.2
VGG Flower 85.5± 0.7 85.3± 0.8 87.2± 0.7 86.0± 0.8 87.3± 0.6 80.1± 0.9 90.9± 0.6 87.0± 0.7 95.3± 0.4 94.0± 0.5
Traffic Sign 66.8± 1.3 47.1± 1.1 48.8± 1.1 60.8± 1.3 51.8± 1.0 46.5± 1.1 82.5± 0.8 58.1± 1.1 82.7± 0.8 81.7± 0.9
MSCOCO 34.9± 1.0 41.0± 1.1 43.7± 1.1 48.1± 1.1 48.0± 1.0 41.4± 1.0 59.0± 1.0 41.7± 1.1 59.9± 1.0 61.7± 0.9

MNIST - - - - - 80.8± 0.8 93.9± 0.6 - - 94.6± 0.5
CIFAR-10 - - - - - 65.4± 0.8 82.1± 0.7 - - 86.0± 0.6

CIFAR-100 - - - - - 52.7± 1.1 70.7± 0.9 - - 78.3± 0.8

Average Seen 45.8 50.5 49.5 52.8 51.9 46.9 59.5 53.7 62.8 63.7
Average Unseen 58.2 56.7 58.4 62.4 60.0 53.2 71.9 61.1 75.6 76.2

Average All 57.0 56.1 57.5 61.4 59.2 52.6 70.7 60.4 74.3 74.9

Average Rank 7.9 8.3 7.0 5.3 6.0 8.9 2.8 5.5 1.8 1.5

Table 2. Comparison to state-of-the-art methods on Meta-Dataset (using a single-domain feature extractor which is trained only on ImageNet).
Mean accuracy, 95% confidence interval are reported. Only ImageNet is seen during training and the rest datasets are unseen for test only.

Transductive CNAPS further improves by using unlabelled
test images. SUR and URT fuse multi-domain features to get
better performance. FLUTE improves URT by fusing FiLM
parameters as initialization which is further finetuned on the
support set in meta-test. tri-M adopts the same strategy of
learning modulation parameters as CNAPS, where the pa-
rameters are further divided into the domain-specific set and
the domain-cooperative set to explore the intra-domain in-
formation and inter-domain correlations, respectively. URL
surpasses previous methods by learning a universal represen-
tation with distillation from multiple domains.

From the results, our method outperforms other methods
on most domains (10 out of 13), especially obtaining sig-
nificant improvement on 5 unseen datasets than the second
best method, i.e. Average Unseen (+7.5). More specifically,
our method obtains significant better results than the second
best approach on Traffic Sign (+19.5), CIFAR-10 (+8.7),
and CIFAR-100 (+6.8). Achieving improvement on unseen
domains is more challenging due to the large gap between
seen and unseen domain and the scarcity of labeled samples
for the unseen task. We address this problem by attach-
ing light-weight adapters to the feature extractor residually
and learn the attached adapters on support set from scratch.
This allows the model to learn more accurate and effective
task-specific parameters (adapters) from the support set to ef-
ficiently steer the task-agnostic features for the unseen task,
compared with predicting task-specific parameters by an
auxiliary network learned in meta-train, e.g. Simple CNAPS,
tri-M, or fusing representations from multiple feature extrac-
tors e.g. SUR, URT. Though FLUTE uses a hybrid approach
which uses auxiliary networks learned from meta-train to
initialize the FiLM parameters for further fine-tuning, their
results are not better than URL, which achieves very com-
petitive results as it learns a good universal representation
that generalizes well to seen domains and can be further

improved with the adaptation strategy proposed in this work,
especially significant improvements on unseen domains.
Single-domain feature extractor. We also evaluate our
method with a single-domain feature extractor trained on
ImageNet only on ResNet-18 as in [48] or ResNet-34 as
in [14]. This setting is more challenging than the multi-
domain one, as the model is trained only on one domain
and tested on both test split of ImageNet but also of other
domains. We report the results of our method and state-of-
the-art methods (BOHB [44], FLUTE [47], Finetune [48],
ProtoNet [48], fo-Proto-MAML [48], and ALFA+fo-Proto-
MAML [48], CTX [14]) in Tab. 2. ALFA+fo-Proto-MAML
achieves the prior best performance by combining the com-
plementary strengths of Prototypical Networks and MAML
(fo-Proto-MAML), with extra meta-learning of per-step hy-
perparameters: learning rate and weight decay coefficients.
FLUTE fails to surpass it with one training source domain,
probably due to the lack of FiLM parameters from multiple
domains. Our method, when using ResNet18 backbone, out-
performs other methods on all domains, especially obtaining
significant improvement, i.e. Average Unseen (+9.5), on 12
unseen datasets than the second best method. We compare
our method to CTX and ProtoNet, which use ResNet-34
backbone. 3 CTX is very competitive by learning coarse
spatial correspondence between the query and the support
images with an attention mechanism. Ours is orthogonal
to CTX and both CTX and our method can potentially be
complementary, but we leave this as future work due to high
computational cost of CTX. Specifically, we see that our
method obtains the best average rank and outperforms CTX
on most domains (6 out of 10) while our method being more

3Note that CTX also uses augmentation strategies such as AutoAug-
ment [11] and other ones from SimClr [7]. We expect applying the same
augmentation strategies to our method would yield further improvements,
but we leave this for future work.

6

Test Dataset classifier Aux-Net serial or M or
β #params Image Omni Air- Birds Tex- Quick Fungi VGG Traffic MS- MNIST CIFAR CIFAR

or Ad residual CW -Net -glot craft tures Draw Flower Sign COCO -10 -100

NCC NCC - - - % - 57.0 94.4 88.0 80.3 74.6 81.8 66.2 91.5 49.8 54.1 91.1 70.6 59.1

MD MD - - - % - 53.9 93.8 87.6 78.3 73.7 80.9 57.7 89.7 62.2 48.5 95.1 68.9 60.0

LR LR - - - % - 56.0 93.7 88.3 79.7 74.7 80.0 62.1 91.1 59.7 51.2 93.5 73.1 60.1

SVM SVM - - - % - 54.5 94.3 87.7 78.1 73.8 80.0 58.5 91.4 65.7 50.5 95.4 72.0 60.5

Finetune NCC - - - % - 55.9 94.0 87.3 77.8 76.8 75.3 57.6 91.5 86.1 53.1 96.8 80.9 65.9

Aux-S-CW NCC Aux-Net serial CW % 76.98% 54.6 93.5 86.6 78.6 71.5 79.3 66.0 87.6 43.3 49.1 87.9 62.8 51.5

Aux-R-CW NCC Aux-Net residual CW % 76.98% 56.1 94.2 88.4 80.6 74.9 82.0 66.4 91.6 48.5 53.5 90.8 70.2 59.7

Aux-S-CW MD Aux-Net serial CW % 76.98% 55.1 93.8 86.8 77.4 73.2 79.9 57.4 88.1 58.4 50.1 92.7 66.5 55.7

Aux-R-CW MD Aux-Net residual CW % 76.98% 54.8 93.8 87.4 78.2 73.4 81.1 58.8 90.1 63.6 48.5 94.8 69.6 60.6

Ad-S-CW NCC Ad serial CW % 0.06% 56.8 94.8 89.3 80.7 74.5 81.6 65.8 91.3 73.9 53.6 95.7 78.4 64.3

Ad-R-CW NCC Ad residual CW % 1.57% 57.6 94.7 89.0 81.2 75.2 81.5 65.4 91.8 79.2 54.7 96.4 79.5 67.4

Ad-S-M NCC Ad serial M % 12.50% 56.2 94.4 89.1 80.6 75.8 81.6 67.1 92.1 67.6 54.8 95.9 78.9 66.6

Ad-R-M NCC Ad residual M % 10.93% 57.3 94.9 88.9 81.0 76.7 80.6 65.4 91.4 82.6 55.0 96.6 82.1 66.4

Ad-R-CW-PA NCC Ad residual CW ! 3.91% 58.6 94.5 90.0 80.5 77.6 81.9 67.0 92.2 80.2 57.2 96.1 81.5 71.4

Ad-R-M-PA NCC Ad residual M ! 13.27% 59.5 94.9 89.9 81.1 77.5 81.7 66.3 92.2 82.8 57.6 96.7 82.9 70.4

Table 3. Comparisons to methods that learn classifiers and model adaptation methods during meta-test stage based on URL model. NCC,
MD, LR, SVM denote nearest centroid classifier, Mahalanobis distance, logistic regression, support vector machines respectively. ‘Aux-Net
or Ad’ indicates using Auxiliary Network to predict α or attaching adapter α directly. ‘M or CW’ means using matrix multiplication or
channel-wise scaling adapters. ‘S’ and ‘R’ denote serial adapter and residual adapter, respectively. ‘β’ indicates using the pre-classifier
adaptation. The standard deviation results can be found in the supplementary. The first eight datasets are seen during training and the last
five datasets are unseen and used for test only.

efficient (We train our model on one single Nvidia GPU for
around 33 hours while CTX requires 8 Nvidia V100 GPUs
and 7 days for training. Please refer to the supplementary
for more details).

3.3. Analysis of task-specific parameterizations

Classifier learning. First we study the adaptation strate-
gies for learning only a task-specific classifier on the pre-
trained feature extractor of [27]. We evaluate non-parametric
classifiers including nearest cetroid classifier (NCC) and
NCC Mahalanobis Distance (MD) and parametric classifiers
including logistic regression (LR), support vector machine
SVM whose parameters are learned on support samples. We
also include another baseline with NCC that finetunes all the
feature extractor parameters, and report the results in Tab. 3.
We observe that NCC obtains the best results for the seen do-
mains and its performance is further improved by MD, while
SVM achieves the best for the unseen domains among other
classifiers. Finetuning baseline provides competitive results
especially for the unseen domains. However, it performs
poor in most seen domains.
Feature extractor adaptation. Next we analyze various
design decisions for the feature extractor adaptation includ-
ing connection types (serial, residual), i.e. Fig. 2(b), (c), its
parameterization including channelwise modulation (CW)
when they are estimated by an auxiliary network (Aux-Net),
which has around 77% capacity of the feature extractor. We
use with each combination with two nonparameteric clas-
sifier, either NCC or MD. While the adaptation strategies
using residual connections performs better than the serial
one in almost all cases, the gains are more substantial when
generalizing to unseen domains. Learning adapter weights
from few samples only can be very noisy. With residual addi-

tion, it is not necessary to change all connections for passing
the information forward, which can improve the robustness
of useful features and reduce learning burdens for new task,
hence increase the generalization ability. While the serial
connections may damage the previous learned structures.
We also observe that NCC and MD obtain comparable per-
formances. Note that Aux-S-CW with MD corresponds to
our implementation of Simple CNAPS [3] with the more
powerful feature extractor. We show that replacing its serial
connection with a residual one leads to a strong performance
boost.

Next we look at the adaptation strategy that learns the
task-specific weights directly on the support set as in Eq. (2).
We evaluate serial and residual connection types with chan-
nelwise and matrix parameterizations by using NCC. We
denote this setting as Ad in Tab. 3. Note that we omit MD
here, as it produces similar results to NCC. First we observe
that learning the weights on the support set outperforms the
strategy of estimating them through an auxiliary network al-
most in all cases. In addition, the learnable weights requires
less number of parameters per task, while the capacity of
auxiliary network is fixed. We again observe that the resid-
ual connections are more effective, especially when used
with the matrix parameterization (Ad-R-M). However,the
channelwise ones provide a good performance/computation
tradeoff. Finally using the pre-classifier alignment (Ad-R-
CW-PA and Ad-R-M-PA) further boosts the performance of
the best models and we use our best model Ad-R-M-PA to
compare against the state-of-the-art.

3.4. Further results
Varying-way Five-shot. After evaluating our method over
a broad range of varying shots (e.g. up to 100 shots), we fol-

7

10 20 30 40 50 60
Iterations

73

74

75

76

77

78

79

80

81

Ac
cu

ra
y

Average seen
Average unseen
Average all
Average all (baseline)

Figure 3. Sensitivity of performance to num-
ber of iterations.

block4 block3,4 block2,3,4 block-all
72

74

76

78

80

82

84

86

Ac
cu

ra
y

Average Seen
Average Unseen
Average All

Figure 4. Block (layer) analysis for adapters.

0 2 4 8 16 32
N

73

74

75

76

77

78

79

80

81

Ac
cu

ra
y

Average seen
Average unseen
Average all

Figure 5. Decomposed residual adapters on
block-3,4.

low [14, 27] to further analyze our method in 5-shot setting
of varying number of categories. In this setting, we sam-
ple a varying number of ways with a fixed number of shots
to form balanced support and query sets. As shown in Ta-
ble 4, overall performance for all methods decreases in most
datasets compared to results in Table 1 indicating that this is
a more challenging setting. It is due to that five-shot setting
samples much less support images per class than the stan-
dard setting. The top-2 methods remain the same and ours
still outperforms the state-of-the-art URL when the number
of support images per class is fewer, especially on unseen
domains (Average Unseen +6.2).
Five-way One-shot. The similar conclusion can be drawn
from this challenging case. Note that there are extremely
few samples available for training in this case. As we can
see, Ours achieves similar results with URL on seen domains
but much better performance on unseen domains due to the
learning of attached residual adapters is less over-fitting.

Varying-Way Five-Shot Five-Way One-Shot

Test Dataset Simple SUR URT URL Ours Simple SUR URT URL OursCNAPS [3] [15] [29] [27] CNAPS [3] [15] [29] [27]

Average Seen 69.0 71.2 73.8 76.6 76.7 65.0 64.0 70.6 73.4 73.5
Average Unseen 62.6 56.0 59.6 65.2 71.4 57.7 49.6 57.5 62.4 63.4

Average All 66.5 65.4 68.3 72.2 74.6 62.2 58.5 65.5 69.2 69.6

Average Rank 4.1 3.9 3.4 2.1 1.5 3.8 4.5 3.3 1.7 1.7

Table 4. Results of Varying-Way Five-Shot and Five-Way One-Shot
scenarios. Mean accuracies are reported and more detailed results
can be found in the supplementary.

3.5. Further ablation study

Here, we conduct ablation study for the sensitivity anal-
ysis for number of iterations, layer analysis for adapters,
and decomposed residual adapters. We summarize results in
figures and refer to supplementary for more detailed results.
Sensitivity analysis for number of iterations. In our
method, we optimize the attached parameters (α, β) with
40 iterations. Figure 3 reports the results with 10, 20, 40, 60
iterations and indicates that our method (solid green) con-
verges to a stable solution after 20 iterations and achieves
better average performance on all domains than the baseline
URL (dash green).
Layer analysis for adapters. Here we investigate whether
it is sufficient to attach the adapters only to the later layers.
We evaluate this on ResNet18 which is composed of four

blocks and attach the adapters to only later blocks (block4,
block3,4, block2,3,4 and block-all, see Fig. 2). Figure 4
shows that applying our adapters to only the last block
(block4) obtains around 78% average accuracy on all do-
mains which outperforms the URL. With attaching residual
adapters to more layers, the performance on unseen domains
is improved significantly while the one on seen domains
remains stable.

Decomposing residual adapters. Here we investigate
whether one can reduce the number of parameters in the
adapters while retaining its performance by using matrix
decomposition (see Sec. 2). As in deep neural network, the
adapters in earlier layers are relatively small, we then de-
compose the adapters in the last two blocks only where the
adapter dimensionality goes up to 512×512. Figure 5 shows
that our method can achieve good performance with less pa-
rameters by decomposing large residual adapters, (e.g. when
N = 32 where the number of additional parameters equal to
around 4% vs 13%, the performance is still comparable to
the original form of residual adapters, i.e. N=0). We refer to
supplementary for more details.

4. Conclusion and Limitations

In this work, we investigate various strategies for adapting
deep networks to few-shot classification tasks and show
that light-weight adapters connected to a deep network with
residual connections achieves strong adaptation to new tasks
and domains only from few samples and obtains state-of-
the-art performance while being efficient in the challenging
Meta-Dataset benchmark. We demonstrate that the proposed
solution can be incorporated to various feature extractors
with a negligible increase in number of parameters.

Our method has limitations too. We build our method on
existing backbones such ResNet-18 and ResNet-34, employ
fixed adapter parameterizations and connection types which
may not be optimal for every layer and task in multi-domain
few-shot learning. Thus it would be desirable to have more
flexible adapter structures that can be altered and tuned based
on the target task.

Acknowledgments. HB is supported by the EPSRC pro-
gramme grant Visual AI EP/T028572/1.

8

References
[1] Thomas Adler, Johannes Brandstetter, Michael

Widrich, Andreas Mayr, David Kreil, Michael Kopp,
Günter Klambauer, and Sepp Hochreiter. Cross-domain
few-shot learning by representation fusion. arXiv
preprint arXiv:2010.06498, 2020. 2

[2] Peyman Bateni, Jarred Barber, Jan-Willem van de
Meent, and Frank Wood. Enhancing few-shot image
classification with unlabelled examples. arXiv preprint
arXiv:2006.12245, 2020. 5, 14

[3] Peyman Bateni, Raghav Goyal, Vaden Masrani, Frank
Wood, and Leonid Sigal. Improved few-shot visual
classification. In CVPR, pages 14493–14502, 2020. 2,
3, 5, 7, 8, 12, 13, 14, 17, 18, 19

[4] Luca Bertinetto, João F Henriques, Jack Valmadre,
Philip Torr, and Andrea Vedaldi. Learning feed-
forward one-shot learners. In Advances in neural in-
formation processing systems, pages 523–531, 2016.
2

[5] Hakan Bilen and Andrea Vedaldi. Universal representa-
tions: The missing link between faces, text, planktons,
and cat breeds. arXiv preprint arXiv:1701.07275, 2017.
3

[6] Schroeder Brigit and Cui Yin. Fgvcx fungi classifica-
tion challenge. online, 2018. 12

[7] Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In International
conference on machine learning, pages 1597–1607.
PMLR, 2020. 6

[8] Yinbo Chen, Xiaolong Wang, Zhuang Liu, Huijuan Xu,
and Trevor Darrell. A new meta-baseline for few-shot
learning. arXiv preprint arXiv:2003.04390, 2020. 2, 3,
5

[9] Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and
Andrew Rabinovich. Gradnorm: Gradient normaliza-
tion for adaptive loss balancing in deep multitask net-
works. In ICML, pages 794–803. PMLR, 2018. 3

[10] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos,
Sammy Mohamed, and Andrea Vedaldi. Describing
textures in the wild. In CVPR, pages 3606–3613, 2014.
12

[11] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay
Vasudevan, and Quoc V Le. Autoaugment: Learning
augmentation strategies from data. In CVPR, pages
113–123, 2019. 6

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In CVPR, pages 248–255. Ieee, 2009.
3

[13] Guneet S Dhillon, Pratik Chaudhari, Avinash Ravichan-
dran, and Stefano Soatto. A baseline for few-shot im-
age classification. In ICLR, 2020. 2, 3, 5

[14] Carl Doersch, Ankush Gupta, and Andrew Zisserman.
Crosstransformers: spatially-aware few-shot transfer.
In NeurIPS, 2020. 2, 6, 8, 12

[15] Nikita Dvornik, Cordelia Schmid, and Julien Mairal.
Selecting relevant features from a multi-domain repre-
sentation for few-shot classification. In ECCV, pages
769–786, 2020. 2, 3, 5, 8, 12, 14, 17, 18, 19

[16] Chelsea Finn, Pieter Abbeel, and Sergey Levine.
Model-agnostic meta-learning for fast adaptation of
deep networks. In ICLR, pages 1126–1135, 2017. 1

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
CVPR, pages 770–778, 2016. 4, 5, 12

[18] Timothy Hospedales, Antreas Antoniou, Paul Micaelli,
and Amos Storkey. Meta-learning in neural networks:
A survey. arXiv preprint arXiv:2004.05439, 2020. 1

[19] Sebastian Houben, Johannes Stallkamp, Jan Salmen,
Marc Schlipsing, and Christian Igel. Detection of traf-
fic signs in real-world images: The german traffic sign
detection benchmark. In IJCNN, pages 1–8. Ieee, 2013.
12

[20] Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and
Luc V Gool. Dynamic filter networks. Advances in
neural information processing systems, 29:667–675,
2016. 2

[21] Jonas Jongejan, Rowley Henry, Kawashima Takashi,
Kim Jongmin, and Fox-Gieg Nick. The quick, draw!
a.i. experiment. online, 2016. 12

[22] Alex Krizhevsky, Geoffrey Hinton, et al. Learning
multiple layers of features from tiny images. Citeseer,
2009. 12

[23] Brenden Lake, Ruslan Salakhutdinov, Jason Gross, and
Joshua Tenenbaum. One shot learning of simple visual
concepts. In Proceedings of the annual meeting of the
cognitive science society, volume 33, 2011. 1

[24] Brenden M. Lake, Ruslan Salakhutdinov, and
Joshua B. Tenenbaum. Human-level concept learn-
ing through probabilistic program induction. Science,
350(6266):1332–1338, 2015. 2, 12

[25] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998. 12

[26] Kwonjoon Lee, Subhransu Maji, Avinash Ravichan-
dran, and Stefano Soatto. Meta-learning with differ-
entiable convex optimization. In CVPR, pages 10657–
10665, 2019. 2, 5

9

[27] Wei-Hong Li, Xialei Liu, and Hakan Bilen. Universal
representation learning from multiple domains for few-
shot classification. ICCV, 2021. 2, 3, 5, 7, 8, 12, 13,
14, 17, 18, 19

[28] Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco: Common objects
in context. In ECCV, pages 740–755. Springer, 2014.
12

[29] Lu Liu, William Hamilton, Guodong Long, Jing Jiang,
and Hugo Larochelle. A universal representation trans-
former layer for few-shot image classification. In ICLR,
2021. 2, 3, 5, 8, 14, 17, 18, 19

[30] Yanbin Liu, Juho Lee, Linchao Zhu, Ling Chen,
Humphrey Shi, and Yi Yang. A multi-mode modula-
tor for multi-domain few-shot classification. In ICCV,
pages 8453–8462, 2021. 3, 5, 14

[31] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew
Blaschko, and Andrea Vedaldi. Fine-grained vi-
sual classification of aircraft. arXiv preprint
arXiv:1306.5151, 2013. 12

[32] Thomas Mensink, Jakob Verbeek, Florent Perronnin,
and Gabriela Csurka. Distance-based image classifi-
cation: Generalizing to new classes at near-zero cost.
TPAMI, 35(11):2624–2637, 2013. 5

[33] Erik G Miller, Nicholas E Matsakis, and Paul A Viola.
Learning from one example through shared densities
on transforms. In CVPR, volume 1, pages 464–471.
IEEE, 2000. 1

[34] Maria-Elena Nilsback and Andrew Zisserman. Au-
tomated flower classification over a large number of
classes. In 2008 Sixth Indian Conference on Computer
Vision, Graphics & Image Processing, pages 722–729.
IEEE, 2008. 12

[35] Boris N Oreshkin, Pau Rodriguez, and Alexandre La-
coste. Tadam: Task dependent adaptive metric for
improved few-shot learning. In NeurIPS, 2018. 1

[36] Ethan Perez, Florian Strub, Harm De Vries, Vincent
Dumoulin, and Aaron Courville. Film: Visual reason-
ing with a general conditioning layer. In Proceedings
of the AAAI Conference on Artificial Intelligence, 2018.
2, 4

[37] Sachin Ravi and Hugo Larochelle. Optimization as a
model for few-shot learning. 2016. 1

[38] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea
Vedaldi. Learning multiple visual domains with resid-
ual adapters. In NeurIPS, 2017. 3

[39] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea
Vedaldi. Efficient parametrization of multi-domain
deep neural networks. In CVPR, pages 8119–8127,
2018. 4

[40] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake
Snell, Kevin Swersky, Joshua B Tenenbaum, Hugo
Larochelle, and Richard S Zemel. Meta-learning for
semi-supervised few-shot classification. In ICLR, 2018.
2

[41] James Requeima, Jonathan Gordon, John Bronskill,
Sebastian Nowozin, and Richard E Turner. Fast and
flexible multi-task classification using conditional neu-
ral adaptive processes. In NeurIPS, 2019. 2, 3, 5,
14

[42] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, et al. Im-
agenet large scale visual recognition challenge. IJCV,
115(3):211–252, 2015. 12

[43] Andrei A Rusu, Dushyant Rao, Jakub Sygnowski,
Oriol Vinyals, Razvan Pascanu, Simon Osindero, and
Raia Hadsell. Meta-learning with latent embedding
optimization. In ICLR, 2020. 1

[44] Tonmoy Saikia, Thomas Brox, and Cordelia Schmid.
Optimized generic feature learning for few-shot
classification across domains. arXiv preprint
arXiv:2001.07926, 2020. 2, 6

[45] Jake Snell, Kevin Swersky, and Richard S Zemel. Pro-
totypical networks for few-shot learning. In NeurIPS,
2017. 1, 5

[46] Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B
Tenenbaum, and Phillip Isola. Rethinking few-shot
image classification: a good embedding is all you need?
In ECCV, 2020. 3

[47] Eleni Triantafillou, Hugo Larochelle, Richard Zemel,
and Vincent Dumoulin. Learning a universal template
for few-shot dataset generalization. In ICML, 2021. 2,
3, 5, 6, 14

[48] Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pas-
cal Lamblin, Utku Evci, Kelvin Xu, Ross Goroshin,
Carles Gelada, Kevin Swersky, Pierre-Antoine Man-
zagol, et al. Meta-dataset: A dataset of datasets for
learning to learn from few examples. In ICLR, 2020.
2, 5, 6, 12

[49] Oriol Vinyals, Charles Blundell, Timothy Lillicrap,
Koray Kavukcuoglu, and Daan Wierstra. Matching
networks for one shot learning. In NeurIPS, 2016. 1, 2

[50] Catherine Wah, Steve Branson, Peter Welinder, Pietro
Perona, and Serge Belongie. The caltech-ucsd birds-
200-2011 dataset. California Institute of Technology,
2011. 12

[51] Yaqing Wang, Quanming Yao, James T Kwok, and
Lionel M Ni. Generalizing from a few examples: A
survey on few-shot learning. ACM Computing Surveys
(CSUR), 53(3):1–34, 2020. 1

10

[52] Matthew D Zeiler. Adadelta: an adaptive learning rate
method. arXiv preprint arXiv:1212.5701, 2012. 5, 12

11

A. Dataset
Meta-Dataset [48] is a few-shot classification benchmark

that initially consists of ten datasets: ILSVRC 2012 [42]
(ImageNet), Omniglot [24], FGVC-Aircraft [31] (Aircraft),
CUB-200-2011 [50] (Birds), Describable Textures [10]
(DTD), QuickDraw [21], FGVCx Fungi [6] (Fungi), VGG
Flower [34] (Flower), Traffic Signs [19] and MSCOCO [28]
then further expands with MNIST [25], CIFAR-10 [22]
and CIFAR-100 [22]. We follow the standard procedure
in [48] and consider both the ‘Training on all datasets’ (multi-
domain learning) and ‘Training on ImageNet only’ (single-
domain learning) settings. In ‘Training on all datasets’ set-
ting, we follow the standard procedure and use the first eight
datasets for meta-training, in which each dataset is further
divided into train, validation and test set with disjoint classes.
While the evaluation within these datasets is used to measure
the generalization ability in the seen domains, the remaining
five datasets are reserved as unseen domains in meta-test
for measuring the cross-domain generalization ability. In
‘Training on ImageNet only’ setting, we follow the standard
procedure and only use train split of ImageNet for meta-
training. The evaluation of models is in the test split of
ImageNet and the rest 12 datasets which are reserved as
unseen domains in meta-test. As in [48], we evaluate our
method on 600 randomly sampled tasks for each dataset
with varying number of ways and shots, and report average
accuracy and 95% confidence score in all experiments.

B. Implementation details
In this section, we explain the details of task-agnostic

(feature extractor) learning and then task-specific (adapter)
learning.

B.1. Task-agnostic learning

Here we consider learning the parameters of the feature
extractor from either multiple or single domains.
Multi-domain learning. When we learn the feature ex-
tractor from multiple domains, we consider two cases. In the
first case, which we call vanilla multiple domain learning
(or MDL), we design a deep network where we share all the
layers across all domains and have domain-specific classi-
fiers. This setting corresponds to Eq (1) in the main text.
Second we consider a variant of MDL, URL [27] which also
involves learning a single network with shared and domain-
specific layers as such, however, it is learned by distilling
information from multiple domain-specific networks as de-
scribed [27]. In these two settings, as in [3, 15, 27], we build
MDL and URL on the ResNet-18 [17] backbone and use
84× 84 image size.

For optimization of both MDL and URL, we follow the
same protocol in [27], use SGD optimizer and cosine anneal-
ing with a weight decay of 7 × 10−4 for learning 240,000

iterations. The learning rate is 0.03 and the annealing fre-
quency is 48,000. As in [27], the batch size for ImageNet is
64 × 7 and is 64 for the other 7 datasets. We refer readers
to [27] for more details.
Single domain learning (SDL). We also evaluate our
method on a feature extractor that is learned on single do-
main which we call SDL. Here we evaluate our method on
two backbones, ResNet-18 (SDL-ResNet-18) and ResNet34
(SDL-ResNet-34).

Backbone learning rate batch size annealing freq. max. iter.

SDL-ResNet-18 3× 10−2 64 48,000 480,000
SDL-ResNet-34 3× 10−2 128 48,000 480,000

Table 5. Training hyper-parameters of single domain learning.

SDL-ResNet-18. Following [15,27,48], we train a ResNet-
18 on the train split of ImageNet and use 84× 84 image size,
which is denoted as SDL-ResNet-18. For optimization, we
follow the training protocol in [15, 27]. Specifically, we
use SGD optimizer and cosine annealing for all experiments
with a momentum of 0.9 and a weight decay of 7 × 10−4.
Some other hyperparameters are shown in Tab. 5 as in [15,
27]. To regularize training, we also use the exact same data
augmentations as in [15, 27], e.g. random crops and random
color augmentations.
SDL-ResNet-34. We also apply our method to the single
domain learning model with ResNet-34 backbone learned
on ImageNet only as in [14]. We follow [14] and use higher-
resolution (224× 224) images for meta-training and meta-
testing. For optimization, we follow the training protocol
as in [15, 27]. Specifically, we use SGD optimizer and co-
sine annealing with a momentum of 0.9, a weight decay of
1× 10−4 with a batch size of 128. Other hyperparameters
are the same as in SDL-ResNet-18 and are shown in Tab. 5.
To regularize training, we also use the exact same data aug-
mentations as in [15, 27], e.g. random crops and random
color augmentations with an additional stage that randomly
downsamples and upsamples images as in [14].

B.2. Task-specific learning

Attaching and learning adapters. For the optimization
of the adaptation parameters α which is attached directly and
learned on support set and the pre-classifier adaptation β, we
follow the optimization strategy in [27], initialize β as an
identity matrix and optimize both α and β for 40 iterations
using Adadelta [52] as optimizer. The learning rate of β
is 0.1 for first eight datasets and 1 for the last five datasets
as in [27] and we set the learning rate of α as half of the
learning rate of β, i.e. 0.05 for the first eight datasets and 0.5
for the last five datasets. Note that, we learn α and β on a
per-task basis using the task’s support set during meta-test.
That is, α and β are not re-used across the test tasks drawn
from Dt.

12

Test Dataset ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR-10 CIFAR-100

MDL 53.4± 1.1 93.8± 0.4 86.6± 0.5 78.6± 0.8 71.4± 0.7 81.5± 0.6 61.9± 1.0 88.7± 0.6 51.0± 1.0 49.7± 1.1 94.4± 0.3 66.7± 0.8 53.6± 1.0
Ours (MDL) 55.6± 1.0 94.3± 0.4 86.7± 0.5 79.4± 0.8 73.2± 0.8 81.7± 0.6 64.0± 0.9 90.9± 0.5 81.1± 0.9 51.4± 1.1 96.9± 0.3 78.5± 0.8 64.3± 1.1

URL [27] 58.8± 1.1 94.5± 0.4 89.4± 0.4 80.7± 0.8 77.2± 0.7 82.5± 0.6 68.1± 0.9 92.0± 0.5 63.3± 1.2 57.3± 1.0 94.7± 0.4 74.2± 0.8 63.6± 1.0
Ours (URL) 59.5± 1.0 94.9± 0.4 89.9± 0.4 81.1± 0.8 77.5± 0.7 81.7± 0.6 66.3± 0.9 92.2± 0.5 82.8± 1.0 57.6± 1.0 96.7± 0.4 82.9± 0.7 70.4± 1.0

SDL-ResNet-18 55.8± 1.0 67.4± 1.2 49.5± 0.9 71.2± 0.9 73.0± 0.6 53.9± 1.0 41.6± 1.0 87.0± 0.6 47.4± 1.1 53.5± 1.0 78.1± 0.7 67.3± 0.8 56.6± 0.9
Ours (SDL-ResNet-18) 59.5± 1.1 78.2± 1.2 72.2± 1.0 74.9± 0.9 77.3± 0.7 67.6± 0.9 44.7± 1.0 90.9± 0.6 82.5± 0.8 59.0± 1.0 93.9± 0.6 82.1± 0.7 70.7± 0.9

SDL-ResNet-34 62.2± 1.1 72.8± 1.1 62.9± 0.9 79.6± 0.8 75.6± 0.6 64.5± 0.8 47.4± 1.1 90.4± 0.6 54.8± 1.0 56.1± 1.0 79.3± 0.6 83.0± 0.6 74.8± 0.8
Ours (SDL-ResNet-34) 63.7± 1.0 82.6± 1.1 80.1± 1.0 83.4± 0.8 79.6± 0.7 71.0± 0.8 51.4± 1.2 94.0± 0.5 81.7± 0.9 61.7± 0.9 94.6± 0.5 86.0± 0.6 78.3± 0.8

Table 6. Results of attaching residual adapters to different baselines. ‘SDL-ResNet-18’ is the single domain model with ResNet-18 backbone
pretrained on ImageNet. ‘SDL-ResNet-34’ is the single domain model with ResNet-34 backbone pretrained on ImageNet. ‘MDL’ is a
vanilla Multi-Domain Learning (MDL) model trained on eight seen datasets jointly.

Test Dataset classifier Aux-Net serial or M or
β #params ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR-10 CIFAR-100or Ad parallel CW

NCC NCC - - - % - 57.0± 1.1 94.4± 0.4 88.0± 0.5 80.3± 0.7 74.6± 0.7 81.8± 0.6 66.2± 0.9 91.5± 0.5 49.8± 1.1 54.1± 1.0 91.1± 0.4 70.6± 0.7 59.1± 1.0

MD MD - - - % - 53.9± 1.0 93.8± 0.5 87.6± 0.5 78.3± 0.7 73.7± 0.7 80.9± 0.7 57.7± 0.9 89.7± 0.6 62.2± 1.1 48.5± 1.0 95.1± 0.4 68.9± 0.8 60.0± 0.9

LR LR - - - % - 56.0± 1.1 93.7± 0.5 88.3± 0.6 79.7± 0.8 74.7± 0.7 80.0± 0.7 62.1± 0.8 91.1± 0.5 59.7± 1.1 51.2± 1.1 93.5± 0.5 73.1± 0.8 60.1± 1.1

SVM SVM - - - % - 54.5± 1.1 94.3± 0.5 87.7± 0.5 78.1± 0.8 73.8± 0.8 80.0± 0.6 58.5± 0.9 91.4± 0.6 65.7± 1.2 50.5± 1.0 95.4± 0.4 72.0± 0.8 60.5± 1.1

Softmax Softmax - - - % - 42.2± 1.0 85.3± 0.7 71.9± 0.8 59.6± 1.0 62.0± 0.8 61.2± 1.0 37.3± 0.9 66.7± 1.0 51.4± 1.1 48.2± 1.1 93.5± 0.5 70.4± 0.8 59.3± 1.0

KNN KNN - - - % - 48.1± 1.1 94.1± 0.4 84.5± 0.6 70.7± 0.8 65.9± 0.8 74.8± 0.7 53.5± 0.9 86.0± 0.6 56.9± 1.2 44.7± 1.1 91.4± 0.5 60.3± 0.8 49.4± 1.0

PA NCC - - - ! - 58.8± 1.1 94.5± 0.4 89.4± 0.4 80.7± 0.8 77.2± 0.7 82.5± 0.6 68.1± 0.9 92.0± 0.5 63.3± 1.1 57.3± 1.0 94.7± 0.4 74.2± 0.8 63.5± 1.0

PA Softmax - - - ! - 53.4± 1.2 92.7± 0.5 85.7± 0.6 76.1± 0.9 73.9± 0.8 76.5± 0.8 51.1± 0.9 86.9± 0.7 52.5± 1.1 48.2± 1.1 94.3± 0.4 69.7± 0.8 60.4± 1.0

Finetune NCC - - - % - 55.9± 1.2 94.0± 0.5 87.3± 0.6 77.8± 0.9 76.8± 0.8 75.3± 0.9 57.6± 1.1 91.5± 0.6 86.1± 0.9 53.1± 1.2 96.8± 0.4 80.9± 0.8 65.9± 1.1

Finetune Softmax - - - % - 48.4± 1.2 92.2± 0.6 81.6± 0.9 70.3± 1.3 72.0± 0.9 73.5± 1.0 44.2± 1.1 90.3± 0.7 65.5± 1.4 41.0± 1.3 96.3± 0.4 71.6± 1.0 53.8± 1.4

Aux-S-CW NCC Aux-Net serial CW % - 54.6± 1.1 93.5± 0.5 86.6± 0.5 78.6± 0.8 71.5± 0.7 79.3± 0.6 66.0± 0.9 87.6± 0.6 43.3± 0.9 49.1± 1.0 87.9± 0.5 62.8± 0.8 51.5± 1.0

Aux-R-CW NCC Aux-Net residual CW % - 56.1± 1.1 94.2± 0.4 88.4± 0.5 80.6± 0.7 74.9± 0.6 82.0± 0.6 66.4± 0.9 91.6± 0.5 48.5± 1.0 53.5± 1.0 90.8± 0.5 70.2± 0.8 59.7± 1.0

Aux-S-CW MD Aux-Net serial CW % - 55.1± 1.1 93.8± 0.5 86.8± 0.5 77.4± 0.8 73.2± 0.8 79.9± 0.7 57.4± 0.9 88.1± 0.7 58.4± 1.1 50.1± 1.1 92.7± 0.5 66.5± 0.8 55.7± 1.1

Aux-R-CW MD Aux-Net residual CW % - 54.8± 1.1 93.8± 0.5 87.4± 0.5 78.2± 0.7 73.4± 0.7 81.1± 0.7 58.8± 0.9 90.1± 0.5 63.6± 1.2 48.5± 1.1 94.8± 0.4 69.6± 0.8 60.6± 0.9

Ad-S-CW NCC Ad serial CW % 0.06% 56.8± 1.1 94.8± 0.4 89.3± 0.5 80.7± 0.7 74.5± 0.7 81.6± 0.6 65.8± 0.9 91.3± 0.5 73.9± 1.1 53.6± 1.1 95.7± 0.4 78.4± 0.7 64.3± 1.0

Ad-R-CW NCC Ad residual CW % 1.57% 57.6± 1.1 94.7± 0.4 89.0± 0.4 81.2± 0.8 75.2± 0.7 81.5± 0.6 65.4± 0.8 91.8± 0.5 79.2± 1.1 54.7± 1.1 96.4± 0.4 79.5± 0.8 67.4± 1.0

Ad-S-M NCC Ad serial M % 12.50% 56.2± 1.1 94.4± 0.4 89.1± 0.5 80.6± 0.7 75.8± 0.7 81.6± 0.6 67.1± 0.9 92.1± 0.4 67.6± 1.2 54.8± 1.1 95.9± 0.4 78.9± 0.7 66.6± 1.1

Ad-R-M NCC Ad residual M % 10.93% 57.3± 1.1 94.9± 0.4 88.9± 0.5 81.0± 0.7 76.7± 0.7 80.6± 0.6 65.4± 0.9 91.4± 0.5 82.6± 1.0 55.0± 1.1 96.6± 0.4 82.1± 0.7 66.4± 1.1

Ad-R-CW-PA NCC Ad residual CW ! 3.91% 58.6± 1.1 94.5± 0.4 90.0± 0.4 80.5± 0.8 77.6± 0.7 81.9± 0.6 67.0± 0.9 92.2± 0.5 80.2± 0.9 57.2± 1.0 96.1± 0.4 81.5± 0.8 71.4± 0.9

Ad-R-M-PA NCC Ad residual M ! 13.27% 59.5± 1.0 94.9± 0.4 89.9± 0.4 81.1± 0.8 77.5± 0.7 81.7± 0.6 66.3± 0.9 92.2± 0.5 82.8± 1.0 57.6± 1.0 96.7± 0.4 82.9± 0.7 70.4± 1.0

Table 7. Comparisons to methods that learn classifiers and model adaptation methods during meta-test stage based on URL model. NCC,
MD, LR, SVM, Softmax, KNN denote nearest centroid classifier, Mahalanobis distance, logistic regression, support vector machines,
softmax classifier and k-nearest neighbors classifier respectively. PA indicates pre-classifier alignment. ‘Aux-Net or Ad’ indicates using
Auxiliary Network to predict α or attaching adapter α directly. ‘M or CW’ means using matrix multiplication or channel-wise scaling
adapters. ’S’ and ’R’ denote serial adapter and residual adapter, respectively. ‘β’ indicates using the pre-classifier adaptation. Mean accuracy,
95% confidence interval are reported. The first eight datasets are seen during training and the last five datasets are unseen and used for test
only.

Predicting rα. In case of modulating α with the auxiliary
network, we follow the auxiliary training protocols in [3].
We train for 10K episodes to optimize the task encoder using
Adam with a learning rate of 1 × 10−5 on eight training
domains in meta-train. We validate every 5K iterations to
save the best model for test.

C. More results

C.1. Our method with different feature extractors

Tab. 6 shows the results of our method (the proposed
residual adapters in matrix form) when incorporated to dif-
ferent feature extractors, single domain model with ResNet-
18 backbone (SDL-ResNet-18) pre-trained on ImageNet,
single domain model with ResNet-34 (SDL-ResNet-34) pre-
trained on ImageNet, vanilla multi-domain learning (MDL)
and URL [27]. We see that attaching and learning residual
adapters can significantly improve the performance on all do-
mains over SDL-ResNet-18, SDL-ResNet-34 and MDL and
obtain better performance on most domains over URL (11
out of 13 domains). This strongly indicates that our method
can efficiently adapt the model for unseen categories and

domains with few support samples while being agnostic to
the feature extractor with different backbone and resolution
of images.

C.2. Task-specific parameterizations

In Tab. 7, we report additional 95% confidence interval
of each dataset to the main paper for the comparison of
different rα choices based on the URL model. The first eight
datasets are seen during training and the last five datasets are
unseen and used for test only. We can see that the confidence
intervals for different methods have marginal differences.

C.3. Varying-way 5-shot and 5-way-1-shot

In the main paper, we only report the average accuracy
of Varying-Way Five-Shot and Five-Way One-Shot scenar-
ios due to limited space, and detailed results are depicted
in Tab. 8. In the table, we report the Mean accuracy, 95%
confidence interval of each dataset. The first eight datasets
are seen during training and the last five datasets are unseen
and used for test only. URT and URL are two strong base-
lines surpassing both Simple CNAPS and SUR, while Ours
outperforms them on most datasets, especially on unseen

13

Varying-Way Five-Shot Five-Way One-Shot

Test Dataset Simple SUR URT URL Ours Simple SUR URT URL OursCNAPS [3] [15] [29] [27] CNAPS [3] [15] [29] [27]

ImageNet 47.2± 1.0 46.7± 1.0 48.6± 1.0 49.4± 1.0 48.3± 1.0 42.6± 0.9 40.7± 1.0 47.4± 1.0 49.6± 1.1 48.0± 1.0
Omniglot 95.1± 0.3 95.8± 0.3 96.0± 0.3 96.0± 0.3 96.8± 0.3 93.1± 0.5 93.0± 0.7 95.6± 0.5 95.8± 0.5 96.3± 0.4
Aircraft 74.6± 0.6 82.1± 0.6 81.2± 0.6 84.8± 0.5 85.5± 0.5 65.8± 0.9 67.1± 1.4 77.9± 0.9 79.6± 0.9 79.6± 0.9
Birds 69.6± 0.7 62.8± 0.9 71.2± 0.7 76.0± 0.6 76.6± 0.6 67.9± 0.9 59.2± 1.0 70.9± 0.9 74.9± 0.9 74.5± 0.9

Textures 57.5± 0.7 60.2± 0.7 65.2± 0.7 69.1± 0.6 68.3± 0.7 42.2± 0.8 42.5± 0.8 49.4± 0.9 53.6± 0.9 54.5± 0.9
Quick Draw 70.9± 0.6 79.0± 0.5 79.2± 0.5 78.2± 0.5 77.9± 0.6 70.5± 0.9 79.8± 0.9 79.6± 0.9 79.0± 0.8 79.3± 0.9

Fungi 50.3± 1.0 66.5± 0.8 66.9± 0.9 70.0± 0.8 70.4± 0.8 58.3± 1.1 64.8± 1.1 71.0± 1.0 75.2± 1.0 75.3± 1.0
VGG Flower 86.5± 0.4 76.9± 0.6 82.4± 0.5 89.3± 0.4 89.5± 0.4 79.9± 0.7 65.0± 1.0 72.7± 0.0 79.9± 0.8 80.3± 0.8

Traffic Sign 55.2± 0.8 44.9± 0.9 45.1± 0.9 57.5± 0.8 72.3± 0.6 55.3± 0.9 44.6± 0.9 52.7± 0.9 57.9± 0.9 57.2± 1.0
MSCOCO 49.2± 0.8 48.1± 0.9 52.3± 0.9 56.1± 0.8 56.0± 0.8 48.8± 0.9 47.8± 1.1 56.9± 1.1 59.2± 1.0 59.9± 1.0

MNIST 88.9± 0.4 90.1± 0.4 86.5± 0.5 89.7± 0.4 92.5± 0.4 80.1± 0.9 77.1± 0.9 75.6± 0.9 78.7± 0.9 80.1± 0.9
CIFAR-10 66.1± 0.7 50.3± 1.0 61.4± 0.7 66.0± 0.7 72.0± 0.7 50.3± 0.9 35.8± 0.8 47.3± 0.9 54.7± 0.9 55.8± 0.9
CIFAR-100 53.8± 0.9 46.4± 0.9 52.5± 0.9 57.0± 0.9 64.1± 0.8 53.8± 0.9 42.9± 1.0 54.9± 1.1 61.8± 1.0 63.7± 1.0

Average Seen 69.0 71.2 73.8 76.6 76.7 65.0 64.0 70.6 73.4 73.5
Average Unseen 62.6 56.0 59.6 65.2 71.4 57.7 49.6 57.5 62.4 63.4

Average All 66.5 65.4 68.3 72.2 74.6 62.2 58.5 65.5 69.2 69.6

Average Rank 4.1 3.9 3.4 2.1 1.5 3.8 4.5 3.3 1.7 1.7

Table 8. Results of Varying-Way Five-Shot and Five-Way One-Shot scenarios. Mean accuracy, 95% confidence interval are reported.

Test Dataset CNAPS [41] Simple CNAPS [3] TransductiveCNAPS [2] SUR [15] URT [29] FLUTE [47] tri-M [30] URL [27] Ours

ImageNet 50.8± 1.1 56.5± 1.1 57.9± 1.1 54.5± 1.1 55.0± 1.1 51.8± 1.1 58.6± 1.0 57.5± 1.1 57.4± 1.1
Omniglot 91.7± 0.5 91.9± 0.6 94.3± 0.4 93.0± 0.5 93.3± 0.5 93.2± 0.5 92.0± 0.6 94.5± 0.4 95.0± 0.4
Aircraft 83.7± 0.6 83.8± 0.6 84.7± 0.5 84.3± 0.5 84.5± 0.6 87.2± 0.5 82.8± 0.7 88.6± 0.5 89.3± 0.4
Birds 73.6± 0.9 76.1± 0.9 78.8± 0.7 70.4± 1.1 75.8± 0.8 79.2± 0.8 75.3± 0.8 80.5± 0.7 81.4± 0.7

Textures 59.5± 0.7 70.0± 0.8 66.2± 0.8 70.5± 0.7 70.6± 0.7 68.8± 0.8 71.2± 0.8 76.2± 0.7 76.7± 0.7
Quick Draw 74.7± 0.8 78.3± 0.7 77.9± 0.6 81.6± 0.6 82.1± 0.6 79.5± 0.7 77.3± 0.7 81.9± 0.6 82.0± 0.6

Fungi 50.2± 1.1 49.1± 1.2 48.9± 1.2 65.0± 1.0 63.7± 1.0 58.1± 1.1 48.5± 1.0 68.8± 0.9 67.4± 1.0
VGG Flower 88.9± 0.5 91.3± 0.6 92.3± 0.4 82.2± 0.8 88.3± 0.6 91.6± 0.6 90.5± 0.5 92.1± 0.5 92.2± 0.5

Traffic Sign 56.5± 1.1 59.2± 1.0 59.7± 1.1 49.8± 1.1 50.1± 1.1 58.4± 1.1 63.0± 1.0 63.3± 1.2 83.5± 0.9
MSCOCO 39.4± 1.0 42.4± 1.1 42.5± 1.1 49.4± 1.1 48.9± 1.1 50.0± 1.0 52.8± 1.1 54.0± 1.0 55.8± 1.1

MNIST - 94.3± 0.4 94.7± 0.3 94.9± 0.4 90.5± 0.4 95.6± 0.5 96.2± 0.3 94.5± 0.5 96.7± 0.4
CIFAR-10 - 72.0± 0.8 73.6± 0.7 64.2± 0.9 65.1± 0.8 78.6± 0.7 75.4± 0.8 71.9± 0.7 80.6± 0.8

CIFAR-100 - 60.9± 1.1 61.8± 1.0 57.1± 1.1 57.2± 1.0 67.1± 1.0 62.0± 1.0 62.6± 1.0 69.6± 1.0

Average Seen 71.6 74.6 75.1 75.2 76.7 76.2 74.5 80.0 80.2
Average Unseen - 65.8 66.5 63.1 62.4 69.9 69.9 69.3 77.2

Average All - 71.2 71.8 70.5 71.2 73.8 72.7 75.9 79.0

Average Rank - 6.3 4.9 5.8 5.7 4.3 4.8 2.7 1.5

Table 9. Comparison state-of-the-art methods on Meta-Dataset (using a multi-domain feature extractor of [27]). Mean accuracy, 95%
confidence interval are reported. The first eight datasets are seen during training and the last five datasets are unseen and used for test only.

domains.

C.4. Results evaluated with updated evaluation pro-
tocol.

As the code from Meta-dataset has been updated, we
evaluate all methods with the updated evaluation protocol
from the Meta-dataset 4 and report the results 5 in Tab. 9.
As shown in Tab. 9, the update does not affect much on the
results and our method rank 1.5 in average and the state-of-

4As mentioned in https://github.com/google-research/
meta-dataset/issues/54, we also set the shuffle buffer size as
1000 to evaluate all methods and report the results in Tab. 9. This change
does not affect much on the results as the datasets we used were shuffled
using the latest data convert code from Meta-Dataset.

5The results of Simple CNAPS [3] and Transductive CNAPS [2] are
reproduced by the authors and reported at https://github.com/
peymanbateni/simple-cnaps. Results of FLUTE [47] and tri-
M [30] are from their papers. We reproduce the results of SUR [15] and
URT [29] with the updated evaluation protocol for fair comparison.

the-art method URL rank 2.7. Our method outperforms other
methods on most domains (9 out of 13), especially obtaining
significant improvement on 5 unseen datasets than the second
best method, i.e. Average Unseen (+7.9). More specifically,
our method obtains significant better results than the second
best approach (URL) on Traffic Sign (+20.2), CIFAR-10
(+8.7), and CIFAR-100 (+7.0).

C.5. Ablation study

Here, we conduct ablation study of our method with the
URL model, unless stated otherwise.
Sensitivity analysis for number of iterations. In our
method, we optimize the attached parameters (α, β) with
40 iterations. Figure 6 and Figure 7 report the results with
10, 20, 40, 60 iterations and indicates that our method (solid
green) converges to a stable solution after 20 iterations and
achieves better average performance on all domains than the
baseline URL (dash green). The mean accuracy with 95%

14

https://github.com/google-research/meta-dataset/issues/54
https://github.com/google-research/meta-dataset/issues/54
https://github.com/google-research/meta-dataset
https://github.com/peymanbateni/simple-cnaps
https://github.com/peymanbateni/simple-cnaps

Test Dataset ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR-10 CIFAR-100

10 iterations 55.5± 1.1 93.9± 0.5 86.4± 0.5 78.6± 0.7 73.3± 0.7 81.9± 0.6 63.1± 0.9 90.3± 0.5 77.6± 1.0 50.6± 1.1 96.9± 0.3 77.0± 0.8 62.6± 1.1
20 iterations 56.2± 1.1 94.7± 0.4 86.3± 0.5 78.3± 0.8 73.9± 0.7 81.6± 0.6 63.4± 0.9 90.1± 0.6 79.4± 1.0 52.8± 1.1 97.2± 0.3 78.6± 0.8 65.9± 1.1
40 iterations 55.6± 1.0 94.3± 0.4 86.7± 0.5 79.4± 0.8 73.2± 0.8 81.7± 0.6 64.0± 0.9 90.9± 0.5 81.1± 0.9 51.4± 1.1 96.9± 0.3 78.5± 0.8 64.3± 1.1
60 iterations 55.9± 1.1 95.1± 0.4 85.9± 0.6 77.5± 0.8 74.7± 0.7 80.9± 0.6 62.1± 0.9 90.7± 0.6 82.2± 0.9 52.2± 1.1 97.0± 0.4 78.4± 0.8 64.4± 1.1

Table 10. Sensitivity of performance to number of iterations based on MDL model.

Test Dataset ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR-10 CIFAR-100

10 iterations 58.4± 1.1 94.8± 0.4 89.9± 0.4 81.3± 0.7 76.6± 0.7 81.8± 0.6 68.4± 0.9 92.5± 0.5 76.5± 1.1 55.6± 1.1 96.4± 0.4 79.0± 0.7 66.9± 1.0
20 iterations 58.2± 1.1 94.8± 0.4 89.9± 0.4 81.1± 0.7 77.5± 0.8 81.9± 0.6 68.0± 0.9 92.4± 0.5 81.8± 1.0 57.8± 1.1 96.7± 0.4 81.7± 0.8 69.1± 0.9
40 iterations 59.5± 1.0 94.9± 0.4 89.9± 0.4 81.1± 0.8 77.5± 0.7 81.7± 0.6 66.3± 0.9 92.2± 0.5 82.8± 1.0 57.6± 1.0 96.7± 0.4 82.9± 0.7 70.4± 1.0
60 iterations 58.7± 1.1 94.9± 0.4 89.5± 0.5 80.8± 0.7 77.4± 0.8 81.8± 0.6 66.2± 0.9 92.5± 0.5 83.7± 0.9 56.9± 1.0 96.6± 0.3 82.0± 0.8 72.0± 0.9

Table 11. Sensitivity of performance to number of iterations based on URL model.

confidence interval are reported in Tabs. 10 and 11
Influence of α and β. We evaluate different components
of our method and report the results in Tab. 12. The results
show that both residual adapters α and the linear transforma-
tion β help adapt features to unseen classes while residual
adapters significantly improve the performance on unseen
domains. The best results are achieved by using both α and
β.

10 20 30 40 50 60
Iterations

66

68

70

72

74

76

78

Ac
cu

ra
y

Average seen
Average unseen
Average all
Average all (baseline)

Figure 6. Sensitivity of performance to number of iterations based
on MDL model.

10 20 30 40 50 60
Iterations

73

74

75

76

77

78

79

80

81

Ac
cu

ra
y

Average seen
Average unseen
Average all
Average all (baseline)

Figure 7. Sensitivity of performance to number of iterations based
on URL model.

Initialization analysis for adapters. Here, we investigate
using different initialization strategies for adapters: i) Iden-
tity initialization: in this work we initialize each residual

adapter as an identity matrix scaled by a scalar δ and we
set δ = 1e− 4; ii) randomly initialization: alternatively, we
can randomly initialize each residual adapter. The results of
different initialization are summarized in Fig. 8. We can see
that our methods with different initialization strategies obtain
similar results, which indicates that our method works also
with randomly initialization and again verifies the stability
of our method. Detailed results of each datasets are shown
in Tab. 13.

Ours(MDL)-I Ours(MDL)-R Ours(URL)-I Ours(URL)-R
72

74

76

78

80

82

84

86

Ac
cu

ra
y

Average Seen
Average Unseen
Average All

Figure 8. Initialization analysis for adapters. ’-I’ indicates identity
initialization and ‘-R’ is randomly initialization.

block4 block3,4 block2,3,4 block-all
72

74

76

78

80

82

84

86

Ac
cu

ra
y

Average Seen
Average Unseen
Average All

Figure 9. Block (layer) analysis for adapters.

Layer analysis for adapters. Here we investigate whether
it is sufficient to attach the adapters only to the later layers.
We evaluate this on ResNet18 which is composed of four
blocks and attach the adapters to only later blocks (block4,

15

Test Dataset ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR-10 CIFAR-100

Ours w/o α & β 57.0± 1.1 94.4± 0.4 88.0± 0.5 80.3± 0.7 74.6± 0.7 81.8± 0.6 66.2± 0.9 91.5± 0.5 49.8± 1.1 54.1± 1.0 91.1± 0.4 70.6± 0.7 59.1± 1.0
Ours w/o β 57.3± 1.1 94.9± 0.4 88.9± 0.5 81.0± 0.7 76.7± 0.7 80.6± 0.6 65.4± 0.9 91.4± 0.5 82.6± 1.0 55.0± 1.1 96.6± 0.4 82.1± 0.7 66.4± 1.1
Ours w/o α 58.8± 1.1 94.5± 0.4 89.4± 0.4 80.7± 0.8 77.2± 0.7 82.5± 0.6 68.1± 0.9 92.0± 0.5 63.3± 1.2 57.3± 1.0 94.7± 0.4 74.2± 0.8 63.6± 1.0
Ours 59.5± 1.0 94.9± 0.4 89.9± 0.4 81.1± 0.8 77.5± 0.7 81.7± 0.6 66.3± 0.9 92.2± 0.5 82.8± 1.0 57.6± 1.0 96.7± 0.4 82.9± 0.7 70.4± 1.0

Table 12. Effect of each component. We build our method on the URL model and ‘Ours w/o α & β’ means we remove both residual adapters
α and the pre-classifier adaptation layer β in our method.

Test Dataset ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR-10 CIFAR-100

Ours(SDL-ResNet-18)-I 59.5± 1.1 78.2± 1.2 72.2± 1.0 74.9± 0.9 77.3± 0.7 67.6± 0.9 44.7± 1.0 90.9± 0.6 82.5± 0.8 59.0± 1.0 93.9± 0.6 82.1± 0.7 70.7± 0.9
Ours(SDL-ResNet-18)-R 58.2± 1.0 78.4± 1.2 71.1± 1.1 74.4± 1.0 77.1± 0.7 67.2± 1.0 45.9± 1.0 90.7± 0.6 81.9± 1.0 57.7± 1.1 94.1± 0.5 81.9± 0.7 70.5± 0.9

Ours(MDL)-I 55.6± 1.0 94.3± 0.4 86.7± 0.5 79.4± 0.8 73.2± 0.8 81.7± 0.6 64.0± 0.9 90.9± 0.5 81.1± 0.9 51.4± 1.1 96.9± 0.3 78.5± 0.8 64.3± 1.1
Ours(MDL)-R 56.0± 1.1 94.1± 0.4 87.1± 0.5 79.7± 0.8 74.0± 0.7 82.0± 0.6 62.6± 0.9 90.6± 0.6 80.9± 0.9 51.7± 1.1 96.9± 0.4 77.7± 0.9 65.8± 1.1

Ours(URL)-I 59.5± 1.0 94.9± 0.4 89.9± 0.4 81.1± 0.8 77.5± 0.7 81.7± 0.6 66.3± 0.9 92.2± 0.5 82.8± 1.0 57.6± 1.0 96.7± 0.4 82.9± 0.7 70.4± 1.0
Ours(URL)-R 58.8± 1.1 94.9± 0.4 90.5± 0.4 81.8± 0.6 77.7± 0.7 82.3± 0.6 66.8± 0.9 92.6± 0.5 83.7± 0.8 57.7± 1.1 96.9± 0.4 82.5± 0.7 72.0± 0.9

Table 13. Initialization analysis of adapters. ‘Ours(URL)-I’ indicates our method using URL as the pretrained model and initializing residual
adapters as identity matrix (scaled by δ = 0.0001) while ‘Ours(URL)-R’ means our method initialize residual adapters randomly.

Test Dataset ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR-10 CIFAR-100

Ours (block4) 59.0± 1.1 95.0± 0.4 90.0± 0.4 80.6± 0.8 77.8± 0.7 82.3± 0.6 68.2± 0.9 91.8± 0.6 70.6± 1.1 57.1± 1.1 95.9± 0.4 77.2± 0.8 65.9± 1.0
Ours (block3,4) 60.4± 1.1 94.7± 0.4 90.0± 0.5 80.4± 0.7 77.8± 0.7 82.2± 0.6 67.2± 0.8 92.5± 0.5 77.2± 1.0 57.9± 1.0 96.7± 0.3 78.8± 0.9 68.6± 0.9
Ours (block2,3,4) 59.6± 1.1 94.9± 0.4 89.9± 0.5 81.0± 0.8 78.2± 0.7 82.4± 0.6 67.6± 0.9 92.3± 0.5 81.5± 1.0 57.9± 1.0 96.6± 0.4 81.5± 0.8 70.6± 1.0
Ours (block-all) 59.5± 1.0 94.9± 0.4 89.9± 0.4 81.1± 0.8 77.5± 0.7 81.7± 0.6 66.3± 0.9 92.2± 0.5 82.8± 1.0 57.6± 1.0 96.7± 0.4 82.9± 0.7 70.4± 1.0

Table 14. Block (layer) analysis for adapters based on URL model.

block3,4, block2,3,4 and block-all. Figure 9 shows that ap-
plying our adapters to only the last block (block4) obtains
around 78% average accuracy on all domains which outper-
forms the URL. With attaching residual adapters to more
layers, the performance on unseen domains is improved sig-
nificantly while the one on seen domains remains stable.
The mean accuracy with 95% confidence interval for layer
analysis are shown in Tab. 14.

Decomposing residual adapters. Here we investigate
whether one can reduce the number of parameters in the
adapters while retaining its performance by using matrix
decomposition. As in deep neural network, the adapters in
earlier layers are relatively small, we then decompose the
adapters in the last two blocks only where the adapter di-
mensionality goes up to 512 × 512. Figure 10 shows that
our method can achieve good performance with less param-
eters by decomposing large residual adapters, (e.g. when
N = 32 where the number of additional parameters equal
to around 4% vs 13%, the performance is still comparable
to the original form of residual adapters, i.e. N=0). Results
of each datasets in Tab. 15, also show that, by decomposing
large residual adapters, the performance of our method is
still comparable to the original form of residual adapters (i.e.
Ours) with less parameters.

The similar conclusion can be drawn from results (shown
in Fig. 11) of our method using decomposed residual
adapters in all layers. When N increases, i.e., smaller resid-
ual adapters, the average accuracy on all domains is still
comparable to the original form of residual adapters (i.e.
N=0) with less parameters though the average accuracy on
unseen domains drops slightly. From the results depicted in
Tab. 16, we can see that when N increases, the performance

0 2 4 8 16 32
N

73

74

75

76

77

78

79

80

81
Ac

cu
ra

y

Average seen
Average unseen
Average all

Figure 10. Decomposed residual adapters on block-3,4.

0 2 4 8 16
N

73

74

75

76

77

78

79

80

81

Ac
cu

ra
y

Average seen
Average unseen
Average all

Figure 11. Decomposed residual adapters on all layers.

of most domains are still comparable to the original form of
residual adapters (i.e. Ours) while the performance on Traf-
fic Sign drops slightly as the adapters in earlier layers are
small and when N is larger the decomposed residual adapters
might be too small to tranform the features. In overall, our

16

Test Dataset ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR-10 CIFAR-100

Ours 59.5± 1.0 94.9± 0.4 89.9± 0.4 81.1± 0.8 77.5± 0.7 81.7± 0.6 66.3± 0.9 92.2± 0.5 82.8± 1.0 57.6± 1.0 96.7± 0.4 82.9± 0.7 70.4± 1.0
Ours(N=2) 58.9± 1.1 95.2± 0.4 89.7± 0.5 80.9± 0.7 76.7± 0.7 81.4± 0.6 67.7± 0.9 92.2± 0.5 82.4± 1.0 57.1± 1.0 96.5± 0.4 82.4± 0.7 70.3± 1.0
Ours(N=4) 58.7± 1.1 94.9± 0.4 89.7± 0.5 80.3± 0.7 77.0± 0.7 82.5± 0.6 67.2± 0.9 92.5± 0.5 82.6± 1.0 57.5± 1.1 96.5± 0.4 82.5± 0.7 70.8± 0.9
Ours(N=8) 59.1± 1.1 95.0± 0.4 89.8± 0.5 80.2± 0.8 77.2± 0.7 82.1± 0.6 67.0± 0.9 92.2± 0.5 82.5± 1.0 57.2± 1.1 96.8± 0.4 82.6± 0.7 71.8± 0.9
Ours(N=16) 58.2± 1.1 94.7± 0.4 90.1± 0.4 80.3± 0.8 76.9± 0.7 81.7± 0.6 67.6± 0.9 92.0± 0.5 81.8± 1.0 58.1± 1.1 96.4± 0.4 81.8± 0.7 71.1± 0.9
Ours(N=32) 59.2± 1.1 94.8± 0.4 89.6± 0.5 80.0± 0.8 77.3± 0.6 82.4± 0.6 67.2± 0.9 92.1± 0.5 82.1± 1.0 57.1± 1.0 96.7± 0.3 81.6± 0.8 71.1± 0.9

Table 15. Results of using decomposed RA on layer3,4.

Test Dataset ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR-10 CIFAR-100

Ours 59.5± 1.0 94.9± 0.4 89.9± 0.4 81.1± 0.8 77.5± 0.7 81.7± 0.6 66.3± 0.9 92.2± 0.5 82.8± 1.0 57.6± 1.0 96.7± 0.4 82.9± 0.7 70.4± 1.0
Ours(N=2) 58.1± 1.1 94.8± 0.4 89.7± 0.5 80.2± 0.8 76.9± 0.7 82.1± 0.6 67.8± 0.9 92.0± 0.6 82.5± 0.9 56.9± 1.1 96.7± 0.3 82.0± 0.8 70.3± 1.0
Ours(N=4) 59.6± 1.1 94.8± 0.4 89.9± 0.5 80.3± 0.8 77.4± 0.7 82.6± 0.6 66.6± 0.9 92.9± 0.5 79.7± 1.1 57.6± 1.1 96.5± 0.4 80.9± 0.8 70.6± 1.0
Ours(N=8) 58.2± 1.1 94.6± 0.4 89.6± 0.5 81.2± 0.8 76.6± 0.7 82.7± 0.6 66.5± 0.9 92.3± 0.5 78.1± 1.1 57.3± 1.0 96.3± 0.3 81.0± 0.8 70.9± 0.9
Ours(N=16) 58.9± 1.1 94.6± 0.4 89.7± 0.5 80.1± 0.7 77.0± 0.7 82.1± 0.6 68.4± 0.9 91.9± 0.5 78.3± 1.0 57.8± 1.1 96.0± 0.4 82.0± 0.7 70.3± 1.0

Table 16. Results of using decomposed RA on all layers.

method can achieve good performance with less parameters
by decomposing large residual adapters.
Training time. The training time (meta-train) of our
method is equal to the one of URL (hence no additional cost),
i.e. 48 hours in multi-domain setting, 6 hours for Resnet-18
and 33 hours for Resnet-34 in single-domain learning in one
Nvidia V100 GPU. Whereas CTX meta-training requires 8
Nvidia V100 GPUs for 7 days and approximately 40 times
more expensive than ours. During the meta-test stage, the
model parameters are further trained using support set of
each episode. Meta-test training cost is depicted in Tab. 12
for Meta-Dataset tasks. URL baseline only finetunes param-
eters of PA β. Finetune+NCC updates the entire backbone
parameters. Ours learn RA and PA parameters. While URL
is the fastest baseline, as it does not require backpropagating
the error to early layers, ours is more efficient than finetuning
all the backbone parameters.

Test Dataset Image Omni Air- Birds Tex- Quick Fungi VGG Traffic MS- MNIST CIFAR CIFAR
-Net -glot craft tures Draw Flower Sign COCO -10 -100

URL 0.7 0.7 0.4 0.7 0.4 1.0 1.0 0.5 0.9 0.9 0.4 0.4 1.0
Finetune+NCC 7.7 2.5 7.4 7.0 5.8 9.3 8.7 6.6 9.1 9.0 6.5 6.7 9.3
Ours (URL+RA+PA) 7.2 2.4 6.1 6.8 4.8 8.9 7.4 5.2 8.8 8.3 6.0 6.2 8.6

Table 12. Computation cost (# second per task) during meta-test.

C.6. Qualitative results

We qualitatively analyze our method and compare it to
Simple CNAPS [3], SUR [15], URT [29], and URL [27]
in Figs. 12 to 24 by illustrating the nearest neighbors in
all test datasets given a query image as in [27]. It is clear
that our method produces more correct neighbors than other
methods. While other methods retrieve images with more
similar colors, shapes and backgrounds, e.g. in Figs. 20, 21,
23 and 24, our method is able to retrieve semantically similar
images. More specifically, as shown in Fig. 15, our method
correctly produces neighbors of the bird in the query image
while other methods pick images with similar appearances
or similar background, e.g. images with twigs. In Fig. 20,
other methods mainly retrieve the triangle sign while our
method is able to retrieve the correct sign with illumination

distortion. In Fig. 24, other methods including SUR, URT
are distracted by the blue background but our method select
the correct shark images. It again suggests that our method is
able to quickly adapt the features for unseen few-shot tasks.

Figure 12. Qualitative comparison to Simple CNAPS [3], SUR [15],
URT [29], and URL [27] in ImageNet. Green and red colors
indicate correct and false predictions respectively.

17

Figure 13. Qualitative comparison to Simple CNAPS [3], SUR [15],
URT [29], and URL [27] in Omniglot. Green and red colors indicate
correct and false predictions respectively.

Figure 14. Qualitative comparison to Simple CNAPS [3], SUR [15],
URT [29], and URL [27] in Aircraft. Green and red colors indicate
correct and false predictions respectively.

Figure 15. Qualitative comparison to Simple CNAPS [3], SUR [15],
URT [29], and URL [27] in Birds. Green and red colors indicate
correct and false predictions respectively.

Figure 16. Qualitative comparison to Simple CNAPS [3], SUR [15],
URT [29], and URL [27] in Textures. Green and red colors indicate
correct and false predictions respectively.

Figure 17. Qualitative comparison to Simple CNAPS [3], SUR [15],
URT [29], and URL [27] in Quick Draw. Green and red colors
indicate correct and false predictions respectively.

Figure 18. Qualitative comparison to Simple CNAPS [3], SUR [15],
URT [29], and URL [27] in Fungi. Green and red colors indicate
correct and false predictions respectively.

18

Figure 19. Qualitative comparison to Simple CNAPS [3], SUR [15],
URT [29], and URL [27] in VGG Flower. Green and red colors
indicate correct and false predictions respectively.

Figure 20. Qualitative comparison to Simple CNAPS [3], SUR [15],
URT [29], and URL [27] in Traffic Sign. Green and red colors
indicate correct and false predictions respectively.

Figure 21. Qualitative comparison to Simple CNAPS [3], SUR [15],
URT [29], and URL [27] in MSCOCO. Green and red colors indi-
cate correct and false predictions respectively.

Figure 22. Qualitative comparison to Simple CNAPS [3], SUR [15],
URT [29], and URL [27] in MNIST. Green and red colors indicate
correct and false predictions respectively.

Figure 23. Qualitative comparison to Simple CNAPS [3], SUR [15],
URT [29], and URL [27] in CIFAR-10. Green and red colors
indicate correct and false predictions respectively.

Figure 24. Qualitative comparison to Simple CNAPS [3], SUR [15],
URT [29], and URL [27] in CIFAR-100. Green and red colors
indicate correct and false predictions respectively.

19

	1 . Introduction
	2 . Method
	2.1 . Task-agnostic representation learning
	2.2 . Task-specific weight learning
	2.3 . Task-specific adapter parameterization ()
	3 . Experiments
	3.1 . Experimental setup
	3.2 . Comparison to state-of-the-art methods
	3.3 . Analysis of task-specific parameterizations
	3.4 . Further results
	3.5 . Further ablation study
	4 . Conclusion and Limitations
	A . Dataset
	B . Implementation details
	B.1 . Task-agnostic learning
	B.2 . Task-specific learning
	C . More results
	C.1 . Our method with different feature extractors
	C.2 . Task-specific parameterizations
	C.3 . Varying-way 5-shot and 5-way-1-shot
	C.4 . Results evaluated with updated evaluation protocol.
	C.5 . Ablation study
	C.6 . Qualitative results

