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Abstract

The key challenge of zero-shot learning (ZSL) is how to
infer the latent semantic knowledge between visual and at-
tribute features on seen classes, and thus achieving a de-
sirable knowledge transfer to unseen classes. Prior works
either simply align the global features of an image with its
associated class semantic vector or utilize unidirectional at-
tention to learn the limited latent semantic representations,
which could not effectively discover the intrinsic semantic
knowledge (e.g., attribute semantics) between visual and at-
tribute features. To solve the above dilemma, we propose
a Mutually Semantic Distillation Network (MSDN), which
progressively distills the intrinsic semantic representations
between visual and attribute features for ZSL. MSDN incor-
porates an attribute→visual attention sub-net that learns
attribute-based visual features, and a visual→attribute at-
tention sub-net that learns visual-based attribute features.
By further introducing a semantic distillation loss, the two
mutual attention sub-nets are capable of learning collab-
oratively and teaching each other throughout the training
process. The proposed MSDN yields significant improve-
ments over the strong baselines, leading to new state-of-
the-art performances on three popular challenging bench-
marks. Our codes have been available at: https://
github.com/shiming-chen/MSDN .

1. Introduction
Recently, deep learning performs achievements on ob-

ject recognition [12, 39, 40]. Based on the prior knowledge
of seen classes, humans possess a remarkable ability to rec-
ognize new concepts (classes) using shared and distinct at-
tributes of both seen and unseen classes [17]. Inspired by
this cognitive competence, zero-shot learning (ZSL) is pro-
posed under a challenging image classification setting to
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Figure 1. Motivation illustration. An unseen sample shares differ-
ent partial information with a set of seen samples, and this partial
information is represented as the abundant knowledge of seman-
tic attributes (e.g., “bill color yellow”, “leg color red”). The key
challenge of ZSL is how to infer the latent semantic knowledge be-
tween visual and attribute features on seen classes, allowing effec-
tive knowledge transfer to unseen classes. As such, properly dis-
tilling the intrinsic semantic knowledge/representations (e.g., at-
tribute semantics) between visual and attribute features from seen
to unseen classes is very necessary for ZSL.

mimic the human cognitive process [19, 28]. ZSL aims to
tackle the unseen class recognition problem by transferring
semantic knowledge from seen classes to unseen ones. It is
usually based on the assumption that both seen and unseen
classes can be described through the shared semantic de-
scriptions (e.g., attributes) [18]. Based on the classes that a
model sees in the testing phase, ZSL methods can be catego-
rized into conventional ZSL (CZSL) and generalized ZSL
(GZSL) [44], where CZSL aims to predict unseen classes,
while GZSL can predict both seen and unseen ones.

ZSL has achieved significant progress, with many ef-
forts focus on embedding-based methods, generative meth-
ods, and common space learning-based methods. As
shown in Fig. 2 (a), embedding-based methods aim to
learn a visual→semantic mapping to map the visual fea-
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Figure 2. Four investigated ZSL paradigms. (a) Embedding-based method. (b) Generative method. (c) Common space learning-based
method. (d) Ours proposed mutually semantic distillation network (MSDN). The semantic space S is represented by the class semantic
vector annotated by humans based on the attribute descriptions. The visual space V is learned by a CNN backbone (e.g., ResNet101). The
common space O is a shared latent space between visual mapping and semantic mapping. The attribute space A is learned by a language
model (e.g., Glove [31]). Filled triangles, circles, squares and diamonds denote the sample features in S, V , O and A, respectively.

tures into the semantic space for visual-semantic inter-
action [2, 4, 5, 32, 46, 48]. The embedding-based meth-
ods usually have a large bias towards seen classes under
the GZSL setting, since the embedding function is solely
learned by seen class samples. To solve this issue, the
generative ZSL methods (see Fig. 2(b)) are proposed to
learn semantic→visual mapping to generate visual features
of unseen classes [3, 6, 8, 34, 35, 38, 43, 50], and thus con-
verting ZSL into a conventional classification problem. As
shown in Fig. 2(c), common space learning learns a com-
mon representation space where both visual features and
semantic representations are projected for knowledge trans-
fer [7, 10, 23, 34, 37, 41]. However, they simply utilize the
global features representations and have neglected the fine-
grained details in the training images.

As shown in Fig. 1, an unseen sample shares different
partial information with a set of seen samples, and this par-
tial information is represented as the abundant knowledge
of semantic attributes (e.g., “bill color yellow”, “leg color
red”). Thus, the key challenge of ZSL is to infer the la-
tent semantic knowledge between visual and attribute fea-
tures on seen classes, and thus allowing desirable knowl-
edge transfer to unseen classes. Recently, some attention-
based ZSL methods [5, 25, 46–48, 54] leverage attribute de-
scriptions as guidance to discover discriminative part/fine-
grained features, enabling to match the semantic represen-
tations more accurately. Unfortunately, they simply uti-
lize unidirectional attention, which only focuses on limited
semantic alignments between visual and attribute features
without any further sequential learning. As such, properly
discovering the intrinsic and more sufficient semantic rep-
resentations (e.g., attribute semantics) between visual and
attribute features for knowledge transfer of ZSL is of great
importance.

In light of the above observation, we propose a Mutually
Semantic Distillation Network (MSDN) for ZSL, as shown
in Fig. 2(d), to explore the intrinsic semantic knowledge
between visual and attribute features. MSDN consists of an
attribute→visual attention sub-net, which learns attribute-
based visual features, and a visual→attribute attention sub-
net, which learns visual-based attribute features. These two

mutual attention sub-nets act as a teacher-student network
for guiding each other to learn collaboratively and teach-
ing each other throughout the training process. As such,
MSDN can explore the most matched attribute-based vi-
sual features and visual-based attribute features, enabling to
effectively distill the intrinsic semantic representations for
desirable knowledge transfer from seen to unseen classes
(Fig. 1). Specifically, each attention sub-net is trained with
an attribute-based cross-entropy loss with self-calibration
[5, 14, 25, 48, 54]. To encourage mutual learning between
the attribute→visual attention sub-net and visual→attribute
attention sub-net, we further introduce a semantic distilla-
tion loss that aligns each other’s class posterior probabili-
ties. The quantitative and qualitative results well demon-
strate the superiority and great potential of MSDN.

Our contributions are summarized as: i) We propose a
Mutually Semantic Distillation Network (MSDN), orthog-
onal to existing ZSL methods, which distills the intrinsic
semantic representations for effective knowledge transfer
from seen to unseen classes for ZSL. ii) We introduce a se-
mantic distillation loss to enable mutual learning between
the attribute→visual attention sub-net and visual→attribute
attention sub-net in MSDN, encouraging them to learn
attribute-based visual features and visual-based attribute
features by distilling the intrinsic semantic knowledge for
semantic embedding representations. iii) We conduct ex-
tensive experiments to show that our MSDN achieves sig-
nificant performance gains over the counterparts on three
benchmarks, i.e., CUB [42], SUN [30] and AWA2 [44].

2. Related Work

2.1. Zero-Shot Learning

To transfer semantic knowledge from seen to unseen
classes, ZSL [6,9,11,22,27,36,43,45,50] learns a mapping
between the visual and attribute/semantic domains. Tar-
geting on this goal, embedding-based ZSL aims to learn
a visual→semantic mapping for visual-semantic interac-
tion by mapping the visual features into the semantic space
[2, 4, 32, 46, 48]. As the embedding is learned only on seen
classes, these embedding-based methods inevitably overfit
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Figure 3. Illustrates of MSDN. MSDN consists of an attribute→visual attention sub-net and visual→attribute attention sub-net. Each sub-
net is optimized with an attribute-based cross-entropy loss with self-calibration, and a semantic distillation loss to match the probability
estimates of its peers for semantic distillation.

to seen classes under the GZSL setting. To mitigate this
challenge, the generative ZSL models have been introduced
to learn a semantic→visual mapping to generate visual fea-
tures of of unseen classes [3, 6, 20, 34, 35, 38, 43, 50] for
data augmentation. Currently, the generative ZSL usually
based on variational autoencoders (VAEs) [3, 34], gener-
ative adversarial nets (GANs) [6, 16, 21, 38, 43, 50], and
generative flows [35]. Furthermore, common space learn-
ing is also employed to learns a common representation
space for interaction between visual and semantic domains
[7, 10, 34, 37]. However, these methods still usually yield
relatively undesirable results, since they cannot capture the
subtle differences between seen and unseen classes. As
such, attention-based ZSL methods [5,25,46–48,54] utilize
attribute descriptions as guidance to discover the more dis-
criminative fine-grained features. They simply utilize uni-
directional attention, which only focuses on limited seman-
tic alignments between visual and attribute features without
any further sequential learning. As such, properly exploring
the intrinsic semantic representations between visual and at-
tribute features for knowledge transfer of ZSL is very nec-
essary.

2.2. Knowledge Distillation

To compress knowledge from a large teacher network to
a small student network, knowledge distillation was pro-
posed [13]. Recently, knowledge distillation is extended
to optimize small deep networks starting with a powerful
teacher network [29, 33]. By mimicking the teacher’s class
probabilities and/or feature representation, distilling mod-
els convey additional information beyond the conventional

supervised learning target [52, 53]. Motivated by these, we
design a mutually semantic distillation network to learn the
intrinsic semantic by semantically distilling intrinsic knowl-
edge. The mutually semantic distillation network consists
of attribute→visual attention and visual→attribute attention
sub-nets, which act as a teacher-student network to learn
collaboratively and teach each other.

3. Mutually Semantic Distillation Network
Motivation. Prior works simply i) align the global fea-
tures of an image with its associated class semantic vec-
tor, neglecting the fine-grained information for knowledge
transfer, or ii) utilize unidirectional attention to learn the
latent semantic representations, which only focuses on lim-
ited semantic alignments between visual and attribute fea-
tures without any further sequential learning. However, an
unseen sample can share different partial information with
a set of seen samples, and this partial information is repre-
sented as the abundant knowledge of semantic attributes, as
shown in Fig. 1. These observations prompt us to speculate
that the current inferior performance of ZSL is closely re-
lated to the intrinsic semantic representations (e.g., attribute
semantics) between visual and attribute features, which of-
fers effective knowledge transfer to unseen classes.

To properly learn the intrinsic semantic knowledge,
we propose a Mutually Semantic Distillation Network
(MSDN). Our strategy behind MSDN is to distill the intrin-
sic semantic knowledge from the attribute-based visual fea-
tures and visual-based attribute features, which are leaned
by two attention sub-nets optimized by a semantic distilla-
tion loss.



Overview. As illustrated in Fig. 3, our MSDN includes
an attribute→visual attention sub-net and visual→attribute
attention sub-net. Under the constraint of attribute-
based cross-entropy loss with self-calibration, the
attribute→visual attention sub-net attempts to learn
attribute-based visual features, and visual→attribute
attention sub-net aims to discover visual-based attribute
representations. A semantic distillation loss encourages the
two mutual attention sub-nets to learn collaboratively and
teach each other throughout the training process.
Notation. Assume that we have training data Ds =
{(xsi , ysi )} with Cs seen classes, where xsi ∈ X denotes
the visual sample i, and ysi ∈ Ys is the corresponding class
label. Another set of unseen classes Cu has unlabeled sam-
ples Du = {(xui , yui )}, where xui ∈ X are the unseen class
samples, and yui ∈ Yu are the corresponding labels. A set
of class semantic vectors (semantic value annotated by hu-
mans according to attributes) of the class c ∈ Cs ∪ Cu = C
with |A| attributes zc = [zc1, . . . , z

c
A]
>

= φ(y) which helps
knowledge transfer from seen to unseen classes. Note that
we also use the semantic attribute vectors of each attribute
A = {a1, . . . , aK} learned by GloVe [31].

3.1. Attribute→Visual Attention Sub-net

Learning the fine-grained features for attribute localiza-
tion is important in ZSL [46–48, 54]. As the first compo-
nent of our MSDN, we proposed an attribute→visual atten-
tion sub-net to localize the most relevant image regions to
the attribute to extract attribute-based visual features from a
given image for each attribute. It expects two inputs: a set
of visual features of the image V = {v1, . . . , vR}, such that
each visual feature encodes a region in an image; a set of se-
mantic attribute vectors A = {a1, . . . , aK}. We can attend
to image regions with respect to each attribute, and com-
pare each attribute to the corresponding attended visual re-
gion features to determine the importance of each attribute.
For the k-th attribute, we first define its attention weights of
focusing on the r-th region of one image as:

βr
k =

exp
(
a>kW1vr

)∑K
k=1 exp

(
a>kW1vr

) , (1)

where W1 is a learnable matrix to calculate the visual fea-
ture of each region and measure the similarity between each
semantic attribute vector. As such, we can get a set of atten-
tion weights {βr

k}Rr=1.
We then extract the attribute-based visual features for

each attribute based on the attention weights. For exam-
ple, we get the k-th attribute-based visual feature Fk, which
is relevant to the k-th attribute according to the semantic
vector ak. It is formulated as:

Fk =

R∑
r=1

βr
kvr. (2)

Intuitively, Fk captures the visual evidence used to local-
ize the corresponding semantic attribute in the image. If
an image has an obvious attribute ak, the model will as-
sign a high positive score to the k-th attribute. Other-
wise, the model will assign a negative score to the k-th at-
tribute. Thus, we get a set of attribute-based visual features
F = {F1, F2, · · · , FK}.

After extracting the attribute-based visual features, we
further introduce a mapping functionM1 to map them into
the semantic embedding space. To encourage the mapping
to be more accurate, we take the semantic attribute vec-
tors A = {a1, a2, · · · , aK} as support. Specifically, M1

matches the attribute-based visual feature Fk with its corre-
sponding semantic attribute vector ak, formulated as:

ψk =M1(Fk) = a>kW2Fk, (3)

where W2 is an embedding matrix that embeds F into the
semantic space. Essentially, ψk is an attribute score that
represents the confidence of having the k-th attribute in an
given image. Finally, MSDN obtains a mapped semantic
embedding ψ(x) = {ψ1, ψ2, · · · , ψK} for each image.

3.2. Visual→Attribute Attention Sub-net

Analogously, we design a visual→attribute attention
sub-net to learn visual-based semantic attribute representa-
tions. They are complementary to the attribute-based visual
features, enabling them to calibrate each other to discover
the intrinsic semantic representations between visual and at-
tribute features. We can first attend to semantic attributes
with respect to each image region. Formally, we define its
attention weights to focus on the k-th attribute as:

τkr =
exp

(
v>r W3ak

)∑R
r=1 exp (v>r W3ak)

, (4)

where W3 is a learnable matrix to measure the similarity
between the semantic attribute vector and each visual re-
gion feature. Thus, we can get a set of attention weights
{τkr }Kk=1, which is used to extract visual-based attribute fea-
tures. It is formulated as:

Sr =

K∑
k=1

τkr ak. (5)

Intrinsically, Sr is the visual semantic representations,
which is aligned to the Fk. We further introduce another
mapping function M2 to map these visual-based attribute
features S = {S1, S2, · · · , SR} into semantic space:

Ψ̄r =M2(Sr) = v>r W4Sr, (6)

where W4 is an embedding matrix. Given a set of V =
{v1, . . . , vR}, MSDN gets the mapped semantic embedding



Ψ̄(x) = {Ψ̄1, Ψ̄2, · · · , Ψ̄R} for the attributes of one image.
To enable the learned semantic embedding Ψ̄(xi) is R-dim
to match with the dimension of class semantic vector (K-
dim), it is further mapped into semantic attribute space with
K-dim, formulated as Ψ(xi) = Ψ̄(xi) × Att = Ψ̄(xi) ×
(V >WattA), where Watt is a learnable matrix.

3.3. Model Optimization

To optimize MSDN, each attention sub-net is trained
with a supervised learning loss, i.e., attribute-based cross-
entropy loss with self-calibration. To encourage mutual
learning between the two attention sub-nets, we introduce a
semantic distillation loss that aligns each other’s class pos-
terior probabilities.
Attribute-Based Cross-Entropy Loss. Since the asso-
ciated image and attribute embeddings are projected near
their class semantic vector zc when an attribute is visu-
ally present in an image, we take the attribute-based cross-
entropy loss with self-calibration [14, 48, 54] (denoted as
LACEC) to optimize the parameters of the MSDN. This en-
ables the image to have the highest compatibility score with
its corresponding class semantic vector. Given a batch of
nb training images {xsi}

nb
i=1 with their corresponding class

semantic vectors zc, LACEC is defined as:

LACEC = − 1

nb

nb∑
i=1

[log
exp (f(xi)× zc)∑

ĉ∈Cs exp (f(xi)× zĉ)

− λcal

Cu∑
c′=1

log
exp

(
f(xi)× zc

′
+ I[c′∈Cu]

)
∑

ĉ∈C exp
(
f(xi)× zĉ + I[ĉ∈Cu]

) ], (7)

where f(xi) = ψ(xi) for attribute→visual attention sub-net
and f(xi) = Ψ(xi) for visual→semantic attention sub-net,
I[c∈Cu] is an indicator function (i.e., it is 1 when c ∈ Cu,
otherwise -1), and λcal is a weight to constrol the self-
calibration term. Intuitively, LACEC encourages non-zero
probabilities to be assigned to the unseen classes during
training, thus MSDN produces a large probability for the
true unseen class when given test unseen samples.
Semantic Distillation Loss. To enable the two mutual
attention sub-nets to learn collaboratively and teach each
other throughout the training process, we further introduce
a semantic distillation loss Ldistill for optimization. Ldistill
consists of a Jensen-Shannon Divergence (JSD) and an `2
distance between the predictions of the two attention sub-
nets (i.e., p1 = {ψ(xi) × z1, · · · , ψ(xi) × zC} and p2 =
{Ψ(xi)× z1, · · · ,Ψ(xi)× zC}), formulated as:

Ldistill =
1

nb

nb∑
i=1

[
1

2
(DKL (p1(xi)‖p2(xi)) +DKL (p2(xi)‖p1(xi)))︸ ︷︷ ︸

JSD

+ ‖p1(xi)− p2(xi)‖22︸ ︷︷ ︸
`2

],

(8)

where

DKL(p||q) =

Cs∑
c=1

pc log(
pc

qc
). (9)

Overall Loss. Finally, we define the overall loss function
of MSDN as:

Ltotal = LACEC + λdistillLdistill, (10)

where λdistill is a weight to control the semantic distillation
loss.

3.4. Zero-Shot Prediction

After training MSDN, We first obtain the embedding fea-
tures of a test instance xi in the semantic space w.r.t. the
semantic→visual and visual→semantic attention sub-nets,
i.e., ψ(x) and Ψ(x). Then, We fuse their predictions us-
ing two combination coefficients (α1, α2) to predict the test
label of xi with an explicit calibration, formulated as:

c∗ = arg max
c∈Cu/C

(α1ψ(xi) + α2Ψ(xi))
> × zc + I[c∈Cu].

(11)

Here, Cu/C corresponds to the CZSL/GZSL setting.

4. Experiments
Datasets. We evaluate our method on three challeng-
ing benchmark datasets, i.e., CUB (Caltech UCSD Birds
200) [42], SUN (SUN Attribute) [30] and AWA2 (Animals
with Attributes 2) [44]. Among these, CUB and SUN are
fine-grained datasets, whereas AWA2 is a coarse-grained
dataset. Following [44], we use the same seen/unseen splits
and class embeddings. Specifically, CUB includes 11,788
images of 200 bird classes (seen/unseen classes = 150/50)
with 312 attributes. SUN has 14,340 images from 717 scene
classes (seen/unseen classes = 645/72) with 102 attributes.
AWA2 consists of 37,322 images from 50 animal classes
(seen/unseen classes = 40/10) with 85 attributes.
Evaluation Protocols. We evaluate the top-1 accuracy on
unseen classes in the CZSL setting, denoted as acc. For
GZSL setting, we evaluate the top-1 accuracies both on seen
and unseen classes (i.e., S and U ), respectively. Further-
more, their harmonic mean (defined as H = (2 × S ×
U)/(S + U)) is also employed for evaluating the perfor-
mance in the GZSL setting.
Implementation Details. We take a ResNet101 [12] pre-
trained on ImageNet as the CNN backbone to extract the
feature map for each image without fine-tuning. We use
the RMSProp optimizer with hyperparameters (momentum
= 0.9, weight decay = 0.0001) to optimize our model. We
set the learning rate and batch size to 0.0001 and 50, respec-
tively. We empirically set the loss weights {λcal, λdistill} to
{0.1, 0.001} for CUB and AWA2, and {0.0, 0.01} for SUN.



Table 1. Results (%) of the state-of-the-art CZSL and GZSL modes on CUB, SUN and AWA2, including generative methods, common
space-based methods, and embedding-based methods. The best and second-best results are marked in Red and Blue, respectively. The
symbol “–” indicates no results. The symbol “*” denotes attention-based methods.

Methods
CUB SUN AWA2

CZSL GZSL CZSL GZSL CZSL GZSL
acc U S H acc U S H acc U S H

Generative Methods
f-CLSWGAN(CVPR’18) [43] 57.3 43.7 57.7 49.7 60.8 42.6 36.6 39.4 68.2 57.9 61.4 59.6

f-VAEGAN-D2(CVPR’19) [45] 61.0 48.4 60.1 53.6 64.7 45.1 38.0 41.3 71.1 57.6 70.6 63.5
E-PGN(CVPR’20) [50] 72.4 52.0 61.1 56.2 – – – – 73.4 52.6 83.5 64.6

Composer∗(NeurIPS’20) [15] 69.4 56.4 63.8 59.9 62.6 55.1 22.0 31.4 71.5 62.1 77.3 68.8
GCM-CF(CVPR’21) [51] – 61.0 59.7 60.3 – 47.9 37.8 42.2 – 60.4 75.1 67.0

FREE(ICCV’21) [6] – 55.7 59.9 57.7 – 47.4 37.2 41.7 – 60.4 75.4 67.1
Common Space Learning
DeViSE(NeurIPS’13) [10] 52.0 23.8 53.0 32.8 56.5 16.9 27.4 20.9 54.2 17.1 74.7 27.8

DCN(NeurIPS’18) [23] 56.2 28.4 60.7 38.7 61.8 25.5 37.0 30.2 65.2 25.5 84.2 39.1
CADA-VAE(CVPR’19) [34] 59.8 51.6 53.5 52.4 61.7 47.2 35.7 40.6 63.0 55.8 75.0 63.9

SGAL(NeurIPS’19) [49] – 40.9 55.3 47.0 – 35.5 34.4 34.9 – 52.5 86.3 65.3
HSVA(NeurIPS’21) [7] 62.8 52.7 58.3 55.3 63.8 48.6 39.0 43.3 – 59.3 76.6 66.8

Embedding-based Methods
SP-AEN(CVPR’18) [4] 55.4 34.7 70.6 46.6 59.2 24.9 38.6 30.3 58.5 23.3 90.9 37.1

SGMA∗(NeurIPS’19) [54] 71.0 36.7 71.3 48.5 – – – – 68.8 37.6 87.1 52.5
AREN∗(CVPR’19) [46] 71.8 38.9 78.7 52.1 60.6 19.0 38.8 25.5 67.9 15.6 92.9 26.7

LFGAA∗(ICCV’19) [24] 67.6 36.2 80.9 50.0 61.5 18.5 40.0 25.3 68.1 27.0 93.4 41.9
DAZLE∗(CVPR’20) [14] 66.0 56.7 59.6 58.1 59.4 52.3 24.3 33.2 67.9 60.3 75.7 67.1
APN∗(NeurIPS’20) [48] 72.0 65.3 69.3 67.2 61.6 41.9 34.0 37.6 68.4 57.1 72.4 63.9

MSDN (Ours) 76.1 68.7 67.5 68.1 65.8 52.2 34.2 41.3 70.1 62.0 74.5 67.7

Table 2. Ablation studies for different components of MSDN. The
baseline is the visual feature extracted from CNN backbone with
a global average pooling and then mapped into semantic embed-
ding for ZSL. The V→A and A→V denote visual→attribute and
attribute→visual attention sub-nets, respectively.

Method
CUB SUN

acc H acc H
baseline 57.4 49.1 54.8 30.5
MSDN(V→A) w/o Ldistill 66.0 55.4 59.2 33.8
MSDN(A→V) w/o Ldistill 73.4 65.4 63.8 38.5
MSDN(V→A) w/ Ldistill 67.9 60.8 62.1 38.6
MSDN(A→V) w/ Ldistill 75.2 67.5 63.0 38.7
MSDN w/ Ldistill(JSD) 74.3 67.0 64.7 39.4
MSDN w/ Ldistill(`2) 74.4 67.6 64.9 40.8
MSDN (full) 76.1 68.1 65.8 41.3

4.1. Comparision with State-of-the-Arts

Conventional Zero-Shot Learning. We first compare our
MSDN with the state-of-the-art methods in the CZSL set-
ting. Table 1 presents the results of CZSL on various
datasets. Our MSDN achieves the best accuracies of 76.1%
and 65.8% on CUB and SUN, respectively. This shows that
MSDN distills the intrinsic semantic representations for dis-
tinguishing fine-grained unseen classes. As shown in Fig.
1, MSDN can distill the semantic attributes of “bill color
yellow”, “breast color white” and “leg color red” from Al-
ifornia Gull, Parakeet Auklet, Pigeon Guillemot, transfer-
ring to unseen classes (e.g., Red Legged Kittiwake). As

for the coarse-grained dataset (i.e., AWA2), MSDN still
obtains competitive performance, with a top-1 accuracy
of 70.1%. Compared to other embedding-based methods,
MSDN achieves new state-of-the-art on all datasets.
Generalized Zero-Shot Learning. Table 1 also shows
the results of different methods in the GZSL setting, i.e,
embedding-based methods, generative methods, and com-
mon space learning methods. Interestingly, most state-of-
the-art methods achieve good results on seen classes but fail
on unseen classes on CUB and AWA2, while our MSDN
generalizes well to unseen classes with high seen and un-
seen accuracies. As such, MSDN achieves good results
of Harmonic mean, e.g., 68.1% and 67.7% on CUB and
AWA2, respectively. These benefits come from the seman-
tic distillation of MSDN, enabling to discover the intrinsic
semantic representations for effective knowledge transfer
from seen to unseen classes. Compared to attention-based
ZSL methods [24, 46–48, 54] that utilize attribute descrip-
tions as guidance to discover the more discriminative fine-
grained features, our MSDN also achieves significant im-
provement on Harmonic mean at least 3.7% on SUN. This
demonstrates the superiority and potential of the proposed
MSDN for ZSL.

4.2. Abaltion Studies
To provide further insight into our MSDN, we con-

duct ablation studies to evaluate the effectiveness of our
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Figure 4. Visualization of attention maps for the two mutual attention sub-nets (i.e, MSDN(A→V) and MSDN(V→A)). The scores are the
attribute scores.. (Best viewed in color)
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Figure 5. t-SNE visualizations of visual features for (a) seen classes and (b) unseen classes, learned by the baseline, MSDN(V→A),
MSDN(A→V), and MSDN(V→A and A→V). The 10 colors denote 10 different seen/unseen classes randomly selected from CUB. (Best
viewed in color)

MSDN in terms of the V→A attention sub-net (denoted
as MSDN(V→A) w/o Ldistill), A→V attention sub-net (de-
noted as MSDN( A→V) w/o Ldistill), semantic distilla-
tion loss (i.e., MSDN(V→A) w/ Ldistill, MSDN(A→V) w/
Ldistill), semantic distillation loss with JSD (i.e., MSDN w/
Ldistill(JSD)) and `2 (i.e., MSDN w/ Ldistill(`2)) . Our results
are shown in Table 2. Compared to the baseline, MSDN
only employs the single attention sub-net without semantic
distillation achieving significant improvements. For exam-
ple, MSDN(V→A) w/o Ldistill achieves the gains of acc/H
by 8.6%/6.3% and 4.4%/3.3% on CUB and SUN respec-
tively, MSDN(A→V) w/o Ldistill gets the acc/H improve-
ments of 16.0%/16.3% and 9.0%/8.0% on CUB and SUN
respectively. This is beneficial from that MSDN refines
the visual features, alleviating the cross-dataset bias prob-
lem [6]. If MSDN is optimized by the semantic distillation
loss, its results can be further improved, e.g., MSDN(V→A)
improves the Harmonic mean by 5.4% and 4.8% on CUB
and SUN, respectively. These results show that semantic
distillation encourages the two mutual attention sub-nets to
learn collaboratively and teach each other, and thus the in-
trinsic semantic representations can be distilled for knowl-

edge transfer. When the semantic distillation loss only uses
one distance, i.e., JSD or `2, the distillating capasity of
MSDN are limited. Moreover, our full model ensembles
the complementary embeddings learned by the two mu-
tual attention sub-nets to further improve the feature rep-
resentations, achieving acc/Harmonic mean improvements
of 18.7%/19.0% and 11.0%/10.8% on CUB and SUN over
the baseline, respectively.

4.3. Qualitative Results
Visualization of Attention Maps. To intuitively show
the effectiveness of our MSDN at distilling the intrin-
sic semantic, we visualize the attention maps learned by
the two mutual attention sub-nets, e.g., MSDN(A→V)
and MSDN(V→A). As shown in Fig. 4, MSDN(A→V)
and MSDN(V→A) sub-nets effectively learn the attribute-
based visual features and visual-based attribute features
for representing the discriminative attribute localizations.
MSDN(A→V) and MSDN(V→A) can similarly learn the
most important semantic representation, which is benefi-
cial from mutual learning for semantic distillation. Further-
more, the two attention sub-nets also learn the complemen-
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Figure 6. The effectiveness of the combination coefficients (α1, α2) between the attribute→visual and visual→attribute attention sub-nets.
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Figure 7. The effects of λcal on (a) CUB and (b) SUN. The effects of λdistill on (c) CUB and (d) SUN. (Best viewed in color)

tary attribute feature localization for each other. For ex-
ample, MSDN(A→V) can well learn the key semantic of
“under tail white” but no “shape chicken-like marsh” for
Carolina Wren, while MSDN(V→A) confidently learn the
important semantic “shape chicken-like marsh” but not “un-
der tail white”, Thus, our full MSDN achieves significant
performance both in seen and unseen classes.
t-SNE Visualizations. As shown in Fig. 5, we also
present the t-SNE visualization [26] of visual features for
seen and unseen classes on CUB, learned by the baseline,
MSDN(A→V), MSDN(V→A), and combination of the two
attention sub-nets (i.e., MSDN(V→A and A→V)). Com-
pared to the baseline, our models learn the intrinsic seman-
tic representations both in seen and unseen classes. This
shows that our MSDN can simultaneously learn the dis-
criminative and transferable features for effective knowl-
edge transfer in ZSL. As such, our MSDN achieves signifi-
cant improvement over baseline.
4.4. Hyperparameter Analysis
Effects of Combination Coefficients. we conduct ex-
periments to determine the effectiveness of the combi-
nation coefficients (α1, α2) between attribute→visual and
visual→attribute attention sub-nets. As shown in Fig. 6,
MSDN performs poorly when α1/α2 is set too small or
large, because both the attribute-based visual features and
visual-based attribute features are complementary for dis-
criminative semantic embedding representations. When
the combination coefficients α1, α2 are set to (0.9,0.1) and
(0.7,0.3) on CUB and SUN, respectively, MSDN achieves
the best results.
Effects of Loss Weights. Here we study how to set the

related loss weights of MSDN: λcal and λdstill, which con-
trol the self-calibration term and semantic distillation loss,
respectively. Based on the results in Fig. 7 (a) and (b),
we choose λcal as 0.1 for CUB/AWA2. Since the number
of seen classes is much larger than the number of unseen
classes and per class only contains 16 training images on
SUN, thus it usually overfits unseen classes. As such, we
set λcal to 0.0 for SUN. According to the results in Fig. 7
(c) and (d), we set λdstill to 0.001 and 0.01 for CUB/AWA2
and SUN, respectively.

5. Conclusion and Discussion
In this paper, we propose a novel mutually semantic

distillation network (MSDN) for ZSL. MSDN consists of
two mutual attention sub-nets, i.e., attribute→visual and
visual→semantic attention sub-nets, which learns attribute-
based visual features and visual-based attribute features for
semantic embedding representations, respectively. To en-
courage mutual learning between the two attention sub-nets,
we introduce a semantic distillation loss that aligns each
other’s class posterior probabilities. Thus, MSDN distills
the intrinsic semantic representations between visual and
attribute features for effective knowledge transfer of ZSL.
Extensive experiments on three popular benchmarks show
the superiority of MSDN. we believe that our work will
also facilitate the development of other visual-and-language
learning systems, e.g., visual question answering [1].
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