
Interactive Image Synthesis with Panoptic Layout Generation

Bo Wang Tao Wu Minfeng Zhu Peng Du*

Huawei Technologies
{wangbo341, zhuminfeng, dupeng25}@hisilicon.com, taowu1@huawei.com

Abstract

Interactive image synthesis from user-guided input is a
challenging task when users wish to control the scene struc-
ture of a generated image with ease. Although remarkable
progress has been made on layout-based image synthesis
approaches, existing methods require high-precision inputs
such as accurately placed bounding boxes, which might be
constantly violated in an interactive setting. When place-
ment of bounding boxes is subject to perturbation, layout-
based models suffer from “missing regions” in the con-
structed semantic layouts and hence undesirable artifacts
in the generated images. In this work, we propose Panop-
tic Layout Generative Adversarial Network (PLGAN) to ad-
dress this challenge. The PLGAN employs panoptic the-
ory which distinguishes object categories between “stuff”
with amorphous boundaries and “things” with well-defined
shapes, such that stuff and instance layouts are constructed
through separate branches and later fused into panoptic
layouts. In particular, the stuff layouts can take amorphous
shapes and fill up the missing regions left out by the in-
stance layouts. We experimentally compare our PLGAN
with state-of-the-art layout-based models on the COCO-
Stuff, Visual Genome, and Landscape datasets. The ad-
vantages of PLGAN are not only visually demonstrated but
quantitatively verified in terms of inception score, Fréchet
inception distance, classification accuracy score, and cov-
erage. The code is available at https://github.com/wb-
finalking/PLGAN.

1. Introduction
Tremendous progress has been made on conditional im-

age synthesis for creative design. Among different for-
mats of conditional inputs are categories [2, 14, 25–27, 41],
source images [15,22,44], text description [31,38,42], scene
graphs [1,12,40] and semantic layouts [28,36,45]. To date,
interactive image synthesis via conditional generative mod-
els remains a contemporary challenge. Text-to-image mod-

*Corresponding author.

G
ri

d2
Im

Object Input Instance Layout Generated Image
PL

G
A

N

Instance/Stuff Input Panoptic Layout Generated Image

Figure 1. Scene-to-image synthesis by Grid2Im [1] vs. PLGAN.
Unlike the instance layout utilized by Grid2Im that treats all ob-
jects as instances (things), the panoptic layout by PLGAN distin-
guishes objects between instances and stuff, thus eliminating ar-
tifacts in the missing regions (marked black in the layout).

els usually suffers from reasoning object locations and rela-
tions [42]. Image synthesis from semantic layouts provides
an alternative way for computer-human interaction [9, 21]
and yields aesthetically pleasing results [28, 36, 45]. How-
ever, high-quality semantic layouts demand professional
skills in free-hand drawing from scratch by users, which
prevent them from being used as a drag-and-drop GUI for
novice users. In this respect, scene graph has attracted much
attention in recent years [1, 12], as it requires only multiple
object placements on the artboard and allows user-friendly
manipulation with individual objects.

A milestone in scene-graph-to-image synthesis is made
by Grid2Im [1], which roughly consists of two stages: lay-
out construction and image generation. First, the input con-
ditions are passed to construct an instance layout with per-
object masks and bounding boxes. Secondly, conditioned
on the instance layout a photo-realistic image is sythe-
sized as the outcome of the image generation stage. Whilst
Grid2Im [1] requires ground truth segmentation maps as su-

ar
X

iv
:2

20
3.

02
10

4v
3

 [
cs

.C
V

]
 2

8
M

ar
 2

02
2

https://github.com/wb-finalking/PLGAN
https://github.com/wb-finalking/PLGAN

pervision signals, LostGAN [34, 35] can learn the interme-
diate instance layout in a weakly-supervised way.

Besides [1, 34, 35], instance layout-based generative
models such as [9, 12, 21, 43] have also driven progress
on many cross-domain image synthesis tasks. A common
caveat among aforementioned methods consists in that they
are sensitive to spatial perturbation of scene objects and suf-
fer from the region missing problem, especially in interac-
tive scenarios. They may predict intermediate layouts with
empty areas where pixels may not have correct category in-
formation. During the training phase, ground-truth bound-
ing boxes and masks usually covers the whole image lat-
tice. However, in interactive scenarios users can place ob-
jects with bounding boxes arbitrarily. In addition, the pre-
dicted per-object masks will not fill up the corresponding
bounding boxes. Therefore, the intermediate layout may
not be covered completely by object masks, yielding the
region missing problem. An illustration of region missing
by Grid2Im [1] is displayed in Fig. 1. Unsurprisingly, an
imperfect semantic layout containing empty areas induces
undesirable artifacts in the generated image.

In this work, we propose Panoptic Layout Generative
Adversarial Network (PLGAN) for interactive image syn-
thesis. Different from prior works that treat all objects in-
variably as instances (or things), we employ the panoptic
segmentation theory [17] that splits objects into uncount-
able stuff (which refers to amorphous background such as
grass, sky or sea) and countable things (which are fore-
ground objects with well-defined shapes such as people, an-
imals or vehicles). Furthermore, we develop the panoptic
layout generation (PLG) module, which utilizes in paral-
lel a stuff branch for stuff layout construction and an in-
stance branch for instance layout construction. The instance
branch predicts per-instance bounding boxes and maskes as
in [1, 34]. The stuff branch generates pixel-wise masks for
all stuff objects that cover the whole image lattice. Then
the instance layout and the stuff layout are combined into a
panoptic layout through an Instance- and Stuff-Aware Nor-
malization (ISA-Norm) module. Images synthesis from
such a panoptic layout successfully eliminates missing re-
gions and behaves more robust to perturbation of object lo-
cations; see Fig. 1 for a visualized example.

Our contributions are summarized as follows:

• We leverage panoptic layouts in interactive image syn-
thesis to resolve the region missing problem inheritted
by current instance layout-based approaches.

• Regarding model architecture, we propose to separate
treatment of stuff and thing objects during layout con-
structions and later fuse the constructed instance and
stuff layouts into a panoptic layout via Instance- and
Stuff-Aware Normalization (ISA-Norm).

• Our experiments show qualitative and quantitative

comparisons on the COCO-Stuff dataset, Visual
Genome, and Landscape datasets, and demonstrate of
the merits of our PLGAN over state-of-the-art layout-
based approaches.

2. Related Work

Even since the work of Generative Adversarial Networks
(GAN) [5] has photo-realistic image synthesis attracted
considerable attention. Further milestones are achieved by
BigGAN [2] and StyleGAN [13] regarding network archi-
tecture and training strategy that bring impressive image
quality in high resolution. While unconditional synthe-
sis models like GAN take random noise as input, condi-
tional synthesis [15, 25, 31, 42, 44] takes additional condi-
tions (e.g., category, scene, layout) as input to control con-
tents and styles of generated images. Among these, im-
age synthesis from layout is an effective way for computer-
human interaction [9,21,34], which requires to assign class
label to each pixel. Layout-to-image models [28,36,45] can
produce aesthetically pleasing results with multiple objects
by leveraging locations and shapes of objects directly.

Instance Layout. Instance layout based methods con-
sider each object as an instance attached with a bound-
ing box and a shape independently, and assign every pixel
with a category label and an instance ID. For instance,
text-to-image model [9] takes text descriptions as inputs
and adopts LSTM [8] to predict instance bounding boxes
and masks. The configurable scene layout [1, 12, 34, 43]
is a more user-friendly instrument, which consists of a
set of objects with labels, locations and their interactions.
SG2Im [12] and Grid2Im [1] take advantage of graph con-
volution networks [33] to extract information from scenes
and build instance embedding features to predict bounding
boxes and masks for layout construction. LostGAN [34] re-
ceives bounding boxes and classes as inputs for image syn-
thesis. Compared to other condition formats, the scene lay-
out provides a similar spatial structure to the target image
and is easier to be constructed. Though the instance-based
methods can generate realistic instances with recognizable
shapes, they tend to cause region missing problems espe-
cially in high-resolution and interactive scenarios where the
image lattice cannot be covered entirely by instance masks.

Panoptic Layout. Our proposed PLGAN leverages
panoptic theory from panoptic segmentation. Panoptic seg-
mention was first termed in [17] to unify instance segmen-
tation and semantic segmentation for scene understanding
missions. Panoptic segmentation models [4, 20, 23] typi-
cally utilize separate branches to generate region-based in-
stance layout for things and dense-pixel semantic layout
for stuff. Inspired by previous works, our PLGAN adopts
panoptic layouts in the context of interactive image gen-
eration, allowing users to manipulate the entire scene and

Panoptic Layout Generation

Instance Branch

Stuff Branch

Encode

Masked Softmaxo1: c1, p1, s1

...

on: cn, pn, sn

Stuff Layouts

Mask2Layout

o1: c1, p1, s1

ok: ck, pk, sk

...

c

...

Semantic Layout

Generator

～～
zSt

IS
A

-N
o

rm

Instance Layouts

……
Bounding Box / Mask

GenerationInstance

Objects

Stuff

Objects

……

L
a
y
o

u
t

to
 I

m
a
g

e

～～
zIm

Figure 2. Overview of the PLGAN architecture. PLGAN is an interactive image synthesis model trained in an end-to-end manner. It
consists of two stages: scene-to-layout generation and layout-to-image synthesis. Inspired by panoptic segmentation [17], panoptic layout
generation (PLG) is proposed for scene-to-layout generation, which distinguishes between instances and stuff for generated objects. In
particular, the stuff layout complements the instance layout, as the latter is prone to the region missing problem.

create photo-realistic images on the fly.

3. Method

The proposed PLGAN follows a two-stage procedure:
scene-to-layout generation and layout-to-image synthe-
sis; see Fig. 2 for an overview of its architecture. The input
of PLGAN is a set of objects O = {o1, o2, ..., on} with
each oi = (ci, pi, si), where ci ∈ C is the object category
(e.g., |C| = 171 in the COCO-Stuff dataset), pi ∈ [0, 1]2 is
the center position, and si is the object size (typically drawn
from some predefined set, e.g., [1, 25]).

For scene-to-layout construction, we propose the Panop-
tic Layout Generation (PLG) module inspired from [17].
Specifically, PLG learns the mapping from scene to panop-
tic layout by embedding stuff and thing labels separately:

LSt = GSt(OSt, zSt), (1)

LThi = GTh(oThi , zThi), (2)

where LSt ∈ RH×W×|CSt| represents the stuff layout,
LThi ∈ RH×W×1 is the instance layout, GSt and GTh are
two distinctive generators under stuff branch and instance
branch respectively, OSt and OTh =

⋃
i{oThi } are sets of

stuff objects and thing objects, and zSt, zThi ∈ Rm are la-
tent codes sampled from standard Gaussians.

Meanwhile, layout-to-image synthesis has been well ex-
plored in the recent literature. The PLGAN leverages the
state-of-the-art models, such as Grid2Im [1], LostGAN-V1
[34], LostGAN-V2 [35] and CAL2I [6], for layout-to-image
synthesis. In mathematical terms, a photorealistic image If

is produced by the generator GIm:

If = GIm(LSt, {LThi }, zIm), (3)

from layouts LSt, {LThi } and a Gaussian latent code
zIm ∈ Rm. Last but not least, we have integrated the
Instance- and Stuff-Aware Normalization (ISA-Norm)
into the layout-to-image stage, which is dedicated to the fu-
sion of stuff layout and instance layouts.

3.1. Panoptic Layout Generation

In PLG we split object categories in C into two disjoint
subsets, stuff CSt and things CTh, i.e., C = CSt ∪ CTh.
The stuff represents amorphous background regions of tex-
ture or material, such as grass, sky and road. In contrast,
things are typically countable foreground objects with well-
defined shapes, such as people, animals and vehicles. In or-
der to eliminate mission regions from instance layout-based
models [1, 43], we propose to split layout construction into
instance branch and stuff branch, in analogy to panoptic
segmentation [17, 19, 39]. Furthermore, we propose to fuse
the stuff- and instance-layouts and then refine the panoptic
layout conditioning on instance-to-instance and instance-to-
stuff relations.

3.1.1 Instance Layout Branch

Similar to previous works [1, 12, 35], we generate the in-
stance layout in two shots. First, we predict B(ounding) Box
and mask for each instance object with conditional genera-
tive models. Given a thing object oThi = (ci, pi, si) with
ci ∈ CTh, both the mask- and BBox-generators take word

Linear

～

zIm

ResBlock

ResBlock

ResBlock

ResBlock

ResBlock

Panoptic
Layout

ResBlock

ISA-Norm

ISA-Norm

ReLU

Upsample

Conv

ReLU

Conv

Upsample

Conv

Generated
Image

+

Figure 3. Illustration of the Layout-to-Image module.

embedding of object label, center position pi and size si
as the inputs. To simplify the model, we predict only the
height and width of the BBox and then combine them with
the input center position to obtain the final BBox. In the
second step, all masks are resized into specific regions de-
fined by BBoxes. Based on these BBoxes and masks, we
further utilize the Mask2Layout module [35] to construct
the instance layout LTh ∈ RH×W×|OTh|, where the slice
LTh:,:,i corresponds to the predicted mask of object oThi .

3.1.2 Stuff Layout Branch

While instance layouts are generated independently from
each other, stuff layouts are intercorrelated and ought to
be generated jointly. More specifically, we first generate
a coarse layout LSt,init ∈ RH×W×|CSt|, where each slice
LSt,init:,:,c is a coarse mask of stuff object with label c ∈ CSt.
Given a stuff object oSt = (c, p, s), we generate a coarse
mask by setting a square mask with s as its height and width
and p as its center position (see Fig. 2). Then, we use the
conditional generative model with four ResBlocks [28] to
refine this coarse layout LSt,init into a stuff layout L̂St. Fi-
nally, we normalize L̂St using a masked softmax:

LSth,w,c =
eL̂

St
h,w,c∑

c′∈Cin e
L̂St

h,w,c′
, c ∈ Cin, (4)

where Cin ⊂ CSt contains the input stuff categories.

3.2. Layout-to-Image Synthesis

3.2.1 Conditional Image Synthesis

Synthesizing image from layout is a kind of conditional
generative task that has recently embarked attention; see,
e.g., Grid2Im [1], LostGAN [35] and CAL2I [6]. To ac-
complish layout-to-image synthesis in PLGAN, we follow
the state-of-the-art method CAL2I [6] to construct our gen-
erative model. LostGAN [35] proposes ISLA-Norm which

ISA-Norm

………… ……Guided
Filter

…… ……

BatchNorm

Figure 4. Illustration of Instance- and Stuff-Aware Normalization.

takes instance layout as an input of its conditional genera-
tive model. To fully utilize the panoptic layout in the PL-
GAN setup, we propose ISA-Norm in place of ISLA-Norm.

Fig. 3 shows the design of the layout-to-image stage for
128× 128 output resolution. The generator consists of one
fully connected (FC) layer and five ResBlocks. The FC
layer maps the image latent code zIm of 128 dimensions to
a 4× 4× 128 tensor. Then five ResBlocks are employed to
successively upsample this tensor to the final generated im-
age of desired resolution, where each ResBlock blends the
panoptic layout into upsampling via the ISA-Norm module.

3.2.2 Instance- and Stuff-Aware Normalization

Once instance and stuff layout templates are ready, we need
to fuse them properly. In this respect, the ISLA-Norm mod-
ule was used in LostGAN [35] (which only deals with in-
stance layouts). ISLA-Norm accomplishes multi-object fu-
sion by embedding instance layouts into affine transforma-
tions in BatchNorm layers. However, direct averaging over
embedded instance objects is inappropriate for a panoptic
layout. In a panoptic setup, the stuff layout will overspread
the whole scene as background, and among stuff and in-
stances there are widespread overlaps. To address this chal-
lenge, we propose Instance- and Stuff-Aware Normalization
(ISA-Norm); see Fig. 4 for an illustration.

Let X ∈ RB×H×W×C be the 4D feature map resulting
from the activation layer of the ResBlocks in Fig 3. The
ISA-Norm transforms X as in a standard BatchNorm:

µc =
1

BHW

∑
b,h,w

Xb,h,w,c, (5)

σc =

√
1

BHW

(∑
b,h,w

Xb,h,w,c − µc
)2

+ ε, (6)

X̂b,h,w,c =
Xb,h,w,c − µc

σc
· γh,w,c + βh,w,c. (7)

Here µ, σ ∈ RC are mean and standard deviation with
respect to the batch dimension. The shift- and scale-
parameters β, γ ∈ RH×W×C are constructed as follows.

First, we use learnable matrices to embed the object
classes and get WSt

γ ∈ R|CSt|×C and WTh
β ,WTh

γ ∈
R|CTh|×C for stuff and thing objects separately. Then we
compute the foreground mask of thing objects:

Mh,w =

1, if
∑
c

LThh,w,c > τ,

0, otherwise,
(8)

where τ is a scalar value representing the foreground thresh-
old (τ = 0.1 in experiments). We further process the in-
stance layouts conditioning on the current image feature via
the Guided Filter (GF) [37], and project the instance and
stuff layouts into semantic space using label embedding:

L̃Thi = GF(LThi , X), (9)

ETh,?h,w =

(∑
i L̃

Th
i WTh

?

)
h,w(∑

i L
Th
i

)
h,w

, (10)

ESt,? = LStWSt
? , (11)

where ? ∈ {γ, β} and ETh,?, ESt,? ∈ RH×W×d. Details
on GF are left to the Appendix. Finally, γ, β are fused from
instance and stuff layout embedding:

γh,w,c = Mh,wE
Th,γ
h,w,c + (1−Mh,w)ESt,γh,w,c, (12)

βh,w,c = Mh,wE
Th,β
h,w + (1−Mh,w)ESt,βh,w,c. (13)

3.3. Model Objectives

The total loss used for PLGAN training is given by:

L = λ1Lbox + λ2Limg + λ3Lobj
+ λ4Lper + λ5Lrec + λ6Lapp. (14)

Here Lbox is the MSE between the predicted bounding
boxes and the ground truth bounding boxes, Limg and Lobj
are two adversarial losses for images and objects respec-
tively, Lper is the perceptual loss, Lrec is the reconstruction
loss, and Lapp is another adversarial loss for appearance.
The balancing weights are set manually in the experiements,
i.e., λ2 = 0.1, λ1 = λ3 = λ4 = λ5 = λ6 = 1.

Image and object losses. We use hinge loss [24] forLimg:

Limg = EIf∼pfake
[−Dimg(I

f)], (15)

where Ir is a real image drawn from training data and If

is a fake image generated from Eq. (3). Notice that Limg
involves a discriminator Dimg which is updated via mini-
mizing the adversarial loss:

Ladvimg(Dimg) = EIr∼preal
[max(0, 1−Dimg(I

r))]

+ EIf∼pfake
[max(0, 1 +D(If))], (16)

and similarly for the object loss Lobj . The adversarial loss
has been proven effective in generating realistic textures.

Reconstruction loss. The reconstruction loss measures
the L1 distance in pixels between the predicted images and
the ground truth images, i.e.,

Lrec = EIr∼preal,If∼pfake
[‖Ir − If‖1]. (17)

Perceptual loss. The perceptual loss encourages synthe-
sized and real images to share similar feature representa-
tions, and is widely used in style transfer [11] and image
synthesis [44]. With φj(·) the activation of j-th layer from
the VGG-19 network, the perceptual loss is defined as:

Lper = E Ir∼preal

If∼pfake

[∑
j

wj‖φj(Ir)− φj(If)‖1
]
, (18)

with the feature balancing weights {wj}. In our experi-
ments, we compute Lper using the activation of conv1-1,
conv2-1, conv3-1, conv4-1 and conv5 layers, with the corre-
sponding weights 1/32, 1/16, 1/8, 1/4 and 1.

Appearance Loss. Following CAL2I [6], we also intro-
duce the appearance loss which penalizes the generator ac-
cording to pixel-level misalignment:

Lapp = EIf∼pfake
[−Dapp(A

f |If)], (19)

The discriminator Dapp is updated via minimizing the ad-
versarial loss:

Ladvapp(Dapp) = EIr∼preal
[max(0, 1−Dapp(A

r|Ir))]
+ EIf∼pfake

[max(0, 1 +Dapp(A
f |If))]. (20)

In Lapp and Ladvapp, we have used Ar and Af which are the
Gram matrices of object features in Ir and If respectively.
The purpose of Gram matrices is to measure the spatial
similarity between object features, hence better preserving
location-sensitive information in synthesized images [6].

3.4. Implementation Details

The PLGAN model is trained using Pytorch [29] on a
NVIDIA Tesla V100 GPU server. The training uses Adam
optimizer [16] with learning rate 10−4 and batch size 128,
and runs for 200 epochs on all tested datasets. Inference
of the PLGAN model is tested on Huawei Atlas inference
workstation equipped with Ascend AI Accelerator Card
and Ascend Compute Architecture for Neural Networks
(CANN).

4. Experiments
We evaluate the proposed PLGAN on three datasets:

COCO-Stuff [3], Visual Genome [18], and our own Land-
scape dataset. The results from PLGAN are compared with

GT Pert BBox Grid2Im LostGAN-V2 Ours

128×128 256×256 128×128 256×256 128×128 256×256

Figure 5. Visual comparison between sample images generated from perturbed BBoxes (Pert BBoxes) on the COCO-Stuff dataset.

Input Grid2Im Ours

128× 128 256× 256 128× 128 256× 256

Figure 6. Visual comparison between instance layouts and panoptic layouts on the COCO-Stuff dataset.

state-of-the-art methods not only visually and but also quan-
titatively using widely adopted metrics. We also carry out
ablation studies to evaluate effectiveness of the individual
components of PLGAN. Due to space limitation, supple-
mentary results are left to the Appendix.

Datasets. The COCO-Stuff dataset [3] annotates 40K
training image and 5K validation images with bounding
boxes and segmentation masks for 80 thing categories and
91 stuff categories. Following Ashual et al. [1], we choose
images with three to eight objects and further filter images
whose object coverage is less than 2%. We split categories
of the Visual Genome (VG) dataset [18] into 92 thing cat-
egories and 87 stuff categories. We choose 62,565 training,
5,506 validation and 5,088 test images with 3 to 30 objects

in our experiments. We also created our own Landscape
dataset by collecting 27k photos (25k train and 2k val) of
4482 resolution from the Flickr website, in order to fully
demonstrate the advantage of the stuff layout generation in
PLGAN. The Landscape dataset contains only 23 stuff ob-
ject classes (such as sky, sea and mountain) but no thing
objects. We use a pre-trained UPSNet [39] to extract pixel-
level segmentation masks for both thing and stuff objects.

Methods. We compare our PLGAN with state-of-the-
art layout-to-image models: Layout2Im [43], Grid2Im [1],
LostGAN-V1 [34], LostGAN-V2 [35] and CAL2I [6]. The
results from these models are reproduced by the publicly
released code.

Evaluation Metrics. Four metrics are adopted for

Table 1. Quantitative comparison with respect to Inception Score (higher is better), FID (lower is better) and CAS (higher is better) on the
COCO-Stuff dataset. Pert1 BBox and Pert2 BBox are generated by perturbing GT BBox with different random biases on object center.

Methods Resolution IS↑ FID↓ CAS↑
Real Images 64×64 13.4±0.5 -

51.04Real Images 128×128 22.3±0.4 -
Real Images 256×256 30.4±0.6 -

GT BBox Pert1 BBox Pert2 BBox GT BBox Pert1 BBox Pert2 BBox GT BBox

Layout2Im [43]

64×64

9.1±0.1 7.7±0.2 7.0±0.2 37.53 44.57 50.58 27.32
Grid2Im [1] 10.3±0.1 - - 48.7 - - -
LostGAN-V1 [34] 9.8±0.2 - - 34.31 - - 28.81
Ours (CAL2I [6]+PLG) 10.3±0.1 9.2±0.1 8.2±0.1 21.85 28.01 34.52 29.50

Grid2Im [1]

128×128

11.2±0.3 7.4±0.1 6.4±0.2 63.2 77.76 87.89 25.89
LostGAN-V1 [34] 13.8±0.4 9.2±0.1 7.7±0.1 29.65 51.96 71.04 30.68
LostGAN-V2 [35] 14.2±0.4 9.9±0.1 8.1±0.2 24.76 43.82 59.34 31.98
CAL2I [6] 15.6±0.2 11.1±0.1 9.0±0.1 24.15 43.12 57.89 32.52
Grid2Im [1]+PLG 12.7±0.1 11.0±0.2 9.5±0.2 45.83 51.53 60.24 26.74
LostGAN-V1 [34]+PLG 14.1±0.1 12.6±0.2 11.0±0.2 26.85 31.82 38.67 31.33
LostGAN-V2 [35]+PLG 14.6±0.2 12.8±0.1 11.4±0.1 25.43 30.80 36.75 32.86
Ours (CAL2I [6]+PLG) 15.6±0.3 13.2±0.2 11.7±0.2 22.70 29.03 35.40 33.86

Grid2Im [1]
256×256

15.2±0.1 7.7±0.4 4.4±0.1 65.95 147.85 253.59 20.54
LostGAN-V2 [35] 18.2±0.2 12.2±0.2 9.5±0.2 30.82 56.67 77.56 30.33
Ours (CAL2I [6]+PLG) 18.9±0.3 15.8±0.2 14.2±0.2 29.10 40.14 46.89 32.33

the quantitative evaluation: Inception Score (IS) [32],
Fréchet Inception Distance (FID) [7], Classification Accu-
racy Score (CAS), and Coverage (COV) [10]. In partic-
ular, we compute CAS [30, 35] by training a ResNet-101
model on the synthesized images to classify real images for
the COCO-Stuff and VG datasets. Higher CAS is better
(i.e., more identifiable objects). The Coverage (COV) mea-
sures the quality of intermediate semantic layouts, which is
computed as the average percentage (ranged between 0 and
100) of empty area in the generated semantic layout. Higher
COV is better (i.e., less empty artboard).

4.1. Qualitative Results

In Fig. 5 we show visual comparison between Grid2Im
[1], LostGAN-V2 [35] and our PLGAN under 1282 and
2562 resolutions, all using perturbed BBoxes as input. It
is clearly observable that Grid2Im and LostGAN-V2 which
rely on instance-based layouts produce artifacts in regions
between BBoxes and image borders. This is due to the
fact that BBoxes of instances cannot occupy the whole im-
age lattice. Even if there is no gap between BBoxes, mis-
match between instance masks also causes the region miss-
ing problem in layouts by Grid2Im. With increasing reso-
lution, this problem becomes even more apparent. Our PL-
GAN adopts panoptic-based layouts and processes stuff ob-
jects akin to semantic segmentation, hence the background

of a generated image naturally fills up the whole image lat-
tice. We refer to Fig. 6 for visual difference between in-
stance layouts and panoptic layouts.

4.2. Quantitative Results

In Tab. 1, we show quantitative comparisons on COCO-
Stuff with respect to Inception Score, FID and CAS across
different resolutions. “GT BBox” refers to the ground-truth
annotations from the original dataset; “Pert1 BBox” and
“Pert2 BBox” refer to randomly biased center positions of
GT BBox in the range [−0.3, 0.3] and [−0.5, 0.5] respec-
tively. Unsurprisingly, IS and FID under GT BBox are bet-
ter than those under Pert1 BBox and Pert2 BBox. With GT
BBox as input, our PLGAN (CAL2I+PLG) is the best in IS
and FID but the difference to the competing models is small.
However, the advantage of PLGAN in IS and FID is more
apparent under Pert1 BBox and Pert2 BBox. This is due
to that perfect placement of BBoxes potentially alleviates
the region missing and overlapping problems that previous
instance-layout based models are troubles with. To compare
the CAS, we test the synthesized images with GT BBox as
input only. Following LostGAN-V2 [35], we compute CAS
on cropped and resized objects at 322 resolution from syn-
thesized and real images. According to Tab. 1, our methods
has higher CAS at different resolutions. This confirms that,
with refined instance layouts by the ISA-Norm module, ob-

Table 2. Ablation study on the PLG and ISA-Norm module.

PLG ISA-Norm IS↑ FID↓ CAS ↑ Inference Time
w/o GF w/ GF GT BBox Pert1 BBox Pert2 BBox GT BBox Pert1 BBox Pert2 BBox GT BBox

15.6±0.2 11.1±0.1 9.0±0.1 24.15 43.12 57.89 32.52 14 ms
X 14.6±0.2 12.3±0.1 10.3±0.1 24.89 35.66 58.84 31.99 22 ms
X X 15.0±0.3 12.5±0.1 10.8±0.1 23.65 33.09 52.73 31.09 22 ms
X X 15.6±0.3 13.9±0.2 12.8±0.2 22.70 27.03 33.40 33.86 26 ms

0.0 0.1 0.2 0.3 0.4 0.5
Perturbation range

6

8

10

12

14

16

IS

Ours(CAL2I+PLG)
Grid2Im+PLG
LostGAN-V1+PLG
LostGAN-V2+PLG
Grid2Im
LostGAN-V1
LostGAN-V2
CAL2I

0.0 0.1 0.2 0.3 0.4 0.5
Perturbation range

20

30

40

50

60

70

80

90

FI
D

Ours(CAL2I+PLG)
Grid2Im+PLG
LostGAN-V1+PLG
LostGAN-V2+PLG
Grid2Im
LostGAN-V1
LostGAN-V2
CAL2I

0.0 0.1 0.2 0.3 0.4 0.5
Perturbation range

50

60

70

80

90

100

Co
ve

ra
ge

Ours(CAL2I+PLG)
Grid2Im
LostGAN-V1
LostGAN-V2
CAL2I

Figure 7. IS, FID and Coverage curves with varying perturbation range on the COCO-Stuff dataset under resolution 128× 128.

Table 3. Ablation study on panoptic layout.

Layout IS↑ FID↓ CAS↑
Stuff Layout only 12.7±0.6 43.70 27.15
Instance Layout only 15.6±0.2 24.15 32.52
Panoptic Layout (Instance+Stuff) 15.6±0.3 22.70 33.86

jects in generated images will attain higher fidelity.
Notably, our PLGAN uses CAL2I as the layout-to-image

generator, which can be replaced by other instance-layout
based models. For this reason, we also include results in
Tab. 1 that combine the PLG module and different layout-
to-image generators. Noticeably PLG always improves
instance-layout baselines.

We further elaborate the test on robustness against per-
turbation on GT BBoxes. By varying the perturbation range
from 0 to 0.5, Fig. 7 plots IS, FID and COV curves for our
PLGAN and other models from Tab. 1. It is observed that
IS and FID deteriorate on all models as perturbation on GT
BBoxes increases. However, our proposed PLG module
always robustifies image synthesis compared to instance-
layout baselines. The PLGAN which combines CAL2I and
PLG is the best overall performer in terms of IS and FID.
Regarding the coverage metric, we observe visible decay
for all instance-layout baselines as the perturbation range
increases. Meanwhile, our PLGAN maintains 100% COV
thanks to the panoptic layout.

4.3. Ablation Studies

We now validate the effectiveness of individual com-
ponents of the PLGAN. In Tab. 2, we use CAL2I [6] as

baseline and augment it with the PLG and ISA-Norm mod-
ules. We see that, although PLG resolves the region missing
problem from the baseline, it sometimes degrades the image
quality measured by the three metrics. The ISA-Norm is the
right remedy to enhance the image quality generated from
panoptic layouts. The PLGAN, with all three components
combined, attains the highest score in all metrics and main-
tain the real time.

We also test the variants of PLGAN using either instance
or stuff layout branch alone. In Tab. 3, we see that treating
all objects as stuff or things alone yields inferior metrics to
the panoptic layout approach.

5. Conclusion

This paper focuses on resolving the region missing prob-
lem and improving the robustness of scene-to-image syn-
thesis in interactive scenarios. To this end, our PLGAN
leverages panoptic theory and constructs instance and stuff
layouts through separate branches. The resulting panop-
tic layouts eliminate missing regions and yield aesthetically
pleasing images, even if perturbation on object locations is
allowed. Extensive evidences on the COCO-Stuff, Visual
Genome, and Landscape datasets advocate the superiority
of PLGAN over the state-of-the-art methods.

6. Acknowledgement

We gratefully acknowledge the optimization support of
Ascend CANN (Compute Architecture for Neural Net-
works) used for this research.

References
[1] Oron Ashual and Lior Wolf. Specifying object attributes

and relations in interactive scene generation. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 4561–4569, 2019. 1, 2, 3, 4, 6, 7, 11, 14

[2] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis.
arXiv preprint arXiv:1809.11096, 2018. 1, 2

[3] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-
stuff: Thing and stuff classes in context. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1209–1218, 2018. 5, 6

[4] Bowen Cheng, Maxwell D Collins, Yukun Zhu, Ting Liu,
Thomas S Huang, Hartwig Adam, and Liang-Chieh Chen.
Panoptic-deeplab: A simple, strong, and fast baseline
for bottom-up panoptic segmentation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 12475–12485, 2020. 2

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Z. Ghahra-
mani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Wein-
berger, editors, Advances in Neural Information Processing
Systems, volume 27, 2014. 2

[6] Sen He, Wentong Liao, Michael Yang, Yongxin Yang, Yi-
Zhe Song, Bodo Rosenhahn, and Tao Xiang. Context-aware
layout to image generation with enhanced object appearance.
In CVPR, 2021. 3, 4, 5, 6, 7, 8, 11, 14

[7] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. In Advances in neural information processing systems,
pages 6626–6637, 2017. 7

[8] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997. 2

[9] Seunghoon Hong, Dingdong Yang, Jongwook Choi, and
Honglak Lee. Inferring semantic layout for hierarchical text-
to-image synthesis. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 7986–
7994, 2018. 1, 2

[10] Maor Ivgi, Yaniv Benny, Avichai Ben-David, Jonathan Be-
rant, and Lior Wolf. Scene graph to image generation with
contextualized object layout refinement. In 2021 IEEE In-
ternational Conference on Image Processing (ICIP), pages
2428–2432. IEEE, 2021. 7

[11] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
European conference on computer vision, pages 694–711.
Springer, 2016. 5

[12] Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image gener-
ation from scene graphs. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
1219–1228, 2018. 1, 2, 3

[13] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4401–4410, 2019. 2

[14] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improv-
ing the image quality of StyleGAN. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 2020. 1

[15] Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee,
and Jiwon Kim. Learning to discover cross-domain rela-
tions with generative adversarial networks. arXiv preprint
arXiv:1703.05192, 2017. 1, 2

[16] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 5

[17] Alexander Kirillov, Kaiming He, Ross Girshick, Carsten
Rother, and Piotr Dollár. Panoptic segmentation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 9404–9413, 2019. 2, 3

[18] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,
Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalan-
tidis, Li-Jia Li, David A Shamma, et al. Visual genome:
Connecting language and vision using crowdsourced dense
image annotations. International journal of computer vision,
123(1):32–73, 2017. 5, 6, 11

[19] Jie Li, Allan Raventos, Arjun Bhargava, Takaaki Tagawa,
and Adrien Gaidon. Learning to fuse things and stuff. arXiv
preprint arXiv:1812.01192, 2018. 3

[20] Qizhu Li, Xiaojuan Qi, and Philip HS Torr. Unifying training
and inference for panoptic segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13320–13328, 2020. 2

[21] Wenbo Li, Pengchuan Zhang, Lei Zhang, Qiuyuan Huang,
Xiaodong He, Siwei Lyu, and Jianfeng Gao. Object-driven
text-to-image synthesis via adversarial training. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 12174–12182, 2019. 1, 2

[22] Xinyang Li, Shengchuan Zhang, Jie Hu, Liujuan Cao, Xi-
aopeng Hong, Xudong Mao, Feiyue Huang, Yongjian Wu,
and Rongrong Ji. Image-to-image translation via hierarchi-
cal style disentanglement. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
8639–8648, June 2021. 1

[23] Yanwei Li, Xinze Chen, Zheng Zhu, Lingxi Xie, Guan
Huang, Dalong Du, and Xingang Wang. Attention-guided
unified network for panoptic segmentation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 7026–7035, 2019. 2

[24] Jae Hyun Lim and Jong Chul Ye. Geometric gan. arXiv
preprint arXiv:1705.02894, 2017. 5

[25] Mehdi Mirza and Simon Osindero. Conditional generative
adversarial nets. arXiv preprint arXiv:1411.1784, 2014. 1, 2

[26] Takeru Miyato and Masanori Koyama. cgans with projection
discriminator. arXiv preprint arXiv:1802.05637, 2018. 1

[27] Augustus Odena, Christopher Olah, and Jonathon Shlens.
Conditional image synthesis with auxiliary classifier gans. In
International conference on machine learning, pages 2642–
2651, 2017. 1

[28] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan
Zhu. Semantic image synthesis with spatially-adaptive nor-

malization. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 2337–2346,
2019. 1, 2, 4

[29] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32:8026–
8037, 2019. 5

[30] Suman Ravuri and Oriol Vinyals. Classification accuracy
score for conditional generative models. arXiv preprint
arXiv:1905.10887, 2019. 7

[31] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Lo-
geswaran, Bernt Schiele, and Honglak Lee. Genera-
tive adversarial text to image synthesis. arXiv preprint
arXiv:1605.05396, 2016. 1, 2

[32] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, and Xi Chen. Improved techniques
for training gans. In Advances in neural information pro-
cessing systems, pages 2234–2242, 2016. 7

[33] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Ha-
genbuchner, and Gabriele Monfardini. The graph neural
network model. IEEE transactions on neural networks,
20(1):61–80, 2008. 2

[34] Wei Sun and Tianfu Wu. Image synthesis from reconfig-
urable layout and style. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 10531–10540,
2019. 2, 3, 6, 7, 11, 14

[35] Wei Sun and Tianfu Wu. Learning layout and style reconfig-
urable gans for controllable image synthesis. arXiv preprint
arXiv:2003.11571, 2020. 2, 3, 4, 6, 7, 11, 14

[36] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,
Jan Kautz, and Bryan Catanzaro. High-resolution image syn-
thesis and semantic manipulation with conditional gans. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 8798–8807, 2018. 1, 2

[37] Huikai Wu, Shuai Zheng, Junge Zhang, and Kaiqi Huang.
Fast end-to-end trainable guided filter. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1838–1847, 2018. 5, 11

[38] Weihao Xia, Yujiu Yang, Jing-Hao Xue, and Baoyuan Wu.
Tedigan: Text-guided diverse face image generation and ma-
nipulation. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 2256–2265,
June 2021. 1

[39] Yuwen Xiong, Renjie Liao, Hengshuang Zhao, Rui Hu,
Min Bai, Ersin Yumer, and Raquel Urtasun. Upsnet: A
unified panoptic segmentation network. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8818–8826, 2019. 3, 6

[40] Cheng-Fu Yang, Wan-Cyuan Fan, Fu-En Yang, and Yu-
Chiang Frank Wang. Layouttransformer: Scene layout gen-
eration with conceptual and spatial diversity. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3732–3741, June 2021. 1

[41] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augus-
tus Odena. Self-attention generative adversarial networks.

In International Conference on Machine Learning, pages
7354–7363. PMLR, 2019. 1

[42] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiao-
gang Wang, Xiaolei Huang, and Dimitris N Metaxas. Stack-
gan: Text to photo-realistic image synthesis with stacked
generative adversarial networks. In Proceedings of the IEEE
international conference on computer vision, pages 5907–
5915, 2017. 1, 2

[43] Bo Zhao, Lili Meng, Weidong Yin, and Leonid Sigal. Image
generation from layout. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
8584–8593, 2019. 2, 3, 6, 7

[44] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Proceedings of the IEEE
international conference on computer vision, pages 2223–
2232, 2017. 1, 2, 5

[45] Peihao Zhu, Rameen Abdal, Yipeng Qin, and Peter Wonka.
Sean: Image synthesis with semantic region-adaptive nor-
malization. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5104–
5113, 2020. 1, 2

A. Supplementary Results
A.1. Qualitative Results on Visual Genome

In Fig. 8, we show visual comparisons of LostGAN-V1
[34], CAL2I [6], and the proposed PLGAN using perturbed
Bounding Boxes as input based on the VG dataset [18]. In
Fig. 9, we show sythesized image samples with the corre-
sponding panoptic layouts on the VG dataset under 1282

and 2562 resolutions.

A.2. Quantitative Results on Visual Genome

Similar to Tab. 1 in the main paper, Tab. 4 reports quanti-
tative comparison with respect to Inception Score, FID and
CAS on the VG dataset.

A.3. Qualitative Results on Landscape

In Fig. 10, we compare generated images from Grid2Im
[1] and our PLGAN on the Landscape dataset.

A.4. Quantitative Results on Landscape

In Tab. 5, we quantitavely compare Grid2Im [1] and our
PLGAN on the Landscape dataset, for which all objects are
“stuff”. Our method outperforms Grid2Im on all metrics.
The fact that this dataset contains only stuff objects makes
the difference even more apparent.

A.5. Robustness to Perturbed BBoxes

In Fig. 11, we plot IS, FID and Coverage curves with
varying perturbation range for Grid2Im [1], LostGAN-V2
[35] and our PLGAN under 2562 resolution. Similar to
the robustness test under 1282 resolution in Fig. 7, PLGAN
again claims the most robust model among others.

A.6. User Study

We conduct a user study on Wjx (https://www.wjx.cn)
to rate realism of generated images. Specifically, we select
100 grouped image samples generated from Grid2Im, Lost-
GAN, CAL2I and our method under 128 × 128 resolution.
Each vote picks one of the two images from the same group
and counts one point for the corresponding image genera-
tor. The overall scores after 600 votes in total are shown in
Tab. 6.

B. Guide Filter
In Figure 12, we illustrate the workflow of the Guided

Filter module. First, a 3 × 3 convolution layer is used
to map the image feature X to tensor Xg of three chan-
nels. Following DGF [37], each instance layout LThi and
Xg are filtered by a prescribed 3 × 3 convolution kernel.
And the linear transformation parameters A ∈ RH×W×1
and b ∈ RH×W×1 are predicted from CNN layers. Specif-
ically, mean filter and covariance operations are carried out

sequencially to get Xg , L
Th

i , ΣXg,Xg
and Σ

Xg,Li
Th . Then

the parameter A is predicted from ΣXg,Xg
and Σ

Xg,L
Th
i

by Convolution Block, which contains 3 conditional lay-
ers with 1 × 1 kernels. And the parameter b is equal to
L
Th

i − A �Xg . Finally, the refined layout is computed as
follows:

L̃Thi = A� LThi + b. (21)

GT Pert BBox LostGAN-V1 CAL2I Ours (CAL2I+PLG)

Figure 8. Visual comparison between sample images generated from perturbed BBoxes (Pert BBoxes) on the VG dataset.

128× 128 256× 256
Input Panoptic layout Generated Image Panoptic layout Generated Image

Figure 9. Synthesized image samples on the VG dataset.

Table 4. Quantitative comparison with respect to Inception Score, FID and CAS on the VG dataset.

Methods Resolution IS↑ FID↓ CAS↑
Real Images 128×128 20.5±1.5 - 48.07Real Images 256×256 28.6±1.1 -

GT BBox Pert1 BBox Pert2 BBox GT BBox Pert1 BBox Pert2 BBox GT BBox

LostGAN-V1 [34]

128×128

11.1±0.6 10.3±0.1 9.7±0.1 29.36 39.48 42.29 28.85
LostGAN-V2 [35] 10.7±0.2 - - 29.00 - - 29.35
CAL2I [6] 12.6±0.4 8.4±0.1 7.3±0.1 21.78 49.53 61.30 29.2
Ours(CAL2I [6]+PLG) 12.7±0.2 10.6±0.1 10.1±0.1 20.62 32.93 37.03 30.81

LostGAN-V2 [35] 256×256 14.1±0.3 - - 47.62 - - 28.81
Ours(CAL2I [6]+PLG) 14.9±0.1 13.2±0.2 12.6±0.1 28.06 38.41 41.36 29.35

In
pu

t
G

ri
d2

Im
O

ur
s

Figure 10. Visual comparison on the Landscape dataset.

Table 5. Quantitative comparison on the Landscape dataset.

Method Resolution IS↑ FID ↓
Real Images

448×448
5.9±0.2 -

Grid2Im [1] 1.8±0.1 144.84
Ours 3.3±0.1 57.40

Table 6. User Study statistical results.

Grid2Im LostGAN CAL2I PLGAN(ours)

118 142 143 197

0.0 0.1 0.2 0.3 0.4 0.5
Perturbation range

8

10

12

14

16

18

IS

Ours(CAL2I+PLG)
Grid2Im
LostGAN-V2

0.0 0.1 0.2 0.3 0.4 0.5
Perturbation range

40

60

80

100

120

FI
D

Ours(CAL2I+PLG)
Grid2Im
LostGAN-V2

0.0 0.1 0.2 0.3 0.4 0.5
Perturbation range

50

60

70

80

90

100

Co
ve

ra
ge

Ours(CAL2I+PLG)
Grid2Im
LostGAN-V2

Figure 11. IS, FID and Coverage curves with varying perturbation range on the COCO-Stuff dataset under 256× 256 resolution.

Guided Filter

Conv Mean Filter

Mean Filter

C

Conv

Figure 12. Workflow of Guided Filter.

	1 . Introduction
	2 . Related Work
	3 . Method
	3.1 . Panoptic Layout Generation
	3.1.1 Instance Layout Branch
	3.1.2 Stuff Layout Branch

	3.2 . Layout-to-Image Synthesis
	3.2.1 Conditional Image Synthesis
	3.2.2 Instance- and Stuff-Aware Normalization

	3.3 . Model Objectives
	3.4 . Implementation Details

	4 . Experiments
	4.1 . Qualitative Results
	4.2 . Quantitative Results
	4.3 . Ablation Studies

	5 . Conclusion
	6 . Acknowledgement
	A . Supplementary Results
	A.1 . Qualitative Results on Visual Genome
	A.2 . Quantitative Results on Visual Genome
	A.3 . Qualitative Results on Landscape
	A.4 . Quantitative Results on Landscape
	A.5 . Robustness to Perturbed BBoxes
	A.6 . User Study

	B . Guide Filter

