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Abstract

Transfer learning for GANs successfully improves gen-
eration performance under low-shot regimes. However, ex-
isting studies show that the pretrained model using a sin-
gle benchmark dataset is not generalized to various target
datasets. More importantly, the pretrained model can be
vulnerable to copyright or privacy risks as membership in-
ference attack advances. To resolve both issues, we pro-
pose an effective and unbiased data synthesizer, namely
Primitives-PS, inspired by the generic characteristics
of natural images. Specifically, we utilize 1) the generic
statistics on the frequency magnitude spectrum, 2) the el-
ementary shape (i.e., image composition via elementary
shapes) for representing the structure information, and 3)
the existence of saliency as prior. Since our synthesizer
only considers the generic properties of natural images, the
single model pretrained on our dataset can be consistently
transferred to various target datasets, and even outperforms
the previous methods pretrained with the natural images in
terms of Fréchet inception distance. Extensive analysis, ab-
lation study, and evaluations demonstrate that each com-
ponent of our data synthesizer is effective, and provide in-
sights on the desirable nature of the pretrained model for
the transferability of GANs.

1. Introduction
Generative adversarial networks (GANs) [13] are a pow-

erful generative model that can synthesize complex data
by learning the implicit density distribution with adversar-
ial training. Thanks to the impressive generation quality,
particularly in image generation tasks [4, 23, 30], GANs
have been widely used in various downstream tasks in
computer vision, such as data augmentation [9], super-
resolution [25,54], image translation [1,10], and image syn-
thesis with primitive representation [27,37]. Despite the re-
markable quality, GANs require at least several thousand,
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(a) PinkNoise (b) Primitives

(c) Primitives-S (d) Primitives-PS

Figure 1. Visualization of our synthetic datasets. We visualize four
variants of our synthetic datasets and Primitives-PS is finally
chosen for the best performance. Example images are resized in
three different scales.

mostly several hundred thousand images for training. This
requirement for data collection is often infeasible in prac-
tical applications (e.g., many pictures of a treasure, endan-
gered species, or the medical images of rare disease).

The idea of transfer learning has been recently intro-
duced to GAN training [31,49] for resolving the real-world
generation problem. Following the common practice, the
general framework of GAN transfer learning 1) pretrains
GANs on a publicly available large-scale source dataset
(e.g., FFHQ and ImageNet) and then 2) finetunes GANs
with a relatively small target dataset. As a result, develop-
ing GANs with transfer learning clearly improves the gen-
eration quality and diversity over the models trained from
scratch only with the target dataset.

Unfortunately, the effectiveness of transfer learning for
GANs highly depends on how similar the source dataset
is to the target dataset. According to TransferGAN [49],
transfer learning can achieve the best performance when the
source shares common characteristics with the target. For
example, when LFW [21] is the target dataset, the best per-
formance is achieved with the source dataset of CelebA [28]
as both are face datasets. For Flower [33] or Kitchens [53],
utilizing CelebA as the source dataset does not significantly
improve the performance. Thus, it is required to search the
best source dataset for a given target dataset by measuring
the similarity between two datasets (e.g., FID score). Be-
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cause exploring the best source dataset and then acquiring
its pretrained model is ad-hoc, the search result does not
guarantee the best pair for transfer learning [49]. Moreover,
none of the existing source datasets can sufficiently fit the
target dataset in real-world applications.

Other than the performance issue, we argue that the cur-
rent pretrained models can be vulnerable to copyright (see
the supplementary 7 for potential copyright issues of large-
scale datasets) and privacy issues [58]. Even for public
benchmark datasets, employing them for commercial pur-
poses is not always permitted. For examples, ImageNet-1K
having 1M images, the copyright issue might not be feasible
to handle. When targeting the commercial use of a dataset,
the developer should negotiate with the author of each sam-
ple. For this reason, one might compose her own dataset
via web crawling, but filtering out the copyrighted samples
is practically difficult. Besides, unresolved copyright and
privacy issues might cause legal issues [42].

Recent studies [8,15,18] also show that the deep genera-
tive models are vulnerable to membership inference attacks,
implying that privacy issues still remains beyond the copy-
right issues. An adversary can reconstruct a face even with-
out additional prior information [55]. That is, we can reveal
individual training samples by attacking the trained model.
As the network capacity of GANs increases rapidly to im-
prove performance, the risk of memorization also grows
quickly. Memorization effects make GANs more vulner-
able to membership inference attacks [7]. Since we con-
sider transfer learning, someone might argue that the mem-
bership inference on the source (e.g., pretraining) dataset
should not be a critical issue. However, Zou et al. [58] re-
ported that the membership inference of the source dataset
could be conducted even after the transfer learning (see the
supplementary 7 for empirical evidence).

In this work, we dive into tackling the two undiscov-
ered but critical issues of transfer learning for GANs: 1)
the lack of generalization for the pretrained model and 2)
the copyright or privacy issue of the pretraining dataset. To
this end, we devise a synthetic data generation strategy for
acquiring pretrained GANs. Since our pretrained model is
newly computed with a synthetic dataset, it is inherently
free from copyright and privacy issues. Besides, the learned
features of existing pretrained models encode the induc-
tive bias of a training dataset, exhibiting lower transferabil-
ity [52]. Learned from this lesson, we ensure that our syn-
thetic data should be unbiased to any datasets and free from
expert knowledge or specific domain prior.

Towards this goal, we adopt the generic property of
the natural images in the frequency spectrum and struc-
ture. We develop our data generation strategy, namely
Primitives-PS, inspired by the analysis and observa-
tions on natural images from previous studies [29, 36, 44].
Our design philosophy is built upon three aspects: 1) con-

sidering the power spectrum distribution of the natural im-
ages as in Figure 1(a), 2) reflecting the structural property
of the natural images as illustrated in Figure 1(b), and 3)
utilizing the existence of saliency in images (Figure 1(c)
shows the synthetic data generated by applying both 2) and
3).) Finally, we combine all three aspects and develop our
final data synthesizer Primitives-PS, as visualized in
Figure 1(d). We pretrain GANs using the synthetic dataset
generated by our data synthesizer. Then, the effectiveness
of the proposed method is evaluated by repurposing the pre-
trained model to various low-shot datasets.

Extensive evaluations and analysis confirm that this sin-
gle pretrained network 1) can be effectively transferred to
various low-shot datasets and 2) improve the generation
performance and the convergence time. Interestingly, the
model pretrained with our dataset outperforms the model
pretrained with the natural images when transferred to sev-
eral datasets. Our empirical study shows that the bias from a
specific dataset for pretraining GANs is harmful to the gen-
eralization performance of transfer learning. Finally, our
analysis of learned filters provides insight into what makes
the pretrained model transferable. The code is available at
https://github.com/FriedRonaldo/Primitives-PS.

2. Related work

2.1. Utilizing synthetic datasets

The samples and labels of synthetic datasets can be gen-
erated automatically and unlimitedly by a pre-defined pro-
cess. Since generating synthetic data can bypass the cum-
bersome data crawling and pruning for data collection, pre-
vious works have utilized synthetic datasets for training the
model and then achieved performance improvement on real
datasets [19,20,39–41,45,51]. Domain randomization [45]
used various illuminations, color, noise, and texture to re-
duce the performance gap between the simulated and real
samples. By doing so, a model trained with a synthetic
dataset helps improve the performance on the real dataset.
Fourier domain adaptation [51] proposed swapping the low-
frequency components of the synthetic and real samples to
reduce the domain gap in the texture.

Although the previous methods improved the perfor-
mance of the model on the real dataset, generating such syn-
thetic datasets requires expertise in domain knowledge or a
specific software (e.g., GTA-5 game engine [38]). To han-
dle the issue, Kataoka et al. [24] utilized the iterated func-
tion system to generate fractals and used the fractals as a
pretraining dataset for classification. As a concurrent work,
Baradad et al. [3] observe that the unsupervised representa-
tion learning [16] trains the model using patches, and these
patches are visually similar to the noise patches (from the
noise generation model) or the patches drawn from GANs.
Based on the observation, they generate synthetic datasets
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and conduct self-supervised learning for an image classi-
fication task. However, none of the existing studies have
investigated synthetic data generation for training GANs.

2.2. Transfer learning in GANs

GANs involve a unique architecture and a training strat-
egy; consisting of a discriminator and generator trained via
adversarial competition. Therefore, the GAN transfer learn-
ing method should be developed by considering the unique
characteristics of GANs [31, 34, 35, 48, 49, 56]. Transfer-
GAN [49] trains GANs with a small number of samples
by transferring the weights trained on a relatively large
dataset. TransferGAN also shows that the performance of
the transferred model depends on the relationship between
the source and target datasets. Noguchi and Harada [34]
proposed to update only the statistics of the batch normal-
ization layer for transferring GANs. This strategy pre-
vents GANs from overfitting so that the model can gener-
ate diverse images even with a small number of samples.
FreezeD [31] fixes several layers of the discriminator and
then finetunes the remaining layers. FreezeD improved the
generation performance of transferring from the FFHQ pre-
trained model to various animals. Despite the improve-
ment in GAN transfer learning, the model still requires a
large-scale pretraining dataset. Consequently, they com-
monly suffer from copyright issues, and their performance
is sensitive to the relationship between the source and target
dataset. In contrast, our goal is to tackle both issues simul-
taneously by introducing an effective data synthesizer.

2.3. Low-shot learning in GANs

For high-quality image generation, GANs require a
large-scale dataset, and such a requirement can limit the
practical use of GANs. To reduce the number of samples
for training, several recent studies have introduced data aug-
mentation for training the discriminator [22, 47, 57]. Then,
the generator can produce images with a small number
of samples without reflecting an unwanted transformation
such as cutout [11] in the results (i.e., augmentation leak-
age [22]). Recently, ReMix [6] utilizes interpolation in the
style space to reduce the required images to train an image-
to-image translation model. In this work, we tackle low-
shot generation using GANs via transfer learning; GANs
are trained with a small number of samples by transferring
a pretrained network into a low-shot dataset.

3. Towards an effective data synthesizer
In this work, our primary goal is to develop an unbiased

and effective data synthesizer. The synthetic dataset secured
by our synthesizer is then used to pretrain GANs, which fa-
cilitates low-shot data generation. To accomplish unbiased
data generation, we only consider the generic properties of
natural images because the inductive bias in a pretraining

Figure 2. Potentials of primitive shapes for representing things.
We only use a line, ellipse, and rectangle to express a cat and a
temple. These examples motivate us to develop Primitives,
which generates the data by a simple composition of the shapes.

dataset is harmful to transfer learning of GANs. In the fol-
lowing, we introduce three design philosophies of our data
synthesizer inspired by the common characteristics of nat-
ural images: 1) learning the power spectrum of natural im-
ages, 2) exploiting the shape primitives from natural im-
ages, and 3) adopting the existence of saliency in images.

3.1. Learning the power spectrum of natural images

Several previous works reported the magnitude of nat-
ural images in the frequency domain [5, 12, 46] roughly
obeys wm = 1

|fx|a+|fy|a where a is a constant, well ap-
proximated to one. Inspired by this finding, we generate
synthetic images by randomly drawing a from the uniform
distribution of U(0.5, 3.5), as also suggested in [3]. Specif-
ically, random white noise is sampled, and then its magni-
tude signal after applying the Fast Fourier Transform (FFT)
is weighted by wm. By applying the inverse FFT to the
weighted signal, we can easily compute the synthetic image.
We repeat this for RGB color channels and finally produce
synthetic images. Originally, the image with a = 1 was
named a pink noise. We call this method of generating im-
ages with a ∼ U(0.5, 3.5) as PinkNoise. Since we only
utilize the generic properties of natural images, no inductive
bias toward any specific dataset influences PinkNoise.
As shown in Figure 1(a), PinkNoise produces interest-
ing patterns with vertical, horizontal orientation, or color
blobs.

3.2. Shape primitives inspired by natural images

“Everything in nature is formed upon the sphere, the cone, and
the cylinder. One must learn to paint these simple figures, and
then one can do all that he may wish.”

Paul Cézanne

Considering the importance of phase in images (e.g.,
determining the unique appearance of the image [36]),
PinkNoise alone is insufficient to represent the rich char-
acteristics of natural images; PinkNoise is random noise
on a phase spectrum. To have a meaningful signal even in
its phase, we can consider 1) modeling the phase of natural
images independently or 2) developing the different genera-
tion strategies to model the magnitude and phase simultane-
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Table 1. SSIM between the magnitude spectrum of the frequency
domain of the synthetic and target dataset. The higher score means
the more similar pair. We observed that the tendency is the same
with L1 or L2 distance.

Source
Target

Obama Grumpy cat Bridge Panda FFHQ Mean

PinkNoise 0.8368 0.8148 0.7676 0.8328 0.8553 0.8215
Primitives 0.9309 0.9366 0.9198 0.9200 0.9635 0.9342
Primitives-S 0.9421 0.9463 0.9308 0.9334 0.9756 0.9456
Primitives-PS 0.9432 0.9476 0.9307 0.9352 0.9767 0.9467

ously. Unlike the magnitude spectrum, we seldom find reg-
ularity in the phase of images; thus, it is difficult to derive
the generic property of the phase spectrum. Besides, sepa-
rately modeling the phase and magnitude may not produce
meaningful images, preserving the proper structures [44].
For this reason, we focus on finding structural regularity
in natural images because it can affect both magnitude and
phase. Specifically, we are inspired by the observation that
natural images can be represented by the composition of
the elementary shapes [29]. The common practice in artis-
tic drawings also utilizes elementary shapes as the basis for
representing things (inspired by Paul Cézanne).

Figure 2 demonstrates the abstraction examples of vari-
ous images using elementary shapes, such as ellipses, lines,
and rectangles. We find the potential of abstraction via ele-
mentary shapes to encode the structural information of nat-
ural images and to remove the bias to a specific dataset.
We then devise the data synthesizer to produce images con-
sisting of various elementary shapes. The outputs of this
synthesis procedure are akin to those of the dead leaves
model [14, 26]. The dead leaves model is an early gener-
ative model, which closely mimics natural images by con-
ducting tessellation, where their sizes and positions are de-
termined by sampling from the Poisson process. Unlike
the dead leaves model, we do not fill all the regions and
use different distributions for sampling because the resul-
tant images are quite sensitive to the hyperparameter of the
Poisson process. For position, we use the uniform distri-
bution. To prevent the large shapes in the later stage from
completely overwriting those in the early stage, we gradu-
ally decrease the maximum shape size over multiple stages;
drawing the small objects toward the end. In addition, it is
conversely proportional to the number of currently injected
shapes. We name this generation strategy Primitives,
and Figure 1(b) visualizes the representative examples. By
distributing the shapes in the image space, we observe that
Primitives produces images that have a similar magni-
tude to those of natural images (See Table 1 and the supple-
mentary 10 for the supporting experiments).

3.3. Combining saliency as prior

In addition to the natural images, we investigate the
benchmark datasets and find that they commonly have

(a) (b)

Figure 3. Comparison between (a) Primitives and (b)
Primitives-PS on Obama dataset. The model pretrained with
Primitives generates multiple faces in a single image.

saliency, target objects of interest to determine the class.
These salient objects are usually located nearly in the mid-
dle of the image. For example, the animal face on the cat
and panda dataset can be the saliency. To reflect the na-
ture of benchmark datasets, we insert a large shape after
applying Primitives and name it as Primitives-S
(Primitives with Saliency).

By utilizing the three design factors, we develop four
variants of our data synthesizer. They are 1) PinkNoise
adopting the nature of magnitude spectrum of natural im-
ages only as shown in Figure 1(a), 2) Primitives gen-
erating various elementary (monotone) shapes randomly as
illustrated in Figure 1(b), and 3) Primitives-S adding
a salient object into Primitives in Figure 1(c).

Finally, we apply a PinkNoise pattern onto the
salient object and the background of Primitives-S,
which is called (4) Primitives-PS (Primitives
with Patterned Saliency) as shown in Figure 1(d). Since the
size of the salient object is considerable, having a salient
monotone object may induce an unwanted texture bias. Fo-
cusing on the visual effects, inserting the monotone object
can be similar to the regional dropout [2,43] in the weakly-
supervised object localization (WSOL) task. When training
a network with the regional dropout, previous WSOL meth-
ods suggest filling the dropped region with mean statistics
or with other regions from the same image to prevent distri-
bution bias. Motivated by the practice in WSOL, we apply
PinkNoise to the salient object.

The effectiveness of the proposed synthetic datasets is
evaluated by transferring GANs in Section 4. We first pre-
train GANs using the randomly generated images via our
Primitives-PS, and then finetune the pretrained model
on low-shot datasets. While finetuning, all competitors and
our pretrained model utilize DiffAug (translation, cutout,
and color jittering). For the pretraining results and the de-
tails, please refer to the supplementary 9.
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Table 2. The FID score of transferring to low-shot datasets from
the proposed pretraining datasets. The lower is the better. Bold
and underlined text indicates the best and second best performance
among the pretraining datasets. It will be the same convention
throughout the paper.

Source
Target

Obama Grumpy cat Bridge Panda

Scratch + DiffAug 48.98 27.51 57.72 15.82
PinkNoise 50.32 29.47 73.82 15.65
Primitives 43.20 27.97 59.89 12.78
Primitives-S 43.29 26.57 57.24 11.95
Primitives-PS 41.62 26.01 54.02 12.23

4. Experiments
We first demonstrate the effectiveness of four variants

of our data synthesizer. Then, we choose the best strategy
among the four variants and use it for pretraining GANs.
Our pretrained model is compared with other pretrained
models using a natural benchmark dataset in the transfer
learning scenario. We also provide an ablation study on the
number of particles in each synthetic image and a policy to
determine the size of each particle in the supplementary 1.
Datasets. For the comparison between our synthesizers, we
adopt four datasets, including Obama, Grumpy cat, Panda,
and Bridge of sighs (Bridge) [57]. To compare with transfer
learning methods, we also use Wuzhen, Temple of heaven
(Temple), and Medici fountain (Fountain). Each dataset has
100 images. In addition, we create a dataset, namely Build-
ings, by merging a subset of four datasets; Bridge of sighs,
Wuzhen, Temple of heaven, and Medici fountain. Build-
ings is used to evaluate the performance under highly di-
verse conditions. For comprehensive evaluations, we also
use CIFAR-10/100 datasets when training with BigGAN.
Evaluation protocols. StyleGAN2 architecture [23] with
DiffAug [57] is applied when evaluating all models in the
low-shot generation task. The baseline is the model trained
from scratch with DiffAug. The strong competitors are
TransferGAN [49] and FreezeD [31], where both methods
suggest finetuning strategies. To reproduce the competitors,
we pretrain StyleGAN2 on FFHQ– the face dataset and then
finetune the pretrained model using TransferGAN with Dif-
fAug and FreezeD with DiffAug, respectively. Since the
baseline can outperform the competitors upon the target
datasets, we report the baseline performances for compar-
ison. Besides, we stress that all competitors, baseline and
Primitives-PS use DiffAug. Specifically, we follow
the configuration of DiffAug for Primitives-PS and
the baseline (from scratch with DiffAug). Otherwise, we
use the configuration of TransferGAN and FreezeD as de-
scribed in [57] for the best performance.

We also apply our synthetic dataset to pretrain Big-
GAN [4] and repurpose the model to CIFAR-10/100
datasets for evaluating our synthesizer in the conditional
generation task. Since Primitives-PS does not have

Figure 4. Morphing upon the transfer learning iterations of the
Primitives-PS pretrained model. We generate the images by
using the same latent vector. The center lilac circles are gradually
changed into salient regions.

labels, we randomly assigned the labels during pretrain-
ing. We developed the pretrained model independently for
CIFAR-10 and 100 as they have different architectures due
to different numbers of classes. For evaluating the condi-
tional generation task, we compare three models; 1) the
model naı̈vly trained from scratch, 2) the model trained with
DiffAug only (DiffAug), and 3) our model pretrained with
Primitives-PS and then finetuned with DiffAug. We
use 10%, 20%, and 100% samples of CIFAR for evaluation
and check the effectiveness of our strategy under the data-
scarce scenario. As an evaluation metric, we use Fréchet in-
ception distance (FID) [17] and report the FID score of the
best model during training as suggested by DiffAug [57].
We also provide KMMD [50] for the better quantitative
evaluation, please refer to supplementary 11.

4.1. Effects of different data synthesizers

We developed four variants of data synthesizer:
PinkNoise, Primitives, Primitives-S, and
Primitives-PS. We evaluate their effectiveness in the
low-shot generation scenario– pretraining with the synthetic
dataset and then finetuning on target datasets with DiffAug.
Table 2 summarizes the FID scores of four data synthesizers
and the baseline under four different low-shot datasets.

In general, PinkNoise fails to improve the FID score
(worse than the baseline), but converges fast (See the
supplementary 2). Unlike PinkNoise, Primitives
clearly improves the generation performance in Obama and
Panda, large margins from the baseline. However, it is
not effective on Grumpy cat and Bridge. Compared to
Primitives, Primitives-S further improves the FID
scores, demonstrating the effectiveness of saliency prior.
Finally, Primitives-PS clearly improves the low-shot
generation performance on all datasets by about 15% on av-
erage over the baseline. We provide the qualitative evalua-
tion in the supplementary 3. From these results, we observe
that 1) a naı̈ve synthesizer (PinkNoise) is even worse
than simply using the low-shot dataset, and 2) the combi-
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(a) From scratch (b) TransferGAN (c) FreezeD (d) Primitives-PS
Figure 5. Qualitative evaluation on Obama, Grumpy cat, Temple, and Wuzhen. For more results, please refer to the supplementary 5.

Table 3. The FID score of transferred models to low-shot datasets. We use FFHQ pretrained weight for TransferGAN and FreezeD. For all
models, we apply DiffAug. Bold and underlined text indicates the best and second best performance among the pretraining datasets.

Source
Target

Obama Grumpy cat Bridge Panda Temple Wuzhen Fountain Buildings

Scratch + DiffAug [57] 48.98 27.51 57.72 15.82 46.69 146.81 44.46 93.71
TransferGAN [49] 36.50 30.60 60.29 14.53 40.58 95.83 46.61 81.63
FreezeD [31] 35.90 29.41 59.47 13.39 42.09 93.54 45.70 80.48
Primitives-PS 41.62 26.01 54.02 12.23 40.42 88.14 43.06 78.74

nation of our three design factors (Primitives-PS) re-
markably improves the baseline, supporting the effective-
ness and importance of each factor.

To analyze how closely our data synthesizers mimic the
real datasets, we focus on measuring the similarity be-
tween our synthetic dataset (source) and the actual low-
shot dataset (target). Instead of pixel distance, we com-
pare the average structural similarity (SSIM) between two
datasets in the frequency domain. Since the phase periodi-
cally varies in [−π, π], the SSIM of the phase spectrum is
not reliable for comparison. Therefore, we only report the
SSIM using the magnitude spectrum in Table 1. We confirm
that similar trends are consistently observed in L1 or L2 dis-
tance. The value of the SSIM is not an exact indicator for
explaining the FID scores. Nevertheless, it helps understand
the gains; the low-shot generation performance improves as
our data synthesizer models the target dataset more simi-
larly. In Table 2, Primitives-S and Primitives-PS
were ranked top-2, except for Obama. The two strategies
in Table 1 also show that their magnitude spectrum is the
most similar to target datasets. This interesting trend sup-
ports that our design factors are effective choices to mimic
the statistics of real images.

We also visualize how our synthetic data gradually
fit the target data by showing the generation results at
different training stages. For that, Primitives and
Primitives-PS are selected to construct the pretrained
model, and then they are transferred to Obama. By compar-
ing Primitives and Primitives-PS, we observe the
effect of the saliency prior. Figure 3 shows that the salient
shape in Primitives-PS forms the main object as the

training evolves. Meanwhile, Primitives includes mul-
tiple shapes, meaning all can be candidates for the main
object. Consequently, the results often contain multiple
faces in the middle of training (e.g., the top-left, the top-
right, and the middle in Figure 3(a)). On the other hand,
Primitives-PS focuses on generating a single face and
eventually exhibits improved quality. We further visualize
the gradual changes in outputs of Primitives-PS pre-
trained model in Figure 4. For the full animation, please
refer to the supplementary material (GIF files).

Considering all, we confirm that Primitives-PS is
the best data synthesizer, and thus it is chosen as our final
model for comparative evaluations with competitors.

4.2. Comparisons with the state-of-the-arts

We pretrain a model using Primitives-PS and com-
pare it with state-of-the-art models pretrained with natural
images in a transfer learning task to low-shot datasets.

Table 3 reports the quantitative results and Figure 5
shows the qualitative comparison. As expected, Trans-
ferGAN [49] and FreezeD [31] show outstanding perfor-
mance on the Obama dataset because they are pretrained
with FFHQ, meaning the source dataset is a superset of
the target. Except for the Obama dataset, our pretrained
model with Primitives-PS outperforms all competi-
tors. Unless the inductive bias in the source dataset is
advantageous to the target (e.g., Obama), FreezeD does
not consistently outperform the baseline (from scratch with
DiffAug). In fact, the performances of existing methods
highly vary upon target datasets. Contrarily, our pretrained
model with Primitives-PS consistently outperforms
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Table 4. The average consine similarity between the filters in the
same layer. The lower value indicates the more diverse filters.

Pretraining DB Discriminator Generator
Primitives-PS 0.00820 0.00828

FFHQ 0.01348 0.01434

Table 5. The FID of BigGAN, with DiffAug, and with DiffAug
initialized by Primitives-PS (PS) pretrained model on CI-
FAR. ’*’ indicates the best FID before augmentation leakage [22].
Please refer to the supplementary 8 for the details.

CIFAR-10 CIFAR-100
10% 20% 100% 10% 20% 100%

BigGAN 44.14 20.80 9.45 66.21 34.78 13.45
+ DiffAug 29.78* 14.04 8.55 41.70* 21.14 11.51
+ Pretrained (PS) 21.33 12.79 8.79 32.57 20.58 11.29

the competitors in each dataset, except Obama. This im-
plies that our pretrained model has strong transferability.
Since Primitives-PS does not use any inductive bias
for modeling human faces, the performance drawback on
Obama can be acceptable.

We emphasize that our achievement in generation qual-
ity is impressive and meaningful in two aspects: 1)
Primitives-PS uses no real but all synthetic images,
which possesses all the attractive nature in application sce-
narios and 2) our results show the great potential of a single
pretrained model for GAN transfer learning.
Diverse filters matter for transferring GANs. From the
superior performances of our pretrained model, we con-
jecture that our achievement was possible by the unbiased
nature of our dataset; the pretrained model with FFHQ
(FreezeD) has an inductive bias as the face dataset. A pre-
vious study analyzing the transferability of CNN [52] also
pointed out that the performance of the target dataset de-
grades when the filters are highly specialized to the source
dataset. To analyze the transferability empirically, we mea-
sure the similarity between the filters of each layer of the
pretrained model. We regard that highly diverse (less sim-
ilar to each other) filters can indicate that the model is
less biased towards a particular domain. That means that
the highly transferable model tends to have low filter sim-
ilarity on average. Specifically, given a weight matrix of
each layer, its shape is [O, I,H,W ], where O filters have
I×H×W tensors. Then, we measure the cosine similarity
among all possible permutations of O filters and report the
mean value of the average similarity of all layers in Table 4.
For all the layers, please refer to the supplementary 6.

In summary, Primitives-PS shows the more diverse
filter set in 21 out of 26 layers than the FFHQ pretrained
model. According to [52], the higher layer (close to the
output) tends to specialize in the trained dataset. The same
observation holds in our discriminator. The similarity in the
last layer of the FFHQ pretrained model is approximately
four times higher than Primitives-PS. This explains
that the FFHQ pretrained model specialized in human faces,

Figure 6. FID per training iterations. The star marker (⋆) in-
dicates the point where the model reaches 95% of the best FID
score of the from scratch model with DiffAug (baseline). Our
Primitives-PS pretrained model is comparable to the com-
petitors on Obama dataset (upper) and converges faster than the
others on Bridge of sighs dataset (lower).

thus transferring well to Obama but not to others.
Training convergence speed. We investigate the conver-
gence speed of transfer learning by examining FID upon
training iterations. Figure 6 describes the evolution of the
FID scores during the training. To save space, we provide
two different datasets; Obama and Bridge. Results for the
complete set are in the supplementary 4. For Obama, all
pretrained models converge faster than the baseline (from
scratch with DiffAug). Meanwhile, only our model con-
verges faster than the baseline for Bridge. Compared to
the baseline, the model pretrained with Primitives-PS
reaches 95% of the best baseline performance within the
first 30% of iterations. Interestingly, other pretrained mod-
els cannot reach 95% of the best baseline performance ear-
lier than the baseline. This shows that our model effec-
tively reduces the required iterations for convergence, and
the overhead for pretraining can be sufficiently deducted.
Toward a conditional generation task using CIFAR.
We conduct conditional generation via transfer learning on
CIFAR-10 and 100 as summarized in Table 5. Figure 7
shows the qualitative evaluation result on CIFAR-10 with
10% of samples; our Primitives-PS produces the gen-
eral shape and its structural components better than the
baseline and DiffAug. Compared to BigGAN trained from
scratch, BigGAN trained from scratch with DiffAug signif-
icantly improves the FID score, and the gain is pronounced
as the number of training samples decreases. However,
we observe that DiffAug suffers from augmentation leak-
age [22] when the samples are scarce (i.e., the generated
samples contain the cutout). Our pretrained model with
Primitives-PS shows remarkable performances under
the data-hungry scenario, better than DiffAug.
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(a) From scratch (b) + DiffAug (c) + Primitives-PS pretraining
Figure 7. Qualitative evaluation on CIFAR-10 dataset with 10% of samples. Each row contains samples in the same class.

However, when the samples are sufficient (100%), pre-
training does not always provide gains over DiffAug. This
tendency appears in various downstream tasks. Newell
et. al. [32] reported that the self-supervised pretraining for
semi-supervised classification is not advantageous when the
amount of data-label pairs are sufficient. TransferGAN [49]
showed that the gain via transfer learning decreases when
the amount of samples is sufficient. In the same vein, the
advantage of our pretraining with Primitives-PS de-
creases as the number of samples increases.

For the extreme low-shot scenario, we also evaluated
the model trained with 1% of the dataset. Only for
this evaluation, we compare three models; 1) the model
naı̈vly trained from scratch, 2) the model trained with Dif-
fAug only (DiffAug), and 3) our model pretrained with
Primitives-PS and then finetuned without DiffAug.
The FID score of the baseline, DiffAug, and ours are
112.13, 101.91, and 78.48, respectively. Although DiffAug
improved FID, we observe that DiffAug suffers from the
augmentation leakage issue. Therefore, the improvement
in FID and its generation results are not meaningful. In
contrast, our pretrained model can significantly improve the
generation performance without any issue. For more details
and results for CIFAR, please refer to the supplementary 8.

5. Discussion and conclusion

Societal impact. Since we propose the synthetic dataset
for pretraining, the proposed method can consume more
power at the pretraining stage (generating the synthetic data
and then pretraining the model). However, it converges
much faster for finetuning on target datasets, and the same
model can be repeatedly used for all targets. In this re-
gard, our method is eventually the more efficient choice in
terms of power consumption. In the point of the ethical
view, especially considering the bias issues (e.g., racial or
gender bias) in the current benchmark datasets, using our

method is much more safe, fair, economical, and practical.
Besides, pretraining with our synthetic dataset guarantees
the robustness of membership inference attack towards the
source dataset because reconstructing our data is meaning-
less. Since our method is copyright-free, it helps small com-
mercial groups to develop their machine-learning model.

Limitation. Our Primitives-PS is devised based on
the observations from natural images. Hence, it is possi-
ble that more effective observations can further improve the
data generation quality. In future work, we plan to develop
a metric to quantify the transferability of the model and then
derive the data generation process by optimizing the trans-
ferability. Formulating such a metric will be challenging
but constructive for predicting the behavior of the pretrained
model and practically useful in various applications.

Conclusion. Existing studies for GAN transfer learning uti-
lize a model trained with natural images and thereby suf-
fer from 1) biased pretrained model that can be harmful to
the resultant performance and 2) copyright or privacy is-
sues with both the model and dataset. To overcome these
limitations, we introduce a new image synthesizer, namely
Primitives-PS, inspired by the three generic properties
of natural images: 1) following the power spectrum of nat-
ural images, 2) abstracting the image via the composition
of primitive shapes (e.g., line, circle, and rectangle), and 3)
having saliency in the image. Experimental comparisons
and analysis show that our strategy effectively improves
both the generation quality and the convergence speed. We
further investigate the diversity of learned filters and report
that they are meaningful evidence for discovering the trans-
ferability of the pretrained model.
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Table 1. Ablation study on the policy to determine the size of each
particle (upper) and the number of particles (lower).

Policy Obama Grumpy cat Bridge Panda
Fix (1/10) 48.30 29.74 63.00 17.69
Fix (1/5) 46.41 29.22 64.02 14.97
Fix (1/2) 48.05 29.37 64.65 15.14
PinkNoise + PS 49.13 29.87 66.00 15.12
Rand 44.85 29.84 60.45 14.67
Decay 41.62 26.01 54.02 12.23
# of particles Obama Grumpy cat Bridge Panda
0 49.13 29.87 66.00 15.12
10 44.10 28.00 63.26 13.35
50 42.49 28.40 59.17 11.79
100 41.62 26.01 54.02 12.23
500 42.45 27.92 52.27 12.12

1. Ablation Study

When developing Primitives-PS, we introduce two
hyperparameters; 1) the total number of shapes and 2) the
policy to determine the size of each component. For deter-
mining the size, we consider three policies; Fix, Rand and
Decay. Fix indicates that all particles have the same size.
To examine the effect of various scale, we set this size as
H · [1/10, 1/5, 1/2], where H is the image resolution. Rand
randomly samples the size from the uniform distribution.
Both policies can induce the occlusion of the previously in-
jected shapes by the later shape. Decay can bypass the oc-
clusion issue effectively. Decay arbitrarily samples the size
from the uniform distribution, where the maximum size is
limited to (H ·1/5·(N − n)/N), and N and n are the total num-
ber of shapes and the number of previously injected parti-
cles. In this way, we can ensure that the shapes inserted in
the early stage are still visible in the final data. The upper-
side of Table 1 summarizes the FID score for each policy
on four datasets. The differences in FID among Fix poli-
cies are trivial in that their ratios are not highly correlated
with their ranks. Also, we observe that the shapes at the
final stage overwrite the previous shapes. Then, the over-
all appearance with Fix are similar to PinkNoise with a
salient object. We investigate the synthesizer that combines
PinkNoise with PS by injecting a saliency and then ap-
plying PinkNoise on it. Interestingly, we observe that
it shows the similar FID scores to Fix. For Rand, it im-
proves the FID score on Obama and bridge, however, the
overall performance is much worse than Decay. Therefore,
we choose a Decay policy as default for choosing the size.

Besides, the total number of shapes is important because
it affects the transferability and the time complexity of the
synthesizer. The lower-side of Table 1 demonstrates the
performance trends upon the total number of shapes. A
zero particle case implies that only one background and one
salient object, thus equivalent to PinkNoise + PS. As the
number of shapes (N ) grows upon roughly 100, the perfor-
mance tends to improve. However, over N = 100, we do

not observe the consistent gain. From the ablation study,
we decide N = 100 in each image to enjoy the reasonable
performance gain and to reduce the time complexity.

2. Convergence speed of synthetic datasets
Figure 1 shows the evolution of the FID scores during

the training of the models pretrained with synthetic datasets.
Even if PinkNoise does not improve the generation per-
formance, it can boost the convergence speed. In general,
the pretrained models reach 95% of the best FID score of
the from scratch model with DiffAug within first 30% itera-
tions. The faster convergence speed informs us the positive
potential of the pretraining.
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Figure 1. FID per training iterations. The star marker (⋆) indicates the point where the model reaches 95% of the best FID score of the
from scratch model with DiffAug (baseline). The legend is the same for all graphs.

3. Qualitative comparison among our data syn-
thesizers

In addition to the quantitative comparison of our data
synthesizers, we also qualitatively compare our four vari-
ants of the data synthesizer used for quantitative evalu-
ation. From the first to the last row, Bridge of sighs,
Obama, Grumpy cat, and Panda. PinkNoise generates
the images with unstructured samples (e.g. Obama and
Grumpy cat) and the outputs of Primitives on Panda
have lower fidelity (e.g. the last three samples). Compared
to PinkNoise and Primitives, Primitives-S and
Primitives-PS provide plausible samples. Between
the last two synthetic datasets, Primitives-S some-
times drops the important factor, for example, the eyes of
the cat (6-th column). While Primitives-PS generates
more diverse and plausible samples than the other synthetic
datasets.
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(a) PinkNoise

(b) Primitives

Figure 2. Low-shot image generation results of the models transferred from PinkNoise and Primitives.
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(a) Primitives-S

(b) Primitives-PS

Figure 3. Low-shot image generation results of the models transferred from Primitives-S and Primitives-PS.
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Figure 4. The additional results of Figure 6 in the main text. FID per training iterations. The star marker (⋆) indicates the point where the
model reaches 95% of the best FID score of the from scratch model with DiffAug (baseline). The legend is the same for all graphs.

4. Convergence speed of transfer learning
methods

Figure 4 shows the evolution of the FID scores during
the training of the transfer learning methods. The model
pretrained with our synthetic dataset exhibits comparable or
faster convergence than the competitors that are pretrained
on FFHQ. Herein, we observe the convergence speed in
terms of the number of iterations to reach 95% of the best
FID score of the baseline (from scratch model with Dif-
fAug).
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5. Qualitative comparisons with competing
transfer learning methods

In addition to the quantitative comparison, we also pro-
vide the qualitative comparisons on eight datasets that are
used for quantitative evaluation in the main text. From the
first to the last row, Buildings, Bridge of sighs, Obama,
Medici fountain, Grumpy cat, Temple of heaven, Panda, and
Wuzhen.

In terms of fidelity of the generated images, our
Primitives-PS outperforms the competitors. Espe-
cially, Grumpy cat images generated by the competitors of-
ten do not contain eyes or have only part of the face.

Figure 5. The additional generated samples of Figure 5 in the main text. The images are generated with the model trained from scratch.
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Figure 6. The additional generated samples of Figure 5 in the main text. The images are generated with the model pretrained with FFHQ
and transferred by using TransferGAN.
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Figure 7. The additional generated samples of Figure 5 in the main text. The images are generated with the model pretrained with FFHQ
and transferred by using FreezeD.
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Figure 8. The additional generated samples of Figure 5 in the main text. The images are generated with the model pretrained with our
Primitives-PS.
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Table 2. The additional results of Table 4 in the main text. The
average consine similarity between the filters in the same layer.
The lower value indicates the more diverse set of filters.

Discriminator Generator
Primitives-PS FFHQ Primitives-PS FFHQ

conv0 0.00660 0.01245 0.00315 0.00685
conv1 0.02104 0.00932 0.00273 0.00843
conv2 0.01012 0.00779 0.00291 0.00956
conv3 0.00839 0.01216 0.00348 0.01080
conv4 0.00607 0.00713 0.00539 0.01059
conv5 0.00596 0.00668 0.00329 0.01406
conv6 0.00507 0.00563 0.00363 0.01199
conv7 0.00632 0.00714 0.00433 0.01465
conv8 0.00380 0.00365 0.00652 0.01317
conv9 0.00521 0.00703 0.00933 0.01626
conv10 0.00503 0.00420 0.01133 0.01778
conv11 0.00462 0.00760 0.01981 0.01977
conv12 0.01844 0.08438 0.03176 0.03250
Mean 0.00820 0.01348 0.00828 0.01434

6. Similarity between filters in all layers
We calculated the cosine similarity in each layer to

measure the diversity of learned filters of pretrained mod-
els. FFHQ pretrained model exhibits lower diversity in
filters. The average similarity at the last layer of FFHQ
pretrained model is approximately four times higher than
Primitives-PS. The similar tendency is shown in the
first layer of each network – the consine similarity of
FFHQ pretrained model is about two times higher than
Primitives-PS.

Table 3. Membership inference performance on the source dataset
by attacking a transferred classifier as reported in [58].

Dataset AUC Accuracy Precision Recall
CIFAR100 0.522 0.502 0.478 0.523
Flowers102 0.528 0.496 0.432 0.505
PubFig83 0.495 0.481 0.396 0.524

7. Copyright issue and vulnerability of pre-
trained model

When we directly finetune a pretrained model for com-
mercial use, the trained weights of the model might be de-
fined as software and have the CC BY-ND (creative com-
mons license without modification) license. In this case,
we can not utilize the model with post-training or should
pay the license fee for the model as software. If we want to
use the images for non-commercial purposes, we should ac-
quire the credit of each image from the original author. For
ImageNet-1K having 1M images, the copyright issue might
not be feasible to handle. When targeting the commercial
use of a dataset, the developer should negotiate with the au-
thor of each sample. Since this process requires much time
and cost to complete, it is likely to be an obstacle to the
practical usage of the deep learning system.

Even if we solve the copyright issue via negotiation, the
leakage of the training data is another problem. Follow-
ing the recent work [58], the source dataset for pretrain-
ing a model can be exposed by the membership inference
attack even after the transfer learning. Table 3 shows the
empirical evidence. The target models are first pretrained
on Caltech101 and transferred to three datasets. The higher
AUC, the higher accuracy of the membership inference on
the source dataset. Although the accuracy is lower than
the attack on the target dataset, it warns us to consider the
membership inference attack towards the source dataset se-
riously.
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Figure 9. Examples of the leakage when using DiffAug. The gray
box in some images shows the leakage of cutout operation.

8. Experimental results on CIFAR
8.1. Data augmentation leakage

The previous work [22] reported the ill-behavior of the
data augmentation in GANs; augmentation leakage. When
the leakage incurs, the unwanted data transformation is re-
flected in the generated results. For example, the gener-
ated images contain cutout augmentation so that some of the
fakes have unwanted empty box. When we train BigGAN
on CIFAR with 10% of samples using DiffAug only, we
observe that augmentation leakage. Although the leakage is
found, the FID score decreases; FID scores can not reflect
the problem of leakage. To penalize this unwanted result,
we qualitatively exclude the model with leakage when we
find the best model. Figure 9 shows the generated images
by the model trained with DiffAug (FID: 22.54). Many of
the outputs have the unwanted gray box that is the result of
leakage of the cutout operation, and this is why we exclude
the corresponding FID score in Table 5 of the main text.

On the contrary, the model pretrained with
Primitives-PS does not suffer from the leakage
even if we use DiffAug (Figure 10). It shows that our
pretraining dataset is also effective to prevent augmentation
leakage and improves the final generation quality.

Figure 10. Outputs of the model transferred from our model on
CIFAR-10. The model does not suffer from augmentation leakage
although we use DiffAug.
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9. Pretraining results and details
In this section, we provide the outputs of the genera-

tor pretrained with Primitives-PS. For pretraining, we
train the model during 800K images with batch size = 16,
therefore, the total number of iterations is 50K. For finetu-
ing all the models, we train the model during 400K images.
The generated (fake) synthetic images are similar to the real
synthetic samples as shown in Figure 1 of the main text.

Figure 11. The outputs of the model pretrained with
Primitives-PS. The generated outputs are similar to the syn-
thetic samples.

10. Frequency domain analysis
We visualize the average magnitude spectrum of all

the samples in Bridge of sighs and compare with the
average magnitude spectrum of 1000 images gener-
ated by PinkNoise and 1000 images generated by
Primitives. The figure below demonstrates their mag-
nitude spectrum. We observe that Primitives produces
images that have a similar magnitude spectrum to those of
natural images.

(a) (b) (c)

Figure 12. The magnitude spectrum of (a) Bridge, (b)
PinkNoise, and (c) Primitives. We apply FFT on each
image and then visualize the average magnitude of the images.
When we visualize, we take a logarithmic transformation. Al-
though PinkNoise aims to mimic the magnitude spectrum of
natural images, that of Primitives approximates the bench-
mark dataset better than that of PinkNoise.
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Table 4. KMMD score for Table 3 in the main text (256).
Obama Cat Brid. Panda Temp. Wuzhen Fountain Build.

DfAug 0.23 0.15 0.23 0.28 0.18 0.39 0.21 0.21
TGAN 0.13 0.14 0.22 0.21 0.14 0.27 0.19 0.18
FrzD 0.12 0.14 0.22 0.18 0.13 0.25 0.21 0.16
Ours 0.17 0.15 0.17 0.26 0.14 0.25 0.17 0.18

11. Kernel Maximum Mean Discrepancy
(KMMD)

Quantitative evaluation with various metrics is helpful to
compare the models and understand the aspect. To this end,
we also provide KMMD as suggested by Reviewer 1 in the
rebuttal. We report FID only in the main text because of the
following reason. In Figure 4(a) of [34], KMMD considers
“scale&shift” as the best model although “Ours” provides
more plausible results; “scale&shift” even failed to produce
eye, nose, and mouth. Contrarily, FID ranked “Ours” as
the best, correctly reflecting the perceptual fidelity. Table 4
shows the KMMD score of each model. Although the rank-
ings with KMMD are slightly different from those with FID,
our method similarly performs or outperforms the baselines.
Overall, we conclude that Primitives-PS is still effec-
tive for pretraining GANs.

Table 5. FID score of ImageNet pretrained model and Primitives-PS
pretrained model on 512×512.

Obama Cat Brid. Panda Temp. Wuzhen Fountain Build.
DfAug 59.6 28.0 147.8 14.4 45.0 150.9 214.2 99.2
TGAN 37.5 35.2 52.0 11.8 42.5 84.1 284.3 65.5
FrzD 39.1 28.8 48.6 11.2 38.9 69.5 34.3 60.2
Ours 50.8 27.7 51.6 14.9 41.9 81.6 42.9 80.9

12. Scale-up to higher resolution and compari-
son with ImageNet

To check the effectiveness of Primitives-PS in
the higher resolution, we pretrain StyleGAN2 with
Primitives-PS on 512×512, and then transfer to the
low-shot datasets. Moreover, we use the ImageNet pre-
trained model for all competitors to investigate the effect
of a diverse and large-scale training dataset. The pretrained
file is from the link. We note that this model is pretrained
on the 512×512 ImageNet until 1.3M steps. Since the Im-
ageNet dataset can be considered as a super-set of eight
test categories, the best performance using the ImageNet
pretrained model is often better than Primitives-PS
pretrained model. However, when the category of test set
no longer overlaps with the ImageNet, we argue that only
Primitives-PS can provide consistent and meaningful
performances, e.g., medical images for diagnoses, micro-
scopic images for gene analysis or space imaging for nav-
igation. Besides, the pretrained model with the 1M Ima-
geNet dataset is vulnerable to the private and copyright is-
sue. A number of images contain a person and the copy-
right of each image might not be free to all the users.
For these practical issues related to legality, the proposed
Primitives-PS provides huge benefits for pretraining
of GANs.
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