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Abstract

Arbitrary style transfer (AST) and domain generaliza-
tion (DG) are important yet challenging visual learning
tasks, which can be cast as a feature distribution match-
ing problem. With the assumption of Gaussian feature dis-
tribution, conventional feature distribution matching meth-
ods usually match the mean and standard deviation of fea-
tures. However, the feature distributions of real-world data
are usually much more complicated than Gaussian, which
cannot be accurately matched by using only the first-order
and second-order statistics, while it is computationally pro-
hibitive to use high-order statistics for distribution match-
ing. In this work, we, for the first time to our best knowl-
edge, propose to perform Exact Feature Distribution Match-
ing (EFDM) by exactly matching the empirical Cumulative
Distribution Functions (eCDFs) of image features, which
could be implemented by applying the Exact Histogram
Matching (EHM) in the image feature space. Particularly,
a fast EHM algorithm, named Sort-Matching, is employed
to perform EFDM in a plug-and-play manner with mini-
mal cost. The effectiveness of our proposed EFDM method
is verified on a variety of AST and DG tasks, demonstrat-
ing new state-of-the-art results. Codes are available at
https://github.com/YBZh/EFDM .

1. Introduction
Distribution matching is a long-standing statistical learn-

ing problem [39]. With the popularity of deep models
[20, 27], matching the distribution of deep features has at-
tracted growing interest for its effectiveness in solving com-
plex vision tasks. For instance, in arbitrary style transfer
(AST) [12, 21], image styles can be interpreted as feature
distributions and style transfer can be achieved by cross-
distribution feature matching [25, 34]. Furthermore, by us-
ing style transfer techniques to augment training data, one
can address the domain generalization (DG) tasks [13, 72],
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which target at generalizing the models learned in some
source domains to other unseen domains. The most popular
method of feature distribution matching is to match feature
mean and standard deviation by assuming that features fol-
low Gaussian distribution [21,32,37,41,72]. Unfortunately,
the feature distributions of real-world data are usually too
complicated to be modeled by Gaussian, as illustrated in
Fig. 1. Therefore, feature distribution matching by using
only mean and standard deviation is less accurate. It is de-
sired to find more effective methods for more accurate and
even Exact Feature Distribution Matching (EFDM).

Intuitively, EFDM can be done by matching the high-
order statistics of features. Actually, high-order central mo-
ments have been explicitly introduced in [25, 63] to match
distributions more precisely. However, considering high-
order statistics in this way would introduce intensive com-
putational overhead. Furthermore, the EFDM could only
be theoretically achieved by matching central moments of
infinite order [63], which is prohibitive in practice. Moti-
vated by the Glivenko–Cantelli theorem [54], which states
that the empirical Cumulative Distribution Function (eCDF)
asymptotically converges to the Cumulative Distribution
Function when the number of samples approaches infinity,
Risser et al. [46] introduce the classical Histogram Match-
ing (HM) [16, 58] method as an auxiliary measurement
to minimize the feature distribution divergence. Unfortu-
nately, HM can only approximately match eCDFs when
there are equivalent feature values in inputs, since HM
merges equivalent values as a single point and applies a
point-wise transformation. (A toy example is illustrated in
Fig. 2). This commonly happens for digital images with dis-
crete integer values (e.g., 8-bits digital images). For features
generated by deep models, equivalent feature values are also
ineluctable due to their dependency on discrete image pix-
els and the use of activation functions, e.g., ReLU [42] and
ReLU6 [26] (please refer to Fig. 3 for more details). All
these facts impede the effectiveness of EFDM via HM.

To solve the above mentioned problem, we, for the first
time to our best knowledge, propose to perform EFDM by
exactly matching the eCDFs of image features, resulting
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(d) Sketch

Figure 1. Histograms of feature values in a randomly selected channel, where features are computed from the first residual block of a
ResNet-18 [20] trained on the dataset of four domains [28]. We first normalize the mean and standard deviation of each channel to be 0
and 1, respectively, and then collect feature values among all test samples in each domain for visualization. One can clearly see that the
feature distributions of real-world data are usually too complicated to be modeled by Gaussian.

in exactly matched feature distributions (when the number
of samples approaches infinity) and consequently exactly
matched mean, standard deviation, and high-order statis-
tics (see the toy example in Fig. 2). The exact matching
of eCDFs can be implemented by applying the Exact His-
togram Matching (EHM) algorithm [7, 18] in the feature
space. Specifically, by distinguishing the equivalent fea-
ture values and applying an element-wise transformation,
EHM conducts more fine-grained and more accurate match-
ing of eCDFs than HM. In this paper, a fast EHM algorithm,
named Sort-Matching [47], is adopted to perform EFDM in
a plug-and-play manner with minimal cost.

With EFDM, we conduct cross-distribution feature
matching in one shot (cf. Eq. (6)) and propose a new style
loss (cf. Eq. (9)) to more accurately measure distribution
divergence, producing more stable style-transfer images in
AST. Following [72], we extend EFDM to generate feature
augmentations with mixed styles, leading to the Exact Fea-
ture Distribution Mixing (EFDMix) (cf. Eq. (10)), which
can provide more diverse feature augmentations for DG ap-
plications. Our method achieves new state-of-the-arts on a
variety of AST and DG tasks with high efficiency.

2. Related Work

Arbitrary style transfer (AST) has been investigated in
two conceptual directions: iterative optimization-based
methods and feed-forward methods. The former [12,25,46]
optimize image pixels in an iterative manner, whereas the
latter [21,32,33,37,41] generate style-transferred output in
one shot. Our method belongs to the latter one, which is
generally faster and suitable for real-time applications. In
both directions, transferring styles can be interpreted as a
problem of feature distribution matching by assuming the
image styles can be represented by feature distributions.
Specifically, the seminal work in [12] adopts the second-
order moments captured by the Gram matrix as the style
representation. The loss introduced in [12] is rewritten as
a Maximum Mean Discrepancy between image features in
[34], bridging style transfer and feature distribution match-

ing. Actually, many AST methods can be interpreted from
the perspective of feature distribution matching. Based on
the Gaussian prior assumption, feature distribution match-
ing is conducted by matching mean and standard deviation
in AdaIN [21]. Compared to AdaIN, WCT [33] additionally
considers the covariance of feature channels via a pair of
feature transforms, whitening and coloring. By additionally
taking the content loss in [12] into the framework of WCT, a
closed-form solution is presented in [32,37,41]. Besides the
widely used first and second order feature statistics, high-
order central moments and HM are introduced in [25] and
[46] respectively for more exact distribution matching by
relaxing the assumption of Gaussian feature distributions.
However, computing high-order statistics explicitly intro-
duces intensive computational overhead and the EFDM via
HM is impeded by equivalent feature values. To this end,
we, for the first time to our best knowledge, propose an ac-
curate and efficient way for EFDM by exactly matching the
eCDFs of image features, leading to more faithful AST re-
sults (please refer to Fig. 5 for visual examples).
Domain generalization (DG) aims to develop models that
can generalize to unseen distributions. Typical DG methods
include learning domain-invariant feature representations
[5, 15, 31, 40, 65–67], meta-learning-based learning strate-
gies [4, 9, 29], data augmentation [13, 43, 56, 61, 71, 72] and
so on [57, 69]. Among all above methods, the recent state-
of-the-art [72] augments cross-distribution features based
on the feature distribution matching technique [21], which
is introduced in the above AST part. By utilizing high-
order statistics implicitly via the proposed EFDM method,
more diverse feature augmentations can be achieved and
significant performance improvements have been observed
(please refer to Tabs. 1 and 2 for details).
Exact histogram matching (EHM) was proposed to match
histograms of image pixels exactly. Compared to classical
HM, EHM algorithms distinguish equivalent pixel values
either randomly [47, 48] or according to their local mean
[7, 18], leading to more accurate matching of histograms.
The difference between outputs of EHM and HM in im-
age pixel space is typically small, which is hardly percep-
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Figure 2. A comparison between AdaIN, HM and EHM via Sort-Matching using a toy example, where value precision is rounded to the
level of 0.01. AdaIN only matches the mean and standard deviation between output vector o and target vector y. Although the eCDF
of o is approximated to that of y by HM, they are not exactly matched, leading to the mismatched distributions and, consequently, the
mismatched statistics. The EHM via Sort-Matching exactly matches the eCDFs of o and y, resulting in exactly matched distributions and,
consequently, exactly matched statistics. Notations of µ, σ, µ̃3, Kurt and ℓ∞ indicate the mean, standard deviation, third standardized
moment-skewness [24, 60], fourth standardized moment-kurtosis [24, 59], and infinite norm, respectively.

tible to human eyes. However, this small difference can be
amplified in the feature space of deep models, leading to
clear divergence in feature distribution matching. We hence
propose to perform EFDM by exactly matching the eCDFs
of image features via EHM. While EHM can be conducted
with different strategies, we empirically find that they yield
similar results in our applications, and thus we promote the
fast Sort-Matching [47] algorithm for EHM.

3. Methodology
3.1. AdaIN, HM and EHM
Adaptive instance normalization (AdaIN) [21] transforms
an input vector x ∈ Rn, which is sampled from a random
variable X , into an output vector o ∈ Rn, whose mean and
standard deviation match those of a target vector y ∈ Rm

sampled from a random variable Y :

o =
x− µ(x)

σ(x)
σ(y) + µ(y), (1)

where µ(·) and σ(·) indicate the mean and standard devia-
tion of referred data, respectively. By assuming that X and
Y follow Gaussian distributions and n and m approach in-
finity, AdaIN can achieve EFDM by matching feature mean

and standard deviation [32,37,41]. However, feature distri-
butions of real-world data usually deviate much from Gaus-
sian, as can be seen from Fig. 1. Therefore, matching fea-
ture distributions by AdaIN is less accurate.
Histogram matching (HM) [16, 58] aims to transform an
input vector x into an output vector o, whose eCDF matches
the target eCDF of a target vector y. The eCDFs of x and
y are defined as:

F̂X(x) =
1

n

∑n

i=1
1xi≤x, F̂Y (y) =

1

m

∑m

i=1
1yi≤y,

(2)
where 1A is the indicator of event A and xi (or yi) is the
i-th element of x (or y). For each element xi of the input
vector x, we find the yj that satisfies F̂X(xi) = F̂Y (yj),
resulting in the transformation function: H(xi) = yj . One
may opt to match the explicit histograms as in discrete im-
age space [16]. It is worth mentioning that matching eCDFs
is equivalent to matching histograms with bins of infinites-
imal width, which is however hard to achieve due to the
finite number of bits to represent features.

Ideally, HM could exactly match eCDFs of image fea-
tures in the continuous case. Unfortunately, HM can only
approximately match eCDFs when there exist equivalent
feature values in inputs, since HM merges equivalent val-
ues as a single point and applies a point-wise transforma-
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tion (please refer to the toy example in Fig. 2). For fea-
tures generated by deep models, equivalent feature values
are common due to their dependency on discrete image pix-
els and the use of activation functions, e.g., ReLU [42] and
ReLU6 [26] (please refer to Fig. 3 for more details). All
these facts impede the effectiveness of EFDM via HM.
Exact Histogram Matching (EHM) [7, 18] was proposed
to match histograms of image pixels exactly. Different
from HM, EHM algorithms distinguish equivalent pixel val-
ues and apply an element-wise transformation so that a
more accurate histogram matching can be achieved. While
EHM can be conducted with different strategies, we adopt
the Sort-Matching algorithm [47] for its fast speed. Sort-
Matching is based on the quicksort strategy [49], which is
generally accepted as the fastest sort algorithm with com-
plexity of O(n log n). As stated by its name, Sort-Matching
is implemented by matching two sorted vectors, whose in-
dexes are illustrated in a one-line notation [2] as:

x : τ =
(
τ1 τ2 τ3 · · · τn

)
,

y : κ =
(
κ1 κ2 κ3 · · · κn

)
,

(3)

where {xτi}ni=1 and {yκi
}ni=1 are sorted values of x and y

in ascending order. In other words, xτ1 = min(x), xτn =
max(x), and xτi ≤ xτj if i < j. yκi is similarly defined.
Based on the definition in Eq. (3), Sort-Matching outputs o
with its τi-th element oτi as:

oτi = yκi
. (4)

Compared to AdaIN, HM and other EHM algorithms [7,
18], Sort-Matching additionally assumes that the two vec-
tors to be matched are of the same size, i.e. m = n, which
is satisfied in our focused applications of AST and DG. In
other applications where the two vectors are of different
sizes, interpolation or dropping elements can be conducted
to make y and x the same size.

3.2. EFDM for AST and DG

In this section, we apply EFDM to tasks of AST and
DG. We conduct the exact eCDFs matching by applying
the EHM algorithm via Sort-Matching in the image fea-
ture space. To enable the gradient back-propagation in
deep models, we practically perform EFDM by modifying
Eq. (4) as:

EFDM(x,y) : oτi = xτi + yκi
− ⟨xτi⟩, (5)

where ⟨·⟩ represents the stop-gradient operation [6]. We
stop the gradients to the style feature yκi

following [21,72].
Given the input data X ∈ RB×C×HW and the style data
Y ∈ RB×C×HW , we apply EFDM in a channel-wise man-
ner following [21, 72], where B,C,H,W indicate batch
size, channel dimension, height, and width, respectively.

The proposed EFDM does not introduce any parameters and
can be used in a plug-and-play manner with few lines of
codes and minimal cost, as summarized in Algorithm 1.

Algorithm 1 PyTroch-like pseudo-code for EFDM.
# x, y: input and target vectors of the same shape (n)
, IndexX = torch.sort(x) # Sort x values

SortedY, = torch.sort(y) # Sort y values
InverseIndex = IndexX.argsort(-1)
return x + SortedY.gather(-1, InverseIndex) - x.detach()
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Figure 3. An illustration of the percent of equivalent feature values
(i.e., number of equivalent values

number of all values ∗ 100) in ResNet18 feature maps with an
input image of resolution 224 × 224 . ‘1st conv’ represents the
output of the first convolution layer. ‘1st block’, ‘2nd block’, ‘3rd
block’, and ‘4th block’ indicate the outputs of the 1st, 2nd, 3rd, and
4th residual blocks, respectively. ‘ReLU’ and ‘PReLU’ indicate
the vanilla ResNet18 with ReLU [42] and PReLU [19] activation
functions, respectively. The percentage depends on the number of
bits to represent the feature values and the size of feature maps.
In the original image pixel space, the percentage is close to 100
percent since the pixels are quantized into 8-bits. The percentage
decreases in the floating number (32-bits) feature space, as well
as the depth of blocks since deeper blocks have smaller feature
maps. In addition, compared to PReLU, there are generally more
equivalent feature values for models with ReLU, since the ReLU
function sets all negative values to zero.

EFDM for AST. A simple encoder-decoder architecture is
adopted, where we fix the encoder f as the first few lay-
ers (up to relu4 1) of a pre-trained VGG-19 [51]. Given
the content images X and style images Y , we first encode
them to the feature space and apply EFDM to get the style-
transferred features as:

S = EFDM(f(X), f(Y )). (6)

Then, we train a randomly initialized decoder g to map S
to the image space, resulting in the stylized images g(S).
Following [10, 21], we train the decoder with the weighted
combination of a content loss Lc and a style loss Ls, leading
to the following objective:

L = Lc + ωLs, (7)

where ω is a hyper-parameter balancing the two loss terms.
Specifically, the content loss Lc is the Euclidean distance
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Visualization of high-order style statistics

Figure 4. t-SNE [53] visualization of the third standardized
moment-skewness [24, 60], which clearly shows that the style
information can be represented by high-order statistics beyond
mean and standard deviation. Besides skewness, style informa-
tion can also be observed in the fourth standardized moment-
kurtosis [24,59] and infinite norm (please refer to the supplemen-
tary file for details). The visualized features are extracted from
the 1st residual block of ResNet-18 [20] trained on the dataset of
four domains [28].

between features of stylized images f(g(S)) and the style-
transferred features S:

Lc = ∥f(g(S))− S∥2. (8)

The style loss measures the distribution divergence be-
tween features of the stylized images g(S) and style im-
ages Y , which is instantiated as their divergence on mean
and standard deviation in [21] based on the Gaussian prior.
To measure the distribution divergence more exactly, we in-
troduce the style loss as the sum of Euclidean distance be-
tween features of the stylized images ϕi(g(S)) and its style-
transferred target EFDM(ϕi(g(S)), ϕi(Y )):

Ls =
∑L

i=1
∥ϕi(g(S))− EFDM(ϕi(g(S)), ϕi(Y ))∥2.

(9)
Following [21], we instantiate {ϕi}Li=1 as relu1 1, relu2 1,
relu3 1, and relu4 1 layers in VGG-19.
EFDM for DG. Inspired by the studies that style informa-
tion can be represented by the mean and standard deviation
of image features [21, 33, 37], Zhou et al. [72] proposed
to generate style-transferred and content-preserved feature
augmentations for DG problems. As we discussed be-
fore, distributions beyond Gaussian have high-order statis-
tics other than mean and standard deviation, and hence the
style information can be more accurately represented by us-
ing high-order feature statistics. The visualization in Fig. 4
demonstrates that the third standardized moment-skewness
[24,60] can well represent the four different domains of the
same object. This motivates us to utilize high-order statis-
tics for feature augmentations in DG.

Since high-order feature statistics can be efficiently and
implicitly matched via our proposed EFDM method, it is
a natural idea to replace AdaIN with EFDM for cross-
distribution feature augmentation in DG. To generate more

diverse feature augmentations with mixed styles, follow-
ing [72] we extend the EFDM in Eq. (5) by interpolating
sorted vectors, resulting in the Exact Feature Distribution
Mixing (EFDMix) as:

EFDMix(x,y) : oτi = xτi + (1− λ)yκi
− (1− λ)⟨xτi⟩.

(10)
The instance-wise mixing weight λ is adopted and we sam-
ple λ from the Beta-distribution: λ ∼ Beta(α, α), where
α ∈ (0,∞) is a hyper-parameter. We set α = 0.1 un-
less otherwise specified. Obviously, EFDMix degenerates
to EFDM when λ = 0.

Given the input feature X , following [72] we adopt two
strategies to mix with the style feature Y . When domain la-
bels are given, we sample Y from a domain different from
that of X , leading to EFDMix w/ domain label. Otherwise,
Y is obtained by shuffling X along the batch dimension, re-
sulting in EFDMix w/ random shuffle. We train the model
solely with the cross-entropy loss. Following [72], we insert
the EFDMix module to multiple lower-level layers, adopt a
probability of 0.5 to decide whether the EFDMix is acti-
vated in the forward pass of training stage, and deactivate it
in the testing stage.

The advantage of utilizing high-order feature statistics
could be intuitively clarified by the augmentation diversity.
For example, given two different style features ŷ and ỹ with
the same mean and standard deviation and a specific mix-
ing weight λ, the same augmented feature will be obtained
by only utilizing the mean and standard deviation [72]. On
the contrary, our EFDMix could generate two different aug-
mentations by implicitly utilizing high-order statistics, re-
sulting in more diverse feature augmentations.

4. Experiments
We perform experiments on AST and DG tasks to vali-

date the effectiveness of EFDM.

4.1. Experiments on AST

We closely follow [21] to conduct the experiments1 on
AST. Specifically, we adopt the adam optimizer, set the
batch size as 8 content-style image pairs, and set the hyper-
parameter ω = 10. In training, the MS-COCO [35] and
WikiArt [44] are adopted as the content and style images,
respectively. We compare EFDM with state-of-the-arts in
Fig. 5. One can see that our EFDM works stably across
the style transfer (top two rows) and the more challeng-
ing photo-realistic style transfer (bottom two rows) tasks.
By conducting feature distribution matching more exactly,
it preserves more faithfully the image structures and de-
tails while transferring the style, and produces more photo-
realistic results. In contrary, the competing methods may
introduce many visual artifacts and image distortions. More
visual results can be found in the supplementary file.

1https://github.com/naoto0804/pytorch-AdaIN
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Content images Style images AdaIN EFDM (ours)HM Gatys  CMD

(a)

(b)

Figure 5. Illustration of results on (a) style transfer [21] (top two rows) and (b) the more challenging photo-realistic style transfer [38]
(bottom two rows) tasks. Results of ‘Gatys’ [12] and ‘CMD’ [25] are obtained with official codes. For HM, we use HM, instead of EHM,
to approximately match eCDFs. More visualizations are provided in the supplementary file.

𝜆=1 𝜆=0.75 𝜆=0.5 𝜆=0.25 𝜆=0 Style image

Figure 6. Visualization of content-style trade-off with various λ in Eq. (10).

Figure 7. Visualization of style interpolation.

Content-style trade-off in the test stage. The trade-off be-
tween content and style could be achieved by adjusting the

hyper-parameter ω in Eq. (7). Additionally, we could ma-
nipulate the content-style trade-off by interpolating between
the content feature and style feature, which can be achieved
with the EFDMix in Eq. (10). The vanilla content image is
expected when λ = 1 and the model would output the most
stylized image when λ = 0. We illustrate an example in
Fig. 6. We see that the images transition smoothly from the
content style to target style by varying λ from 1 to 0.
Style interpolation. Following [21], we interpolate feature
maps to interpolate the K style images Y1, Y2, · · · , YK

with corresponding weights w1, w2, · · · , wK as follows:

g

(∑K

k=1
wkEFDM(X,Yk)

)
, (11)

where
∑K

k=1 wk = 1. As illustrated in Fig. 7, new styles
can be obtained by such style interpolation.
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Method Art Cartoon Photo Sketch Avg
Leave-one-domain-out generalization results

JiGen [3] 79.4 75.3 96.0 71.6 80.5
L2A-OT [71] 83.3 78.2 96.2 73.6 82.8
ResNet-18 [20] 77.0±0.6 75.9±0.6 96.0±0.1 69.2±0.6 79.5
+ Mixup [64] 76.8±0.7 74.9±0.7 95.8±0.3 66.6±0.7 78.5
+ MixStyle w/ domain label [72] 83.1±0.8 78.6±0.9 95.9±0.4 74.2±2.7 82.9
+ EFDMix w/ domain label (ours) 83.9±0.4 79.4±0.7 96.8±0.4 75.0±0.7 83.9
ResNet-50 [20] 84.4±0.9 77.1±1.4 97.6±0.2 70.8±0.7 82.5
+ MixStyle w/ domain label [72] 90.3±0.3 82.3±0.7 97.7±0.4 74.7±0.7 86.2
+ EFDMix w/ domain label (ours) 90.6±0.3 82.5±0.7 98.1±0.2 76.4±1.2 86.9

Single source generalization results
ResNet-18 [20] 58.6±2.4 66.4±0.7 34.0±1.8 27.5±4.3 46.6
+ MixStyle w/ random shuffle [72] 61.9±2.2 71.5±0.8 41.2±1.8 32.2±4.1 51.7
+ EFDMix w/ random shuffle (ours) 63.2±2.3 73.9±0.7 42.5±1.8 38.1±3.7 54.4
ResNet-50 [20] 63.5±1.3 69.2±1.6 38.0±0.9 31.4±1.5 50.5
+ MixStyle w/ random shuffle [72] 73.2±1.1 74.8±1.1 46.0±2.0 40.6±2.0 58.6
+ EFDMix w/ random shuffle (ours) 75.3±0.9 77.4±0.8 48.0±0.9 44.2±2.4 61.2

Table 1. Domain generalization results of category classification on PACS. Results of MixStyle are obtained with official codes. The listed
domain is the test domain in the leave-one-domain-out setting, while it is the training one in the single source generalization setting.

Methods
MarKet1501→GRID GRID→MarKet1501

mAP R1 R5 R10 mAP R1 R5 R10
OSNet [70] 33.3±0.4 24.5±0.4 42.1±1.0 48.8±0.7 3.9±0.4 13.1±1.0 25.3±2.2 31.7±2.0
+ MixStyle w/ random shuffle [72] 33.8±0.9 24.8±1.6 43.7±2.0 53.1±1.6 4.9±0.2 15.4±1.2 28.4±1.3 35.7±0.9
+ EFDMix w/ random shuffle (ours) 35.5±1.8 26.7±3.3 44.4±0.8 53.6±2.0 6.4±0.2 19.9±0.6 34.4±1.0 42.2±0.8

Table 2. Domain generalization results on the cross-domain person re-ID task. Results of MixStyle are obtained with official codes.

4.2. Experiments on DG

We closely follow MixStyle [72] to conduct experiments
on DG2, including data preparing, model training and selec-
tion. In other words, we only replace the MixStyle module
with EFDMix, which is detailed as follows.
Generalization on category classification. We adopt the
popular DG benchmark dataset of PACS [28], which in-
cludes 9, 991 images shared by 7 classes and 4 domains,
i.e., Art, Cartoon, Photo, and Sketch. Two task settings
are adopted. In the leave-one-domain-out setting [28], we
train the model on three domains and test on the remaining
one. In the single source DG [45, 56], models are trained
on one domain and tested on the remaining three. We adopt
ResNet-18 and ResNet-50, which are pre-trained on the Im-
ageNet dataset, as the backbones.

We compare our method with the latest state-of-the-art
MixStyle [72], the regularization based methods [8, 14, 55,
62, 64] and the representative DG methods [1, 3, 30, 31, 40,
50,71]. Due to the limit of space, only partial results are re-
ported in Tab. 1 and more comprehensive results are given
in the supplementary file. One can see that our EFDMix
consistently outperforms MixStyle, as well as other com-
peting methods, on both settings. More advantages over the
competing methods can be observed on the single source

2https://github.com/KaiyangZhou/mixstyle-release

generalization setting, where the training data have less di-
versity. This can be explained by the more diverse feature
augmentations via EFDMix, as clarified in Sec. 3.2.

We note there are different experimental strategies in the
DG community. Following the recent DomainBed [17], our
EFDMix achieves 87.9% accuracy on the PACS dataset,
outperforming the strong ERM benchmark [17] by 1.2%.
Please refer to the supplementary file for details.
Generalization on instance retrieval. We adopt the person
re-identification (re-ID) datasets of Markert1501 [68] and
GRID [36] to conduct cross-domain instance retrieval. We
follow [72] to conduct experiments with the OSNet [70].
Similar to the findings in classification, EFDMix outper-
forms MixStyle and other competitors, as shown in Tab. 2.
This once again validates the effectiveness of utilizing high-
order statistics for feature augmentations in DG.

4.3. Discussions
The role of different orders of feature statistics. To make
further investigation on the role of different orders of fea-
ture statistics, we implement AdaIN by matching only fea-
ture mean and standard deviation, resulting in the AdaMean
and AdaStd variants of it. (Please refer to the supplemen-
tary file for details.) The qualitative results on AST and
the quantitative results on DG are illustrated in Fig. 8 and
Fig. 9, respectively. From Fig. 8, we can see that AdaMean
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Content image Style image HMAdaMean AdaStd EFDM (ours)AdaIN
Figure 8. Qualitative analyses on the role of different orders of feature statistics on AST.
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Figure 9. Quantitative analyses on the role of different orders of
feature statistics on PACS dataset.

Methods Gatys [12] CMD [25] HM EFDM AdaIN
Time (s) 25.61 19.84 0.33 0.0039 0.0038

Percent (%) 19.9 12.2 17.1 29.8 21.0

Table 3. Average running time and user preference across com-
peting AST methods. The running time is averaged on 512×512
images with a Tesla V100 GPU.

roughly matches the basic color tone. AdaStd preserves the
structure of the content image but with wrong color tone.
By matching both mean and standard deviation, AdaIN pre-
serves more details and correct tone. With the implicitly
matched high-order feature statistics, EFDM preserves the
most content details. From Fig. 9, we see that performing
feature augmentation with either AdaMean or AdaStd could
improve over the ResNet-50 baseline, while AdaMean per-
forms slightly better. AdaIN outperforms AdaMean and
AdaStd by more than 1%, justifying the effectiveness of
utilizing more feature statistics. By matching high-order
feature statistics implicitly, EFDM achieves the best result.
Though HM approximately matches eCDFs, it cannot even
ensure the exact matching of mean and standard deviation,
leading to degenerated performance.
User study on style transfer. As shown in Tab. 3, our
method receives the most votes for its better stylized per-
formance across competing AST methods. Please refer to
the supplementary file for more details.
EFDM with different EHM algorithms. Different EHM
algorithms are distinguished by their sort strategies of
equivalent values. In Fig. 10, we implement EFDM with
different EHM algorithms on the task of DG. One can see
that they yield similar accuracies on the PACS dataset. Con-
sidering that the quicksort-empowered Sort-Matching has
the fastest speed, we adopt it for EFDM in our work.
Running time. We evaluate the speed of our EFDM method
on the AST task. The average running time of different al-
gorithms to process a 512×512 image is listed in Tab. 3.
EFDM is significantly faster than methods in [12, 25] and
the HM based algorithm, which is implemented with the

ResNet18 ResNet50
82

84

86

Ac
c.

(%
)

Quicksort
Preserving
Random
Neighbor

Figure 10. Results on PACS dataset with different implementa-
tions of EFDM. Besides Sort-Matching with Quicksort [49], we
preserve the order of equivalent values in x (Preserving), ran-
domly sort equivalent values [48] (Random), and sort equivalent
values according to their local mean [18] (Neighbor) to implement
EFDM, respectively. We see that the different implementations
lead to similar results.

skimage library3. It has nearly the same speed as the semi-
nal AdaIN [21] and runs at 256 FPS for images of size 512
× 512, making it applicable for real-time applications.
Limitations. Compared to AdaIN [21] with linear com-
plexity, EFDM has a higher complexity of n log(n). For-
tunately, due to the finite feature size, its running time is
comparable to AdaIN on the AST and DG tasks. In addi-
tion, following [21,25,72], we assume that different feature
channels are independent, which is not exactly true and is
challenged by [33, 37].
More discussions on EFDMix, EFDM vs. EFDMix, the
selection of α in Eq. (10), loss curves, the influence of
ReLU functions, the comparison to related methods on DG
[11, 23, 52, 72], and the detailed analysis on computation
time can be found in the supplementary file.

5. Conclusion
We made the first attempt, to our best knowledge, to per-

form exact matching of feature distributions, and applied
the so-called exact feature distribution matching (EFDM)
method to applications of AST and DG. We employed a fast
EHM algorithm, i.e., Sort-Matching, to implement EFDM
in the deep feature space. The proposed EFDM method
demonstrated superior performance to existing state-of-the-
arts of AST and DG in terms of visual quality and quantita-
tive measures. Our work opened a door to perform EFDM
for visual learning tasks efficiently. Extensive investigations
could be followed up, e.g., empowering classical normaliza-
tion [22] beyond statistics of mean and standard deviation.

3https://github.com/scikit-image/scikit-image
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