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Abstract

Recently, zero-shot and few-shot learning via Con-
trastive Vision-Language Pre-training (CLIP) have shown
inspirational performance on 2D visual recognition, which
learns to match images with their corresponding texts in
open-vocabulary settings. However, it remains under ex-
plored that whether CLIP, pre-trained by large-scale image-
text pairs in 2D, can be generalized to 3D recognition. In
this paper, we identify such a setting is feasible by propos-
ing PointCLIP, which conducts alignment between CLIP-
encoded point cloud and 3D category texts. Specifically, we
encode a point cloud by projecting it into multi-view depth
maps without rendering, and aggregate the view-wise zero-
shot prediction to achieve knowledge transfer from 2D to
3D. On top of that, we design an inter-view adapter to better
extract the global feature and adaptively fuse the few-shot
knowledge learned from 3D into CLIP pre-trained in 2D. By
just fine-tuning the lightweight adapter in the few-shot set-
tings, the performance of PointCLIP could be largely im-
proved. In addition, we observe the complementary prop-
erty between PointCLIP and classical 3D-supervised net-
works. By simple ensembling, PointCLIP boosts baseline’s
performance and even surpasses state-of-the-art models.
Therefore, PointCLIP is a promising alternative for effec-
tive 3D point cloud understanding via CLIP under low re-
source cost and data regime. We conduct thorough exper-
iments on widely-adopted ModelNetl10, ModelNet40 and
the challenging ScanObjectNN to demonstrate the effec-
tiveness of PointCLIP. The code is released at https :
//github.com/ZrrSkywalker/PointCLIP.

1. Introduction

Deep learning has dominated computer vision tasks of
both 2D and 3D domains in recent years, such as image
classification [12, 17,21,28,36,41], object detection [1, 4,
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Figure 1. A Comparison of Training-testing schemes between
PointCLIP and PointNet++. Different from classical 3D net-
works, our proposed PointCLIP is pre-trained by 2D image-text
pairs, but conducts zero-shot classification on 3D datasets, which
achieves cross-modality knowledge transfer.
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,29,46,64], semantic segmentation [3,24,35,61,65], point
cloud recognition and part segmentation [19, 43, 44, 55].
With 3D sensing technology developing rapidly, the grow-
ing demand for processing 3D point cloud data has boosted
many advanced deep models with better local feature ag-
gregator [30, 32, 49], geometry modeling [20, 39, 40] and
projection-based processing [20, 34, 48]. Different from
grid-based 2D image data, 3D point clouds suffer from
space sparsity and irregular distribution, which hinder direct
methods transfer from 2D domain. Additionally, large-scale
newly captured point cloud data contain a large number of
objects of “unseen” categories to the trained classifier. In
this scenario, even the best-performing models might fail to
recognize them and it is unaffordable to re-train every time
when “unseen” objects arise.

Similar issues have been dramatically mitigated in
2D vision by Contrastive Vision-Language Pre-training
(CLIP) [45], which proposed to learn transferable visual
features with natural language supervisions. For zero-shot
classification of “unseen” categories, CLIP utilizes the pre-
trained correlation between vision and language to conduct
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open-vocabulary recognition and achieves promising per-
formance. To further enhance the accuracy in few-shot set-
tings, CoOp [066] adopted learnable tokens to encode the
text prompts, so that the classifier weights can be adaptively
formed. From another perspective, CLIP-Adapter [16] ap-
pends a lightweight residual-style adapter with two linear
layers for better adapting image features. Tip-Adapter [63]
further boosts its performance while greatly reduces the
training time. Both methods achieve significant improve-
ments over zero-shot CLIP. Consequently, the problem of
recognizing new unlabeled objects has been explored by
CLIP in 2D. However, a question is naturally arised: Could
such CLIP-based models be transferred to 3D domain and
realize zero-shot classification for “unseen” 3D objects?

To address this issue, we propose PointCLIP, which
transfers CLIP’s 2D pre-trained knowledge to 3D point
cloud understanding. The first concern is to bridge the
modal gap between unordered point clouds and the grid-
based images that CLIP could process. Considering the
need for real-time prediction in various scenarios, such
as autonomous driving [4, 13,29, 42] and indoor naviga-
tion [67], we propose to adopt online perspective projec-
tion [19] without any post rendering [48], i.e., simply pro-
jecting each point onto a series of pre-defined image planes
to generate scatter depth maps. The cost of this projection
process is marginal in both time and computation, but re-
serves the original property of the point cloud from multi-
ple views. On top of that, we apply CLIP to encode multi-
view features of point cloud by the CLIP pre-trained visual
encoder and obtain each view’s text-matched prediction in-
dependently via zero-shot classifier. Following CLIP, we
place 3D category names into a hand-crafted template as
prompts and generate the zero-shot classifier by CLIP’s tex-
tual encoder. As different views contribute differently to the
recognition of entire scene, we obtain the final prediction
for point cloud by weighted aggregation between views.

Although PointCLIP achieves cross-modality zero-shot
classification without any 3D training, its performance still
falls behind classical point cloud networks well-trained on
full datasets. To eliminate this gap, we introduce a learn-
able inter-view adapter with bottleneck linear layers to bet-
ter extract features from multiple views in few-shot settings.
Specifically, we concatenate all views’ features and extract
the compact global feature of the point cloud via interact-
ing and summarizing cross-view information. Based on the
global representation, adapted feature of each view is gener-
ated and added to their original CLIP-encoded feature via a
residual connection. In this way, each view is equipped with
the fused global feature and also combines newly adapted
feature from the 3D few-shot dataset with 2D pre-trained
CLIP’s encoding. During training, we only fine-tune this
lightweight adapter and freeze CLIP’s both visual and tex-
tual encoders to avoid over-fitting, since only a few samples

per class are given. Surprisingly, PointCLIP with an inter-
view adapter with few-shot fine-tuning achieves compara-
ble performance with some previous models well-trained
with full datasets, which is a good trade-off between per-
formance and cost.

Additionally, we observe that CLIP’s 2D knowledge, su-
pervised by contrastive loss, is complementary to the close-
set 3D supervisions. The PointCLIP with an inter-view
adapter can be fine-tuned under few-shot settings to im-
prove the performance of classical fully-trained 3D net-
works. Taking PointCLIP in 16-shot ModelNet40 [57] and
fully-trained PointNet++ [44] as an example, we directly
ensemble their predicted logits for testing. Surprisingly,
the performance of PointNet++’s 89.71%, is enhanced to
92.03% by PointCLIP with an accuracy of 87.20%. Fur-
thermore, we select CurveNet [39], the state-of-the-art
3D recognition model, as the ensembling baseline, and
achieve performance boost from 93.84% to 94.08%. In
contrast, simply ensembling two models fully trained on
ModelNet40 without PointCLIP only leads to performance
loss. Therefore, PointCLIP could be regraded as a multi-
knowledge ensembling module, which promotes 3D net-
works via 2D contrastive knowledge with limited additional
training.

The contributions of our paper are as follows:

* We propose PointCLIP to extend CLIP for handling
3D point cloud data, which achieves cross-modality
zero-shot recognition by transferring 2D pre-trained
knowledge into 3D.

* An inter-view adapter is introduced upon PointCLIP
via feature interaction among multiple views and im-
proves the performance of few-shot fine-tuning.

* PointCLIP can be utilized as a multi-knowledge en-
sembling module for enhancing performance of exist-
ing fully-trained 3D networks, which surpasses state-
of-the-art performances.

* Comprehensive experiments are conducted on widely
adapted ModelNet10, ModelNet40 and the challeng-
ing ScanObjectNN, which indicate PointCLIP’s poten-
tial for 3D understanding.

2. Related Work

Zero-shot Learning in 3D. The objective of zero-shot
learning is to enable recognition of “unseen” objects which
are not adopted during training. Although zero-shot learn-
ing has drown much attention on 2D classification [206,45,

], only a few works explore how to conduct it in 3D do-
main. As the first attempt on point cloud, [7] divides the
3D dataset into two parts: “seen” and “unseen” samples,
and trains PointNet [43] on the former but tests on the latter



by measuring cosine similarities with category semantics.
Based on this prior work, [5] further mitigates the hubness
problem [62] resulted from low-quality extracted 3D fea-
tures and [6] introduces a triplet loss for better performance
in transductive settings, which allows to utilize unlabeled
“unseen’ data at training time. Different from all above set-
tings, which train the network on part of the 3D samples
and predict on the others, PointCLIP achieves direct zero-
shot recognition without any 3D training and conducts pre-
diction on the whole point cloud datasets. Thus, our setting
is more challenging for the domain gap between 2D pre-
training and 3D application, but more urgent for practical
problems.

Transfer Learning. Transfer learning [9, 60] aims to uti-
lize the knowledge from data-abundant domains to help the
learning on data-scarce domains. For general vision, Ima-
geNet [9] pre-training can greatly assist downstream tasks,
such as object detection [I, 18, 46] and semantic segmen-
tation [35]. Also in natural language processing, represen-
tations pre-trained on web-crawled corpus via Mask Lan-
guage Model [10] achieves leading performance on ma-
chine translation [38] and natural language inference [8].
Without any fine-tuning, the recently introduced CLIP [45]
shows superior image understanding ability for “unseen”
datasets. CLIP-Adapter [16], Tip-Adapter [63], Action-
CLIP [53] and WiSE-FT [56] further indicate that the per-
formance of CLIP can be largely improved by infusing
domain-specific supervisions. Although the successes sto-
ries are encouraging, most of the existing methods conduct
knowledge transfer within the same modality, namely, im-
age to image [9], video to video [2] or language to lan-
guage [10]. Different from them, our PointCLIP is able to
efficiently transfer representations learned from 2D images
to the disparate 3D point clouds, which motivates future re-
searches on transfer learning across different modalities.

Deep Neural Networks for Point Cloud. Existing deep
neural networks for point cloud can be divided into point-
based and projection-based methods. Point-based mod-
els process on raw points without any pre-transformation.
PointNet [43] and PointNet++ [44] firstly encode each point
with a Multi-layer Perceptron (MLP) and utilize max pool-
ing operation to realize permutation invariance. Recent
point-based methods propose more advanced local aggrega-
tors and architecture designs [30,49]. Other than raw points,
projection-based methods understand point cloud by trans-
ferring it to volumetric [37] or multi-view [48] data forms.
Therein, multi-view methods project point cloud into im-
ages of multiple views and process them with 2D Convo-
lution Neural Networks (CNN) [21] pre-trained on Ima-
geNet [28], such as MVCNN [48] and others [ 14,15,25,59].
Normally, such view-projected methods operate on offline-
generated images which are projected from point-converted

3D meshes [54] or required post-rendering [47] for shades
and textures, so they are costly and impractical to be
adopted for real-time applications. On the contrary, we fol-
low SimpleView [19], to naively project raw points onto im-
age planes and set their pixel values according to the verti-
cal distance. Such depth-map generation results in marginal
time and computation costs, which meets the demand for
efficient end-to-end zero-shot recognition.

3. Method

In Section 3.1, we first revisit Contrastive Vision-
Language Pre-training (CLIP) for 2D zero-shot classifica-
tion. Then in Section 3.2, we introduce our PointCLIP,
which transfers 2D pre-trained knowledge into 3D. In Sec-
tion 3.3, we provide PointCLIP with inter-view adapter for
better performance under few-shot settings. In Section 3.4,
we propose to ensemble PointCLIP with fully-trained clas-
sic 3D networks for multi-knowledge ensembling, which
can achieve state-of-the-art performance.

3.1. A Revisit of CLIP

CLIP is trained to match images with their correspond-
ing natural language descriptions. There are two indepen-
dent encoders in CLIP, respectively for visual and textual
features encoding. During training, given a batch of images
and texts, CLIP extracts their features and learns to align
them in the embedding space with a contrastive loss. To en-
sure comprehensive learning, 400 million training image-
text pairs are collected from the internet, which enables
CLIP to align images with any semantic concepts in an open
vocabulary for zero-shot classification.

Specifically, for an “unseen” dataset of K classes, CLIP
constructs the textual inputs by placing all category names
into a pre-defined template, known as prompt. Then, the
zero-shot classifier, denoted as W; € RE*C| is obtained
by the C-dimensional textual feature of category prompts.
Each of the K row vectors in W, encodes the pre-trained
category weights. Meanwhile, the feature of every test im-
age is encoded by CLIP’s visual encoder to f,, € R'*¢ and
the classification logits € R'*¥ are computed as,

logits = fUWtT; p; = softmax;(logits), (1)

where softmax;(-) and p; denote the softmax function and
predicted probability for category ¢. The whole process
does not require new training images, but achieves promis-
ing zero-shot classification performance only by frozen pre-
trained encoders.

3.2. Point Cloud Understanding by CLIP

A variety of large-scale datesets [28,
abundant samples to pre-train models [11,
quality and robust 2D features extraction.

] in 2D provide
] for high-
In contrast,
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Figure 2. The Pipeline of PointCLIP. To bridge the modal gap, PointCLIP projects the point cloud onto multi-view depth maps, and
conducts 3D recognition via CLIP pre-trained in 2D. The switch provides alternatives for direct zero-shot classification and few-shot
classification with inter-view adapter, respectively, in solid and dotted lines.

the widely-adopted 3D datasets are comparatively much
smaller and have limited categories, e.g. ModelNet40 [57]
with 9,843 samples and 40 classes vs. ImageNet [28] with
1 million samples and 1,000 classes. Thus, it is very dif-
ficult to obtain good pre-trained 3D networks for transfer
learning. To alleviate this problem and explore the cross-
modality power of CLIP, we propose PointCLIP to conduct
zero-shot learning on point clouds based on the pre-trained
CLIP.

Bridging the Modal Gap. Point cloud is a set of un-
ordered points scattering in the 3D space, its sparsity and
distribution greatly differ from grid-based 2D images. To
convert point clouds into CLIP-accessible representations,
we generate point-projected images from multiple views to
eliminate the modal gap between 3D and 2D. In detail, if
the coordinate of a point is denoted as (z,y, z) in the 3D
space, taking the bottom projection view as an example,
its location on the image plane is ([z/z], [y/z]) following
[19]. In this way, the projected point cloud is a foreshort-
ened figure, namely, small in the distance but big on the
contrary, which is more similar to that in real photos. Other
than [19] applying convolution layers to pre-processing the
one-channel depth map into three, we do not adopt any pre-
convolution and directly set the pixel value equaling to z
in all three channels. Also, different from other off-line
projection methods, whose projected images are generated
from meshes [54] or CAD models [48], our projected depth
maps are from raw points and contain no color information
but scattered depth values, which leads to marginal time and
computation cost. With this lightweight cross-modality co-
hesion, CLIP’s pre-trained knowledge can be then utilized

for point cloud understanding.

Zero-shot Classification. Based on projected images
from M views, we use CLIP to extract their visual fea-
tures {f;}, fori = 1,..., M. For the textual branch, we
place K category names to the class token position of a pre-
defined template: “point cloud depth map of a [CLASS].”
and encode their textual features as the zero-shot classifier
W; € REXC_ On top of that, classification logits, of each
view are separately calculated and the final logits,, of point
cloud are acquired by their weighted summation,

logits; = fthT, fori=1,..., M,
M
logits,, = Z_il

where «; is a hyper-parameter weighing the importance of
view i. Each view f; encodes a different perspective of
the point cloud feature, which is capable for independent
zero-shot classification. Their summation further comple-
ments the information of different perspectives to obtain an
overall understanding. The whole process of PointCLIP is
non-parametric for the “unseen” 3D dataset, which pairs
each point cloud with its category via CLIP’s pre-trained
2D knowledge and without any 3D training.

2

a;logits;,

3.3. Inter-view Adapter for PointCLIP

Although PointCLIP achieves efficient zero-shot classi-
fication on point clouds, its performance is still incompara-
ble to fully-trained 3D neural networks [43, 44]. We then
consider a more common scenario where a few objects of
each “unseen” category are contained in the newly collected
data, and networks are required to recognize them under
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Figure 3. Detailed structure of the proposed Inter-view Adapter. Given multi-view Figure 4. PointCLIP could provide complimen-
features of a point cloud, the adapter extracts its global representation and generates tary 2D knowledge to classical 3D networks and
view-wise adapted features. Via a residual connection, the newly-learned 3D knowledge serve as a plug-and-play enhancement module.

is fused into the pre-trained CLIP.

such few-shot settings. It is impractical to fine-tune the
whole model, since the enormous parameters and insuffi-
cient samples would easily result in over-fitting. Therefore,
referring to [23] in Natural Language Processing (NLP)
and CLIP-Adapter [16] for fine-tuning pre-trained models
on downstream tasks, we append a three-layer Multi-layer
Perceptron (MLP) on top of PointCLIP, named inter-view
adapter, to further enhance its performance under few-shot
settings. For training, we freeze CLIP’s both visual and tex-
tual encoders and fine-tune the learnable adapter via a cross-
entropy loss.

To be specific, given CLIP-encoded M -view features of
a point cloud, we concatenate them along the channel di-
mension as Concate(fiy) € RMC and acquire the
compact global feature of point cloud via the first two lay-
ers of the inter-view adapter as

falobal = ReLU(Concate( f1oar)WE)Ws,  (3)

where falobal € R*C and W;, Ws stand for two-layer
weights in the adapter. By this inter-view aggregation, fea-
tures from multiple perspectives fuse into a summative rep-
resentation. After that, the view-wise adapted feature is
generated from the global feature and added to its original
CLIP-encoded feature via a residual connection as

£ = fi + ReLU(fatobat W3, ), @

where W3; € REXC denotes the i-th part of W3 for view
i, and Wi = [WL;WL; - Wl € ROMC On the
one hand, f? blends global-guided adapted feature into f;
for the overall understanding of the point cloud and, thus,
better view-wise prediction. On the other hand, the residual-
style adapter infuses newly-learned 3D few-shot knowledge
with that of 2D pre-trained CLIP, which further promotes
the cross-modality knowledge transfer.

After the inter-view adapter, each view conducts classi-
fication with the adapted feature f{* and the textual clas-
sifier W;. Same as zero-shot classification, all M logits

from all views are summarized to construct the final pre-
diction, and the view weights «; can be learnable parame-
ters here for more adaptive aggregation. Surprisingly, just
fine-tuning this lightweight adapter with few-shot samples
contributes to significant performance improvement, e.g.
from 20.18% to 87.20% on ModelNet40 with 16 samples
per category, less than 1/10 of the full data. This inspira-
tional boost demonstrates the effectiveness and importance
of feature adaption on 3D few-shot data, which greatly fa-
cilitates knowledge transfer from 2D to 3D. Consequently,
PointCLIP with inter-view adapter provides a promising al-
ternative solution for point cloud understanding. In some
applications, there is no condition to train the entire model
with large-scale fully annotated data, and fine-tuning only
the three-layer adapter with few-shot data can achieve com-
parable performance.

3.4. Multi-knowledge Ensembling

Classical point cloud networks, such as the early Point-
Net [43] and the recent CurveNet [39], are trained from
scratch on 3D datasets by close-set supervision. In con-
trast, PointCLIP mostly inherits pre-trained priors from 2D
vision-language learning, containing different aspects of
knowledge. We then investigate if the two forms of knowl-
edge can be ensembled together for joint inference. In
practice, we first obtain the classical model, e.g. Point-
Net++ [44] pre-trained from [22], and PointCLIP of either
zero-shot or the adapter version. We conduct inferences
of the two models and ensemble their predicted logits by
simple addition as the final output. Beyond our expec-
tation, aided by 16-shot fine-tuned PointCLIP of 87.20%,
PointNet++ of 89.71% is enhanced to 92.03% with a sig-
nificant improvement of +2.32%. In other words, ensem-
bling of two low-score models can produce a much stronger
one, which fully demonstrates the complimentary inter-
action of knowledge from the two models. Also, even



Zero-shot Performance of PointCLIP

Datesets Accuracy Proj. Settings  View Weights
ModelNet10 [57] 30.23% 1.7, 100 2,5,7,10,5,6
ModelNet40 [57] 20.18% 1.6, 121 39,5454

ScanObjectNN [51]  15.38% 1.8, 196 3,10,7,4,1,0

Table 1. Zero-shot Performance of PointCLIP on ModelNetl10,
ModelNet40 and ScanObjectNN with the best-performing set-
tings. Proj.Settings consist of projection distances and side length
of the projected depth maps. View Weights are the relative values
from 1 to 10.

View Numbers of Projection

Prompts Zero-shot  16-shot
“a photo of a [CLASS].” 17.02%  85.98%
“a point cloud photo of a [CLASS].” 16.41% 86.02%
“point cloud of a [CLASS].” 18.68%  86.06%
“point cloud of a big [CLASS].” 19.21% 87.20%
“point cloud depth map of a [CLASS].”  20.18%  85.82%
“[Learnable Tokens] + [CLASS]” - 73.63%

Table 3. Performances of PointCLIP with different prompt designs
on ModelNet40. [CLASS] denotes the class token, and [Learnable
Tokens] denotes learnable prompts with fixed length.

Different Visual Encoders

Numbers 1 4 6 8 10 12

Zero-shot 1495 18.68 20.18 16.98 1491 13.65
16-shot 7553 82.17 84.24 8548 87.20 86.35

Importance of each View

View Front Right Back Left Top Down

Zero-shot 18.64 19.57 1892 19.12 1746 17.63
16-shot 8491 85.69 85.03 85.76 84.44 84.35

Table 2. Ablation studies (%) concerning projected view numbers
and each view’s importance for zero-shot and 16-shot PointCLIP
on ModelNet40.

with the zero-shot PointCLIP of 20.18%, PointNet++ can
still be improved to 92.10%. In contrast, ensembling a
pair of classical full-trained models would not enhance the
performance, which indicates the importance of compli-
mentary knowledge. We also implement this ensembling
with other advanced networks and observe similar perfor-
mance boosts, some of which achieve state-of-the-art per-
formances. Therefore, PointCLIP can be utilized as a plug-
and-play enhancement module to achieve robust point cloud
understanding.

4. Experiments

4.1. Zero-shot Classification

Settings. We evaluate the zero-shot classification perfor-
mance of PointCLIP on three well-known datasets: Mod-
elNetl10 [57], ModelNet40 [57] and ScanObjectNN [51].
For each dataset, we require no training data and adopt the
full test set for evaluation. For the pre-trained CLIP model,
we adopt ResNet-50 [21] as the visual encoder and trans-
former [52] as the textual encoder by default. We then
project the point cloud from 6 orthogonal views: front,
right, back, left, top and bottom, and each view has a rel-
ative weight value ranged from 1 to 10, shown in the fourth
column of Table 1. As the point coordinates are normal-
ized from -1 to 1, we set the 6 image planes at a fixed dis-
tance away from the coordinate center (0,0). This distance

Models

Zero-shot  20.18  17.02 1694 2131 17.02 23.78
16-shot 85.09 87.20 83.83 85.37 85.58 85.90

RN50 RN101 ViT/32 ViT/16 RN.x4 RN.x16

Table 4. Performances (%) of PointCLIP for different visual en-
coders on ModelNet40. RN50 denotes ResNet-50, and ViT-B/32
represents vision transformer with 32 x 32 patch embeddings,
and RN.x 16 denotes ResNet-50 with 16 times more computations
from [45].

is shown as the first value of Proj.Settings in Table 1, and
the larger distance leads to the denser points distributions
on the image. The side length of projected square depth
maps varies to different datasets, which is presented as the
second value in Proj.Settings, and larger side length results
in smaller projected object size. We then upsample all im-
ages to (224, 224) for alignment with CLIP’s settings. Also,
we set the textual template as “point cloud depth map of a
[CLASS].” to cater to the visual features of point clouds.

Performance. In Table 1, we present performances of
zero-shot PointCLIP for three datasets with their best-
performing settings. Without any 3D training, PointCLIP is
able to achieve a promising 30.23% on ModelNet10, which
demonstrates the effective knowledge transfer from 2D to
3D. For ModelNet40 with 4 times the number of categories
and ScanObjectNN of noisy real-world scenes, PointCLIP
achieves slightly worse performances, 20.18% and 15.38%,
respectively, due to the lack of 3D downstream adaptions.
As for the projection distances and image resolutions of
Proj.Settings, their variances accord with the properties of
different datasets. Compared to indoor ModelNet10, Point-
CLIP on ModelNet40 requires more details to recognize
complex outdoor objects, such as airplanes and plants, and
thus performs better with more scattered points and larger
object size, namely, larger perspective projection distance
and resolutions. In contrast, for ScanObjectNN, denser
points and larger resolutions are required for filtering out the
noise and reserving complex real-scene information. With
respect to view weights, ModelNet10 and ModelNet40 of
synthetic objects require all 6 views’ contributions to the fi-
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settings.

nal classification with different importance, but for ScanOb-
jectNN which contains noisy points of floors and ceilings,
the top and bottom views could hardly provide any infor-
mation.

Ablations. In Table 2, We conduct ablation studies of
zero-shot PointCLIP concerning projection view numbers
and the importance of each view on ModelNet40. For the
number of projected views, we try 1, 4, 6, 8, 10 and 12!
views, for increasingly capturing the multi-view informa-
tion of point clouds, but more than 6 views would bring
redundancy and lead to performance decay. To explore
how different views impact the performance, we unify all
relative weights to 3 and respectively increase each view’s
weight to 9. As is shown in the table, projection from the
right achieves the highest performance, which indicates its
leading role, and the top and down views contribute rela-
tively less to the zero-shot classification. In Table 4, we im-
plement different visual backbones from ResNet [21] to vi-
sion transformer [1 1], and RN50x 16 [45] achieves the best
performance of 23.78%, which has 16 times more compu-
tations than ResNet-50. However, upgrading ResNet-50 to
ResNet-101 with more parameters and deeper layers would
not provide higher classification accuracy.

Prompt Design. We present five prompt designs for zero-
shot PointCLIP in Table 3. We observe that the naive “a
photo of a [CLASS].” achieves 17.02% on ModelNet40,
but simply inserting the word “point cloud” into it would
hurt the performance. We then remove “a photo” and di-
rectly utilize “point cloud” as the subject, which benefits
the accuracy by +1.66%. Also, as the projected point cloud
normally covers most of the image area, appending an ad-
jective “big” could bring further performance improvement.
Furthermore, we add the “depth map” to describe the pro-
jected images more relevantly, which contributes to the

I'The settings of views are in the Appendix.

best-performing 20.18%, demonstrating the importance of
prompt choices.

4.2. Few-shot Classification

Settings. We experiment PointCLIP with the inter-view
adapter under 1, 2, 4, 8, 16 shots also in the three
datasets: ModelNet10 [57], ModelNet40 [57] and ScanOb-
jectNN [51]. For K-shot settings, we randomly sample K
point clouds from each category of the training set. We in-
herit the best projection settings from zero-shot experiments
in Section 4.1. In contrast, considering both efficiency and
performance, we adopt ResNet-101 [21] as CLIP’s pre-
trained visual encoder for stronger feature extraction, and
increase the projected view numbers to 10, adding the views
of upper/bottom-front/back-left corners, since the left view
is proven to be the most informative for few-shot recogni-
tion in Table 2. In addition, we modify the prompt to “point
cloud of a big [CLASS].”, which performs better in the few-
shot experiments. For the inter-view adapter, we construct
a residual-style Multi-layer Perceptron (MLP) consisting of
three linear layers, as described in Section 3.3.

Performance. In Figure 5, we present the few-shot per-
formances of PointCLIP and compare it with 4 representa-
tive 3D networks: PointNet [43], PointNet++ [44], Simple-
View [19] and the state-of-the-art CurveNet [39]. As we
can see, PointCLIP with inter-view adapter surpasses all
other methods for the few-shot classification. When there
are only a small number of samples per category, PointCLIP
has distinct advantages, exceeding PointNet by 25.49% and
CurveNet by 12.29% on ModelNet40 with 1 shot. When
given more training samples, PointCLIP still leads the per-
formance, but the gap becomes smaller due to the limited
fitting capacity of the lightweight three-layer adapter. For
the detailed training settings, please refer to the Appendix.

Ablations. In Table 2, we show the 16-shot PointCLIP
under different projection views and explore how each view



Models Before En. After En. Gain Ratio
PointNet [43] 88.78 90.76 +1.98 0.60
PointNet++ [44] 89.71 92.10 +2.39  0.70
RSCNN [33] 92.22 92.59 +0.37 0.70
DGCNN [55] 92.63 92.83 +0.20 0.70
SimpleView [19] 93.23 93.87 +0.64  0.60
CurveNet [39] 93.84 94.08 +0.24  0.15

Table 5. The enhancement ability (%) of 16-shot PointCLIP,
which achieves 87.20%, on multiple classical 3D networks in
ModelNet40. Before and After En. denote models with and with-
out PointCLIP ensembling, respectively.

contributes on ModelNet40. Differing from the zero-shot
version, 10 views of 16-shot PointCLIP performs better
than 6 views, probably because the newly-added adapter is
able to better utilize the information from more views and
adaptively aggregate them. For the importance of views, we
follow the configurations of our zero-shot version and ob-
serve the reversed conclusion that, the left view is the most
informative here. Surprisingly, for different visual encoders
in Table 4, ResNet-101 achieves the highest accuracy with
less parameters than vision transformer or ResNet-50x 16.
Table 3 lists the performance influence caused by prompt
designs, and the “point cloud of a big [CLASS].” performs
the best, which is slightly different from the analysis in
Paragraph 4.1.

4.3. Multi-knowledge Ensembling

Settings. To verify the complementarity of blending pre-
trained 2D priors with 3D knowledge, we aggregate
the fine-tuned 16-shot PointCLIP of 87.20% on Model-
Net40, respectively with fully-trained PointNet [43], Point-
Net++ [44], DGCNN [55], SimpleView [19] and Cur-
veNet [39], whose trained models are obtained from [22,

] without any voting. We manually modulate the fusion
ratio between PointCLIP and each model, and report the
performance with the best Ratio in Table 5, which repre-
sents PointCLIP’s relative weight to the whole.

Performance. As shown in Table 5, ensembling with
PointCLIP improves the performances of all classical fully-
trained 3D networks. The results fully demonstrate the
complementarity of PointCLIP to existing fully-trained 3D
models, and the performance gain is not simply achieved
by ensembling models. These are surprising results to
us, because the accuracy of 16-shot PointCLIP is lower
than all other models trained with full datasets, but could
still benefit their already high performances to be higher.
Therein, the largest accuracy improvement is on Point-
Net++ from 89.71% to 92.10%, and combining PointCLIP
with the state-of-the-art CurveNet further achieves 94.08%.
Also, we observe that, for models with low baseline per-

En. Model 1

PointNet++ [44], 89.71  +
PointNet++, 89.71 +
SimpleView [19],93.23 +
PointCLIP, 87.20 +

En. Model 2 After En.

RSCNN [33], 92.22 92.14
CurveNet [39], 93.84 91.61
CurveNet, 93.84 93.68
PointCLIP, 87.14 87.06

Table 6. Ablation studies (%) of ensembling models both trained
on ModelNet40 or pre-trained in 2D.

Ensembling with CurveNet [39]
Shots 0 8 16 32 64 128

PointCLIP 20.18 81.96 87.20 87.83 8895 90.02
After En.  93.88 93.89 94.08 94.00 9392 93.88

Table 7. Enhancement performance (%) of PointCLIP under dif-
ferent few-shot settings for CurveNet on ModelNet40.

formances, PointCLIP’s logits need to account for a large
proportion, but for the well-performing ones, such as Cur-
veNet, their knowledge is supposed to play a dominant role
in the ensembling.

Ablations. We conduct ablation studies of ensembling
two models fully trained on ModelNet40 without Point-
CLIP, and fuse their logits with the same ratio for simplic-
ity. As is presented in Table 6, ensembling PointNet++ low-
ers the performance of RSCNN and CurveNet, and aggre-
gating the highest two models, SimpleView and CurveNet,
could not achieve better performance. Also, a pair of Point-
CLIP would hurt the performance. Hence, simply ensem-
bling two models with the same training scheme normally
leads to performance degradation, which demonstrates the
significance of multi-knowledge interaction. In Table 7, we
fuse zero-shot PointCLIP and the model fine-tuned by 8,
16, 32, 64 and 128 shots, respectively with CurveNet to ex-
plore their ensembling performances. As reported, zero-
shot PointCLIP with only 20.18% could enhance CurveNet
by +0.04%. However, too much training on 3D dataset
would adversely influence the ensembling accuracy. This
is possibly caused by the too high similarity between two
models, which cannot provide complementary knowledge
as expected.

5. Conclusion and Limitation

We propose PointCLIP, which conducts cross-modality
zero-shot recognition on point cloud without any 3D train-
ing. Via multi-view projection, PointCLIP efficiently trans-
fers CLIP’s pre-trained 2D knowledge into the 3D domain.
Under few-shot settings, we design a lightweight inter-view
adapter to aggregate multi-view representations and gen-
erate adapted features. By fine-tuning such adapter and
freezing all other modules, the performance of PointCLIP
is largely improved. In addition, PointCLIP could serve



as a plug-and-play module to provide complimentary in-
formation for the classical 3D networks, which surpasses
state-of-the-art performance. Although PointCLIP realizes
the transfer learning from 2D to 3D, how to utilize CLIP’s
knowledge for other 3D tasks is still under explored. Our
future work will focus on generalizing CLIP for wider 3D
applications.
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Appendix
A. Datasets

We evaluate our PointCLIP on three well-known
datasets: ModelNet10 [57], ModelNet40 [57] and ScanOb-
jectNN [51]. Therein, ModelNet10 consists of 4,899 syn-
thetic meshed CAD models with 10 indoor categories,
3,991 for training and 908 for testing. ModelNet40 is larger
and contains 12,311 samples of 40 common categories,
9,843 for training and 2,468 for testing. In both datasets,
we uniformly sample 1,024 points from each object as the
network input. ScanObjectNN contains 2,321 training and
581 testing point clouds of 15 categories collected directly
from real-world scans. Different from synthetic data with
complete profiles, objects in ScanObjectNN are occluded at
different levels and disturbed with background noise, so it
is more challenging for accurate recognition.

B. Implementation Details

For ablation studies of projected view numbers, we adopt
different settings for zero-shot and few-shot PointCLIP. As
the right view is the most important for zero-shot Point-
CLIP, we set the 12 views to: front, right, back, left, top,
bottom, upper/lower right diagonal front/back (4 views)
and upper left diagonal front/back (2 views). In con-
trast, few-shot PointCLIP achieves higher performance with
left views, so we replace all the “left” settings above into
“right”. For both versions, the view number of M repre-
sents picking the first M/ views for experiments.

For PointCLIP with inter-view adapter, we fine-tune it
under 1, 2, 4, 8 and 16 shots with batch size 32 and learn-
ing rate 0.01 for 250 epochs. Stochastic Gradient De-
cent (SGD) [27] with momentum 0.9 is adopted as the op-
timizer. We utilize a cosine scheduler for learning rate
decay and Smooth Loss [55] following [19]. In Mod-
elNet10 and ModelNet40, We apply random scaling and
translation for training augmentation, but in the challeng-
ing ScanObjectNN, we append jitter and random rotation
following [43]. During training, we freeze CLIP’s both vi-
sual and textual encoders, and only fine-tune the inter-view
adapter. For other compared models, we unfreeze all the
parameters, and adopt the same data augmentation and loss
functions reported in the papers.

C. Supplementary Ablations

Inter-view Adapter. We adopt the inter-view adapter
with three linear layers: one for global extraction and two
for view-wise adapted features generation. Here, we ex-
plore other architectures of the adapter on 16-shot Point-
CLIP for ModelNet40 in Table 8. Specifically, w/o global
denotes the adapter processing each view separately with-
out interaction, and the w/o view-wise version repeats the

global feature as each view’s adapted feature. The 2-layer
adapter removes the linear layer after the global represen-
tation and the pre-layer version moves it before the global
extraction. The results show that dropping or changing the
original modules in the adapter would all hurt the perfor-
mance, especially the inter-view extraction of global fea-
ture.

Architectures of Inter-view Adapter

original w/o global w/o view-wise 2-layer pre-layer

87.20 83.87 85.93 86.48 86.78

Table 8. Architectures of the inter-view adapter.

Adapted Features Fusion. The view-wise adapted fea-
ture is generated by the adapter and then added to the orig-
inal CLIP-encoded feature via a residual connection. On
ModelNet40, we evaluate the performance of 16-shot Point-
CLIP with different fusion ratios (3, which denotes the pro-
portion of adapted features. To show the effect of 3, we set
all view weights the same. From the results in Table 9, dif-
ferent ratios actually lead to little performance variance and
the 8 of 0.6 perfoms better than others. Thus, we adopt 0.6
as the fusion ratio by default, which indicates the compa-
rable contributions between 2D pre-trained knowledge and
3D learned knowledge.

Adapter Fusion Ratios 3
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

9.56 8574 8578 85.66 8576 8598 86.13 8591 8585 8574 85.53

Table 9. Different fusion ratios of adapted features.

Full Training Set. We also fine-tune PointCLIP on full
training set of ModelNet40 [57] and present the results
in Table 10. Likewise, we freeze both pre-trained visual
and textual encoders in CLIP and only train the inter-view
adapter. As expected, visual encoders with more parame-
ters lead to higher accuracy, and only fine-tuning the ap-
pended lightweight adapter could achieve the performance
of 92.01%.

Fine-tuning on Full ModelNet40 [57]
RN50 RNI101 ViT/32 ViT/16 RN.x4 RN.x16

Models

Accuracy 86.42  91.69 91.76  90.70 91.93 92.01

Table 10. Performances (%) for fine-tuning PointCLIP on full
training set of ModelNet40 with different visual encoders.

Fine-tuning Settings. Under full training set of Model-
Net40 [57], we further fine-tune different modules of Point-
CLIP in Table 11. Therein, we adopt ResNet-101 [21] as the
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Figure 6. Visualizations of predictions by PointCLIP, PointNet++ [44] and the ensembled model.

visual encoder, and fine-tuning without the adapter repre-
sent unfreezing the visual or textual encoder upon the zero-
shot PointCLIP. As presented, unfreezing just the textual
encoder normally hurts the performance, but training both
encoders and all modules of PointCLIP achieves better per-
formance of 91.40% and 91.89%, respectively.

Visual Encoder  Textual Encoder Inter-view Adapter  Accuracy(%)
v - - 91.01
- v - 73.89
v v - 91.49
- - v 91.69
v - v 90.99
- v v 88.82
v v v 91.89

Table 11. Ablations of PointCLIP fine-tuning different modules.
v/ denotes fine-tuning the module and symbol - denotes freezing.

D. Visualizations

We visualize some cases of ensembling PointCLIP with
PointNet++ [44] to reveal the effectiveness of enhancement.
As shown in Figure 6, two models both predict correctly
for the four samples, and the ensembled model preserves
the prediction. As for samples in the second and the third
rows, PointCLIP and PointNet++ show the complementary
properties that the ensembled model would rectify one of
their wrong predictions, which demonstrates the importance
of knowledge interaction.
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