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Abstract

We present a novel framework named PlaneMVS for 3D
plane reconstruction from multiple input views with known
camera poses. Most previous learning-based plane recon-
struction methods reconstruct 3D planes from single im-
ages, which highly rely on single-view regression and suffer
from depth scale ambiguity. In contrast, we reconstruct 3D
planes with a multi-view-stereo (MVS) pipeline that takes
advantage of multi-view geometry. We decouple plane re-
construction into a semantic plane detection branch and a
plane MVS branch. The semantic plane detection branch is
based on a single-view plane detection framework but with
differences. The plane MVS branch adopts a set of slanted
plane hypotheses to replace conventional depth hypothe-
ses to perform plane sweeping strategy and finally learns
pixel-level plane parameters and its planar depth map. We
present how the two branches are learned in a balanced
way, and propose a soft-pooling loss to associate the out-
puts of the two branches and make them benefit from each
other. Extensive experiments on various indoor datasets
show that PlaneMVS significantly outperforms state-of-the-
art (SOTA) single-view plane reconstruction methods on
both plane detection and 3D geometry metrics. Our method
even outperforms a set of SOTA learning-based MVS meth-
ods thanks to the learned plane priors. To the best of our
knowledge, this is the first work on 3D plane reconstruction
within an end-to-end MVS framework.

1. Introduction

3D planar structure reconstruction from RGB images has
been an important yet challenging problem in computer vi-
sion for decades. It aims to detect piece-wise planar re-
gions and predict the corresponding 3D plane parameters
from RGB images. The recovered 3D planes can be used
in various applications such as robotics [46], Augmented
Reality (AR) [4], and indoor scene understanding [51].

Traditional methods [9, 13, 43] work well in certain
cases but usually highly rely on some assumptions (e.g.,
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Figure 1. Comparison among: (a) single-view plane reconstruc-
tion framework, (b) conventional depth-based MVS framework,
(c) the proposed multi-view plane reconstruction framework. Our
system employs slanted plane hypotheses for plane-sweeping to
build the plane MV S branch, which interacts with the plane detec-
tion branch. The two branches can benefit from each other.

Manhattan-world assumption [9]) of the target scene and
are thus not always robust in complicated real-world cases.
Recently, some methods [31,32,47,56,61] have been pro-
posed to recover planes from single-view images based on
Convolutional Neural Networks (CNNs). These methods
could reconstruct 3D planes better in terms of completeness
and robustness compared with traditional methods. How-
ever, all of them, albeit achieving reasonable results on 2D
plane segmentation, attempt to recover 3D plane geometry
from a single image, which is an ill-posed problem as it only
relies on single-view regression for plane parameters and
has ambiguity in depth scale recovery. Thus the recovered
3D planes from those methods are far from being accurate.
The limitations of these methods motivate us to consider the
possibility of reconstructing 3D planes from multiple views
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with CNNs in an end-to-end framework.

In contrast to reconstructing 3D geometry from single
images, multi-view-stereo (MVS) [10] takes multiple im-
ages as input with known relative camera poses. MVS
methods achieve superior performance on 3D reconstruc-
tion compared with single-view methods since the scale
of a scene can be resolved by triangulating matched fea-
ture points on calibrated images [17]. Recently, a few
learning-based MVS methods [16, 19, 57, 58] have been
proposed and have achieved promising improvements for
a wide range of scenes. While effective in reconstruct-
ing areas with rich textures, their pipelines would suffer
from ambiguity in finding feature matches in the texture-
less area, which often belongs to planar regions. Besides,
the generated depth map usually lacks smoothness as planar
structures are not explicitly parsed. Some recent MVS ap-
proaches [26, 34, 63] propose to jointly learn the geometric
relationship between depth and normal to capture local pla-
narity. However, these methods usually estimate depth and
normal separately, and only learn pixel-level planarity by
enforcing the constraints by additional losses. Piece-wise
planar structures, e.g., walls and floors, which usually indi-
cate strong global geometric smoothness, are not well cap-
tured in these approaches.

In this work, as shown in Fig. 1, we take advantage
of both sets of methods and propose to reconstruct planar
structures in an MVS framework. Our framework consists
of dual branches: a plane detection branch and a plane MVS
branch. The plane detection branch predicts a set of 2D
plane masks with their corresponding semantic labels of the
target image. The plane MVS branch, which is our key
contribution, takes posed target and source images as input.
Inspired by the frontal plane sweeping formulation that is
widely used in MVS pipelines, we propose a slanted plane
sweeping strategy to learn the plane parameters without am-
biguity. Specifically, instead of using a set of frontal plane
hypotheses (i.e., depth hypotheses) for plane sweeping as
in conventional MVS methods, we perform plane sweeping
with a group of slanted plane hypotheses to build a plane
cost volume for per-pixel plane parameter regression.

To associate the two branches, we present a soft-pooling
strategy to get piece-wise plane parameters and propose a
loss objective based on it to make the two branches benefit
from each other. We apply learned uncertainties [25] on
different loss terms to train the multi-task learning system in
a balanced way. Moreover, our system can generalize well
in new environments with different data distributions. The
results can be further improved with a simple but effective
finetuning strategy without groundtruth plane annotations.

To the best of our knowledge, this is the first work that
reconstructs planar structures in an end-to-end MVS frame-
work. The reconstructed depth map takes advantage of
multi-view geometry to resolve the scale ambiguity issue.

It is much smoother geometrically compared with depth-
based MVS schemes by parsing planar structures. Experi-
mental results across different indoor datasets demonstrate
that our proposed PlaneMVS not only significantly outper-
forms single-view plane reconstruction methods, but is also
better than several SOTA learning-based MVS approaches.

2. Related Work

Piece-wise planar reconstruction. Traditional plane re-
construction methods [9,13,43] usually take a single or mul-
tiple images as input and detect the primitives such as van-
ishing points and lines as geometric cues to recover planar
structures. Such methods make strong assumptions about
the environment and often do not generalize well into var-
ious scenarios. Recent learning-based approaches [31,32,
,47,56,61] handle the plane reconstruction problem from
a single image with Deep Neural Networks (DNNs) and
achieve promising results. PlaneNet [32] proposes a multi-
branch network to learn plane masks and parameters jointly.
PlaneRecover [56] proposes to segment piece-wise planes
with only groundtruth depth supervision but without any
plane groundtruth. PlaneAE [61] and PlaneTR [3 1] learn to
cluster image pixels into piece-wise planes with bottom-up
frameworks. Alternatively, PlaneRCNN [31] takes advan-
tage of a two-stage detection framework [18] to estimate
plane segmentation and plane geometry in several parallel
branches. Qian and Furukawa [39] model the inter-plane re-
lationships to further refine the initial planar reconstruction.
However, although being possible to learn 2D plane seg-
mentation with a single image, it is still challenging to learn
accurate 3D plane geometry only with single-view regres-
sion. Most recently, Jin ef al. [23] proposes a framework to
jointly reconstruct planes and estimate camera poses from
sparse views. In our work, we assume the camera poses are
obtained from some SLAM systems, and design our plane
detection branch based on PlaneRCNN [3 1], but learn plane
geometry in a separate multi-view-stereo (MVS) branch.

Multi-view stereo. Different from single-view depth es-
timation [7, 15,22,49, 64], multi-view stereo transforms the
depth estimation problem into triangulating corresponding
points from a pair of posed images. Thus, it could solve the
scale ambiguity issue in the single-view case. Traditional
MYVS approaches can be roughly categorized as voxel-based
methods [27, 4 1], point-cloud-based methods [10, 28] and
depth-map-based methods [3, | 1,50].

In recent years, some learning-based methods have been
proposed and have shown superior robustness and gener-
alizability. Volumetric methods such as [21,24] aggregate
multi-view information to learn a voxel representation of
the scene. However, they can only be applied to small-sized
scenes due to high memory consumption of volumetric rep-
resentation. For depth-based methods, MVSNet [58] uti-
lizes an end-to-end framework to reconstruct the depth map



of the reference image from multi-view input based on the
plane-sweeping strategy. Some follow-up methods aim to
achieve better accuracy-speed trade-off [52, 59, 60] or re-
fine the depth map in a cascaded framework [16, 57], or
incorporate visibility as well as uncertainty into the frame-
work [35,55,62]. These depth map-based MVS approaches
usually apply the fronto-parallel plane hypothesis for plane
sweeping, aiming to learn pixel-level feature correspon-
dences at correct depths. However, for textureless areas
or repetitive patterns, it is challenging for the network to
accurately match pixel-level features, thus making the in-
ferred depth less accurate. Different from depth-map based
MYVS, Atlas [37] and NeuralRecon [45] propose to learn a
TSDF [5] representation from posed images for 3D surface
reconstruction which avoids multi-view depth fusion.

Due to the matching ambiguity in textureless areas, some
MVS works [1, 2, 12] aim to model local planarity since
textureless areas are usually planar. Traditionally, Birch-
field and Tomasi [1] introduce slanted-plane with Markov
Random Fields for stereo matching. Gallup et al. [12] first
estimate dominant plane directions and warp along those
planes based on plane sweeping. A few methods [2,40, 54]
perform stereo patch matching in textureless regions based
on iterative optimizations or probabilistic frameworks. For
learning-based methods, derived from the idea of patch-
match stereo, a line of works [26,34,63] incorporate the ge-
ometric relationship between depth and surface normal into
MYVS framework. Although sharing high-level ideas, our
work differs from these methods in several aspects. First,
some work [34] segments piece-wise planes as an offline
pre-processing step to generate smooth and consistent nor-
mals. However, we jointly learn plane segmentation and
plane geometry within the proposed framework. Second,
they usually learn depth and normal separately and apply
loss objectives as extra constraints based on local planarity.
In contrast, we directly learn to regress pixel-level plane
parameters with a set of slanted plane hypotheses with the
plane-sweeping strategy in one MVS pipeline, so the joint
relationship between depth and normal is learned implicitly.
Third, while those works aim to employ planar priors to as-
sist multi-view stereo, our goal is to reconstruct piece-wise
planar structures with an MVS framework.

3. Method

This section is organized as follows: we first introduce
our semantic plane detection branch in Sec. 3.1, and present
our plane MVS branch in Sec. 3.2. Then we describe the
piece-wise plane reconstruction process in Sec. 3.3. Finally,
we introduce our loss objectives in Sec. 3.4.

3.1. Plane detection

An overview of PlaneRCNN. PlaneRCNN [31] is one
of the state-of-the-art single-view plane reconstruction ap-

proaches, which builds upon Mask-RCNN [18]. It designs
several separate branches for estimating 2D plane masks
and 3D plane geometry. It first applies FPN [29] to extract
a feature map, then adopts a two-stage detection framework
to predict 2D plane masks M. An encoder-decoder archi-
tecture processes the feature map to get a per-pixel depth
map D. Instance-level plane features from ROI-Align [18]
are passed into a plane normal branch to predict plane nor-
mals A/. They also design a refinement network to refine
initial plane masks and a reprojection loss between neigh-
boring views to enforce multi-view geometry consistency
during training. With predicted M, N and D, the piece-
wise planar depth map D,, can be reconstructed.

Our semantic plane detection. Our detection head is
based on PlaneRCNN [31] but with several modifications.
First, we remove all the geometry estimation modules in-
cluding the plane normal prediction module and the monoc-
ular depth estimation module since 3D plane geometry is
estimated by our MVS branch. Second, we also remove
the plane refinement module and the multi-view reprojec-
tion loss used in PlaneRCNN to conserve memory. Ad-
ditionally, since semantic information is helpful for scene
understanding, as in Mask-RCNN [18], we add semantic
label prediction for each plane instance to get its seman-
tic class. We will introduce the details on how we define
and generate the semantic plane annotations in Sec. 4.2.
To summarize, for an input image with resolution H x W,
our plane detection head predicts a set of plane bound-
ing boxes B = {by,bs,...,b;}, their confidence scores
S = {s1,82,...,5;} where s; € (0,1), the binary plane
masks M = {m;, my, ..., m;} where m; € RE>*W and
their corresponding semantic labels C = {c¢1, ca, ..., ci }-

3.2. Planar MVS

Next, we introduce our plane MVS head, which is our
key contribution in this work. Fig. 2 shows the architecture
of this branch, and we will present each part sequentially.

Feature extraction. The 2D image feature extraction
for the MVS head is shared with the plane detection head.
Specifically, we obtain multi-scale 2D feature maps with
L = 5 levels from the FPN feature backbone. Here we
only utilize the finest level feature f, € RiFXiWxC,
To further balance the memory consumption and accuracy,
we pass fy into a dimension-deduction layer and an av-
erage pooling layer to get reduced feature representation
fo € ReTXsWx3C 1 serves as the feature map input
of the MVS network. It is worth exploring whether using
multiple levels of features would bring benefits, but that is
not our current focus, and we leave it to future work.

Differentiable planar homography. Previous MVS
methods [19, 58] propose to warp the source feature with
fronto-parallel planes, i.e., depth hypotheses, to the target
view. This is effective in associating the features from mul-
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Figure 2. The architecture of our proposed plane MVS head. It consists of a plane regression module to regress initial pixel-level plane
parameters and a plane refinement module to refine the initial prediction. The key difference of our work from conventional MVS methods
is that we apply slanted plane hypotheses for homography warping. The loss objectives during training are omitted for simplicity.

tiple views at the correct depth values of the target view. In
our setup, the objective is to learn per-pixel plane parame-
ters instead of depth. To this end, we propose to leverage
slanted plane hypotheses for performing plane sweeping
to learn per-pixel plane parameters with the MVS frame-
work. The representation of differentiable homography us-
ing slanted plane hypotheses is the same as using depth
hypotheses. The homography between two views at plane
(ni)Tx + e; = 0, where n; is the plane normal and e; is
the offset at pixel ¢ of the target view, can be represented as:

T
Hi(ni,e;) ~ K(R— ——)K~", (1)
where symbol ~ means “equality up to a scale”. K is the
intrinsic matrix. R and ¢ are the relative camera rotation
and translation matrices between two views, respectively.
Therefore it can be concluded that, without considering oc-
clusion and object motion, the homography at pixel ¢ be-
tween two views is only determined by the plane p; =
n; T /e; with known camera poses. This perfectly aligns
with our goal to learn 3D plane parameters with MVS. We
can learn pixel-level plane parameters p; = n;’ /e;, which
is a non-ambiguous representation for a plane by employing
slanted plane-sweeping in an MVS framework.

Slanted plane hypothesis generation. One of the
main differences of our framework from conventional
MVS methods lies in the hypothesis representation. In
depth-based MVS pipelines, their plane hypotheses are
fronto-parallel w.r.t. the camera. Therefore, a set of one-
dimensional depth hypotheses which cover the depth range
of the target 3D space are sufficient for depth regression.
However, in our work, we need a set of three-dimensional
slanted plane hypotheses n” /e. Finding slanted plane hy-
potheses is a non-trivial task since the number of candidate
planes that pass through a 3D point is infinite. We need to
determine the appropriate hypothesis range for each dimen-
sion of n’'/e. To this end, we randomly sample 10,000

training images and plot the distribution for every axis of
groundtruth plane n’ /e, which reflects the general distri-
bution for plane parameters in various scenes. Then we se-
lect the upper and lower bounds for each axis by ensuring
most groundtruth values lie within the selected range. We
sample the hypotheses uniformly between the bounds along
every axis. Please see details of the hypothesis range and
number we choose in our supplementary material.

Cost volume construction. After determining plane hy-
potheses, we warp the source feature map into the target
view by Eq. (1). For every slanted plane hypothesis, we
concatenate the warped source feature and target feature to
associate them, which can better keep the original single-
view feature representation than applying distance metrics
[58]. Then we stack the features along the hypothesis di-
mension to build a feature cost volume C'. Following [58],
we utilize an encoder-decoder architecture with 3D CNN
layers to regularize the feature cost volume. Finally, we use
a single 3D CNN layer with softmax activation to transform
the cost volume C' into a plane probability volume U.

Per-pixel plane parameters inference and refinement.
To make the whole system differentiable, following [58],
soft-argmax is applied to get the initial pixel-level plane pa-
rameters. Given the plane hypothesis set P, = {po, P1, ---»
PN—1}, 3D plane parameter p; at pixel ¢ can be inferred as:

N-1

pi=»_ p;i-Ulp;), 2

=0

where U (p;) is the probability of hypothesis p; at pixel i.
With soft-argmax, we can get an initial pixel-level plane
parameter tensor P € Rs#XsWx3  We need to upsam-
ple it back to the original image resolution. We find that
directly applying bilinear upsampling will lead to the over-
smoothness issue. Here we adopt the upsampling method
proposed by RAFT [48]. Specifically, for each pixel of
P, we learn a convex combination by first predicting an



8 x 8 x 3 x 3 grid, then applying weighted combination
over the learned weights of its 3 x 3 coarse neighbors to get
the upsampled plane parameters P* € R¥*W X3 This up-
sampling approach better preserves the boundaries of planes
and other details in the reconstructed planar depth map.

Following [58], we apply a refinement module, which
aims to learn the residual of the initial plane parameters
w.r.t. groundtruth. The upsampled initial plane parameters
P’ is concatenated with the normalized original image I;
as input to preserve image details, then passed into several
2D CNN layers to predict its residual SP’. Then we get the
refined pixel-level plane parameters P,. = P’ + 6P, which
is our final per-pixel plane parameters prediction.

3.3. Planar depth map reconstruction

In this subsection, we present how we associate the
above two branches to make them benefit from each other.
We also demonstrate how to get the piece-wise planar depth
map as the final reconstructed plane representation.

Plane instance-aware soft pooling. After getting per-
pixel plane parameters and plane masks from the two
branches, the natural question is, can we associate the two
heads and make them benefit from each other? To this end,
inspired by [56,61], we design a soft-pooling operation and
propose a loss supervision on the depth map. For a detected
plane, we output its soft mask m, € R”*W  where each
element o; at each pixel 7 of my is the predicted foreground
probability instead of a binary value € {0, 1} for differen-
tiability. Then the instance plane parameter p; can be com-
puted by a soft-pooling operation with weighted averaging:

N
p = T TR 3)
D=1 0

Then the instance-level planar depth map can be recon-

structed: 1
D= TR T @

where 1; is an indicator variable to identify foreground pix-
els. A threshold of 0.5 is applied on o; to determine whether
pixel i is identified as foreground. K —1 is the inverse intrin-
sic matrix and x; is the homogeneous coordinate of pixel .

Depth map representation and loss supervision. We
can obtain a stitched depth map D € R”*W for the image
by filling the planar pixels with instance planar depth maps
from Eq. (4). Since the learned pixel-wise plane parameters
capture local planarity, we fill the non-planar pixels with the
reconstructed pixel-wise planar depth map.

Then we can design a soft-pooling loss L, between the
reconstructed depth map D and groundtruth depth map D*,
with L; loss supervision as our soft-pooling loss L:

Lep =D =D}, - ()

By supervising the model with L, because of Eq. (3),
the planar depth map is not only determined by the plane
MYVS head but also the plane detection head. In other words,
the model is supposed to make the learned 2D plane seg-
mentation and 3D plane parameters consistent with each
other. During training, one module is able to get constraints
from the other one’s output. Note that although this loss
shares similarity with [56, 61], there are differences be-
tween their work and ours. PlaneRecover [56] applies a
similar loss to assign pixels to different plane instances.
PlaneAE [61] builds the loss on plane parameter instead
of depth map and targets to improve instance-level param-
eters. In contrast, our soft-pooling loss is mainly designed
for making possible interactions between 2D plane segmen-
tation and 3D parameter predictions.

3.4. Supervision with loss term uncertainty

Our supervisions have three parts: the plane detection
losses Lp, the plane MVS losses L, and the soft pooling
loss Lgp. Lp includes two-stage classification and bound-
ing box regression losses, and the mask loss in the 2" stage.
Ly includes the loss built on initial per-pixel plane param-
eters and its reconstructed depth map, and the refined ones.
For each term of Lj;, we adopt masked L, loss which is
only applied on the pixels with valid groundtruth. Since the
goals of plane detection and plane MVS branch are distinct,
we weight each loss term by its learned uncertainty as in-
troduced in [25]. This is effective in our experiments and
can outperform the results without applying uncertainty by
a large margin. Our final loss objective can be written as:

Np N
L= Z wp,Lp, + ZwMjLMj +wspLsp ,  (6)
i J

where w is the learned uncertainty for each loss term.

4. Experiments
4.1. Implementation details

We implement our framework in Pytorch [38]. The SGD
optimizer is applied with an initial learning rate of 3 x 103
and a weight decay of 5x 10~%. The batch size is set to be 6,
and the model is trained end-to-end on 3 NVIDIA 2080Ti
GPUs for 10 epochs on the ScanNet [6] benchmark. The
learning rate decays to 3 x 10™* and 3 x 107° at 7*! and
9*h epoch respectively. We re-implement plane detection
module following [31] but with a publicly released imple-
mentation [36] of Mask-RCNN [18]. Following [31], we
initialize the weights with a detection model pretrained on
COCO [30]. The input image size is set to be 640 x 480
during training and testing. Since our batch size is rela-
tively small, we freeze all the batch normalization [20] lay-
ers of the plane detection head during training. We apply



Method Depth Metrics Detection Metrics

AbsRel| SqRell RMSE| RMSElog| d<1.25% §<1.25% §<1.25% | AP%2m1  APO4mg  APOSm4  APO97m4  APT  mAPT
PlaneRCNN [31] 0.164 0.068  0.284 0.186 0.780 0.953 0.989 0.310 0.475 0.526 0546 0.554 0452
MVSNet [58] 0.105 0.040  0.232 0.145 0.882 0.972 0.993 - - - - - -
DPSNet [19] 0.100 0.035 0215 0.135 0.896 0.977 0.994
NAS [26] 0.098 0.035 0213 0.134 0.905 0.979 0.994
ESTDepth [33] 0.113 0.037 0219 0.147 0.879 0.976 0.995 - - - - - -
PlaneMVS-pixel (Ours) | 0.091 0.029  0.194 0.120 0.920 0.987 0.997 0.448 0.535 0.556 0.560  0.564 0.466
PlaneMVS-final (Ours) | 0.088 0.026  0.186 0.116 0.926 0.988 0.998 0.456 0.540 0.559 0.562  0.564 0.466

Table 1. Evaluation results for plane geometry and detection on ScanNet [6] among different methods.

group normalization [53] as the normalization function in

our plane MVS head.

4.2. Training data generation

Semantic plane groundtruth generation. To build our
plane dataset with semantic labels, we first obtain and pre-
process the raw rendered plane masks from [31], and get the
2D raw semantic maps from ScanNet [6]. Then we map the
semantic labels from ScanNet to NYU40 [42]. We merge
some semantically similar labels in NYU40 and finally pick
11 labels that are likely to contain planar structures. We ob-
tain the semantic label for each plane instance by projecting
its mask onto the semantic map then performing a majority
vote. If the voted result does not belong to any of the labels
we select, we simply label the raw mask as non-planar and
treat it as a negative sample during training and evaluation.

View selection for MVS. We have to sample stereo pairs
from ScanNet [6] monocular sequences and a stereo pair is
considered appropriate if the images in the pair have a large
enough camera baseline and sufficient overlap. In this work,
we choose those stereo pairs as qualified ones if their rela-
tive translations lie between 0.05m and 0.15m. We select 2
views (a target and a source view) during training and test-
ing. We believe adding more views could further improve
performance, but that is outside the scope of this work.

4.3. Datasets

In our experiments, we use ScanNet [6] for training
and evaluation. We further generalize our model to two
other RGB-D indoor datasets, i.e., 7-Scenes [14] and TUM-
RGBD [44], by testing with and without fine-tuning, to
demonstrate the generalizability. Since the two datasets do
not contain any plane groundtruths, we only evaluate the
planar geometry metrics and show some qualitative results
for plane detection on them. Due to space limit, here we
only introduce how we use ScanNet. Please refer to our
supplementary material for information on other datasets.

ScanNet. ScanNet [0] is a large indoor benchmark con-
taining hundreds of scenes. We sample the training and test-
ing stereo pairs from its official training and validation split,
respectively. After pre-processing and filtering out the un-
qualified data following the steps in PlaneRCNN [31], we
randomly subsample 20, 000 pairs for training. However,
since the raw 3D meshes of ScanNet are not always com-
plete, the rendered plane masks from meshes are noisy and

inaccurate in quite a few images. This results in unconvinc-
ing plane detection evaluation if we directly test on those
images. To this end, we manually pick 950 stereo pairs
whose plane mask annotations are visually clean and com-
plete from the original testing set for our evaluation.

4.4. Evaluation metrics

Following previous plane reconstruction methods [31,

], we mainly evaluate the plane reconstruction quality
on average precision (AP) of plane detection with varying
depth error thresholds [0.2m, 0.4m,0.6m,0.9m|, and the
widely-used depth metrics [8]. Since we introduce plane
semantics in our framework, we also evaluate the mean av-
erage precision (mAP) [30] which couples semantic seg-
mentation and detection as used in object detection papers.

4.5. Comparison with state-of-the-arts

Single-view plane reconstruction methods. We first
compare our PlaneM VS with a SOTA single-view plane re-
construction method PlaneRCNN [3 1], which also serves as
the baseline of our model. We test it on our re-implemented
version with plane semantic predictions with the same train-
ing and testing data as ours. Tab. 1 shows that our method
outperforms PlaneRCNN in terms of both plane geometry
and 3D plane detection by a large margin. As shown in
Fig. 3, PlaneRCNN does well in obtaining geometrically
smooth planar depth maps, but their plane parameters are
far from accurate (e.g., the 2"¢ and 4" row of Fig. 3),
which rely on single-view regression and suffer from the
depth scale ambiguity issue (e.g., the 1°¢ and 3"¢ row of
Fig. 3). For AP without considering depth, we also get con-
siderable improvements benefiting from multi-task learning
and the proposed soft-pooling loss. Although PlaneRCNN
is a strong baseline, Fig. 4 clearly shows that our method
better perceives plane boundaries, and our segmentation
aligns better with 3D plane geometry. For mAP evalua-
tion which considers plane semantic accuracy with detec-
tion, our method also outperforms PlaneRCNN by a non-
trivial margin.

Learning-based MVS methods. We also compare our
method against several representative MVS methods. We
select two representative depth-based MVS methods, MVS-
Net [58] and DPSNet [19] since our MVS module shares
similar network architecture with them. Besides, we also
compare with NAS [26] which aims to enforce depth-
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Figure 3. Qualitative results of reconstructed depth maps on ScanNet [6]. “PlaneMVS-pixel” denotes the depth reconstructed from pixel-
level plane parameters. “PlaneMVS-final” denotes the final depth from the instance plane parameters after plane soft-pooling. Regions
with salient differences between our results and others are highlighted with blue and red boxes. Best viewed on screen with zoom-in.

normal geometric consistency in MVS. We train and test
these methods on our ScanNet data split with their released
code for fair comparisons. We also compare with one of the
state-of-the-art multi-view depth estimation methods EST-
Depth [33]. From Tab. 1, our method clearly outperforms
those MVS methods. Note that [33] is designed for tem-
porally longer frames which may explain its possible per-
formance drop when testing on two-views. The qualitative
results in Fig. 3 clearly show that compared with conven-
tional depth-based MVS methods, our “PlaneMVS-pixel”
results reconstructed from pixel-level plane parameters have
shown more accurate depth, especially over textureless ar-
eas, which can be accredited to the proposed slanted plane
hypothesis that learns planar geometry. By applying soft-
pooling with detected plane masks (i.e., our “PlaneMVS-
final”), global geometric smoothness and sharper bound-
aries can be achieved over planar regions. The texture-copy
issue in some cases (e.g., the 1% row of Fig. 3) of other
methods can also be effectively avoided in ours.

4.6. Results on 7-Scenes

We evaluate our approach on the 7-Scenes [ 14] dataset to
check its generalizability. Tab. 2 shows that our method also
significantly outperforms PlaneRCNN [31], and is better
than or comparable with other MVS methods [19,26,33,58].

Method AbsRel] 0 < 1.251
PlaneRCNN [31]| 0.221 0.640
MVSNet [58] 0.162 0.766

DPSNet [19] 0.159 0.788
NAS [26] 0.154 0.784
ESTDepth [34] 0.153 0.786
Ours 0.158 0.793
Ours-FT 0.113 0.890

Table 2. Reconstructed depth on 7-Scenes [ 14] dataset by different
methods. “Ours” means directly testing with ScanNet-pretrained
model. “Ours-FT” means testing with 7-Scenes-finetuned model.

Since PlaneRCNN [31] learns plane geometry from sin-
gle views, the ability to generalize beyond the domain of
training scenes is limited. However, our method benefits
from multi-view geometry to learn multi-view feature cor-
respondences and thus has superior generalizability on un-
seen data. We leave how we perform finetuning on 7-Scenes
with only groundtruth depth to the supplementary material.

4.7. Ablation study

In this subsection, we evaluate the effectiveness of each
proposed component (i.e., soft-pooling loss, loss term un-
certainty, convex upsampling, and slanted plane hypothe-
sis). We leave some comparisons on hyper-parameters and
settings to the supplementary material.



Method Depth Metrics

AbsRel| SqRell RMSE| RMSE.logl &< 125t &<1.25% §<1.25%

Detection Metrics
APO2mp  APOAm4  APOGm4  APO9m4  APP

Baseline 0.170 0.074 0.305 0.200 0.746
+ Soft-pooling loss 0.119 0.042 0.234 0.148 0.871
+ Loss term uncertainty | 0.089 0.027 0.190 0.119 0.922
+ Convex upsampling 0.088 0.026 0.186 0.116 0.926

0.944 0.990 0.288 0.458 0.519 0.545 0.551
0.979 0.995 0.380 0.520 0.549 0.557 0.561
0.987 0.997 0.449 0.535 0.556 0.560  0.562
0.988 0.998 0.456 0.540 0.559 0.562  0.564

Table 3. Ablation study on the components of our proposed method.

Image PlaneRCNN

PlaneMVS

Figure 4. Qualitative results of plane detection on ScanNet [6].
The regions with salient differences between our method and Plan-
eRCNN are highlighted with red boxes.

Method AbsRel| SqRel| 6 < 1.257 AP"?™ 1 AP}
Fronto-MVS| 0.094 0.033  0.917 0433 0.548
Ours 0.088 0.026  0.926 0.456 0.564

Table 4. Ablation study: slanted v.s. fronto-parallel plane.

Soft-pooling loss. The soft-pooling loss is designed for
coupling plane detection and plane geometry. From Tab. 3,
it significantly improves both plane depth and 3D detection
on all metrics. It helps the pixels within the same plane
learns consistent plane parameters which benefits the plane
geometry. For plane detection, as shown in Fig. 4, our de-
tected planes also align better with 3D plane geometry, es-
pecially over plane boundaries.

Training with loss term uncertainty. Tab. 3 shows that
by weighting each loss term with learned uncertainty, our
model can get further improvement on plane geometry and
3D detection. There are two possible reasons. First, our
model has different branches with multiple losses for 2D or
3D objectives. Setting each loss with the same weight may
not make them converge smoothly. Second, as introduced
in Sec. 4.1, the plane detection head is initialized with a
COCO-pretrained model. But for the MVS head, we train
it from scratch. Thus the learning procedures for the two

branches may be imbalanced if we do not adaptively change
the weights for each term. After adopting the learnable un-
certainty, the weights of different terms are automatically
tuned during training, which has brought great benefits.

Convex upsampling. We analyze the effect of apply-
ing the convex combination upsampling to replace bilinear
upsampling. As shown in Tab. 3, we get considerable im-
provement. The learned convex upsampling better keeps
fine-grained details than bilinear upsampling.

Slanted plane hypothesis. We conduct an additional
ablation study, i.e., replacing our slanted plane hypothesis
with the frontal-parallel plane hypothesis, using the same
network architecture. We also apply convex upsampling
and loss-term uncertainty for fair comparison. We em-
ploy the least-squares algorithm to fit planes with the pre-
dicted per-pixel depth map and plane masks, and then trans-
form the plane parameters to planar depth maps. As shown
in Tab. 4, our proposed method outperforms the ‘Fronto-
MVS’ baseline on both 3D plane detection and depth met-
rics. Besides, our model learns plane parameters in an end-
to-end manner instead of fitting planes as a post-processing
step. This verifies the effectiveness of the proposed slanted
plane hypothesis w.r.t. fronto-parallel hypothesis.

5. Conclusion and Future Work

In this work, we propose PlaneM VS, a deep MVS frame-
work for multi-view plane reconstruction. Based on our
proposed slanted plane hypothesis for plane-sweeping, 3D
plane parameters can be learned by deep MVS in an end-to-
end manner. We also couple the plane detection branch and
the plane MVS branch with the proposed soft pooling loss.
Compared with single-view methods, our system can recon-
struct 3D planes with significantly better accuracy, robust-
ness, and generalizability. Without sophisticated designs,
our system even outperforms several state-of-the-art MVS
approaches. Please refer to our supplementary material for
more results, discussions and potential limitations.

There are a few directions worth exploring in the fu-
ture. First, recent advanced designs of deep MVS sys-
tems [16,52,57,62] could be incorporated to further im-
prove MVS reconstruction. Second, temporal information
from videos (beyond two frames as we are currently us-
ing) can be exploited to achieve temporally coherent plane
reconstruction, such that consistent single-view predictions
could be fused into a global 3D model of the entire scene.

Acknowledgement. The research of J. Liu and X. Huang
was supported in part by the NSF award #1815491.



6. Supplementary Material
6.1. Hypothesis selection for slanted planes

Fig. 5 shows the distribution of the three axes of plane
nT /e sampled from 10, 000 training images. Based on the
distribution, we select (—2,2), (—2,2), (—2,0.5) as the
range of x,y, z axis for n” /e, respectively, to ensure at
least 95% of the groundtruth planes lie within the ranges.
Since our plane hypothesis is a three-dimensional vector,
the computational cost of the cost volume is cubic w.r.t. the
number of hypothesis per axis. To reach a balance between
accuracy and memory consumption, we sample 8 hypothe-
ses uniformly along every axis and finally have N = 83 =
512 plane hypotheses in total.

6.2. Semantic classes on ScanNet

After merging the semantically-similar categories in
NYU40 [42] labels, we pick 11 classes: wall, floor, door,
chair, window, picture, desk & table, bed & sofa, monitor
& screen, cabinet & counter, box & bin, which are likely
to contain planar structures in indoor scenes. Please refer
to Fig. 6 for some visualization examples of the generated
planar instance and semantic groundtruth from ScanNet [0].

6.3. Benchmark setup

7-Scenes. 7-Scenes [14] collects posed RGB-D camera
frames of seven indoor scenes. We sample stereo pairs in
the same manner as in ScanNet [6] and follow the official
split to get finetuning and evaluation data. We finally have
26, 358 pairs for finetuning and 15, 508 pairs for evaluation.

TUM-RGBD. TUM-RGBD [44] is an indoor RGB-D
monocular SLAM dataset with calibrated cameras. We ran-
domly select 4 scenes (i.e., fr1-desk, frl-room, fr1-desk2,
fr3-long-office-household) with 5,013 pairs for finetun-
ing and 2 scenes (i.e., fr2-desk, fr3-long-office-household-
validation) containing 4, 817 pairs for evaluation.

6.4. Results on 7-Scenes and TUM-RGBD

We have discussed how we deal with 7-Scenes and have
demonstrated its quantitative results in the main paper. Here
we introduce our simple but effective strategy to perform
finetuning with only groundtruth depth. We first generate
pseudo groundtruths of plane masks by getting the predic-
tions with the ScanNet-pretrained model on the testing im-
ages. Then we train our model without plane parameter
losses but maintain other losses. We simply set each loss
weight to 1 instead of adopting the loss term uncertainty
during finetuning since we find it cannot bring much im-
provement. We finetune the model for 5 epochs. The planar
depth gets much improved and we find that the plane de-
tection results also tend to be visually better, which may be
accredited to multi-task training and our soft-pooling loss

to associate 2D with 3D. The same applies to the TUM-
RGBD [44] dataset. Some qualitative examples of 7-Scenes
are shown in Fig. 7.

As shown in Tab. 5 and Fig. 8, similar to 7-Scenes, our
approach generalizes much better on TUM-RGBD com-
pared with PlaneRCNN [31], thanks to the learned multi-
view geometric relationship. By performing the proposed
finetuning strategy, the results get further improved on both
3D planar geometry and 2D planar detection.

Method AbsRel| SqRel| ¢ < 1.257
PlaneRCNN [31]| 0.243 0.105  0.655
Ours 0.143  0.07 0.795
Ours-FT 0.120 0.054 0.851

Table 5. Reconstructed depth on TUM-RGBD dataset [44] of dif-
ferent methods. “Ours” means directly testing with the ScanNet-
pretrained model. “Ours-FT” means testing with the TUM-
RGBD-finetuned model.

6.5. More Ablation studies

In this section, we discuss the impact of applying differ-
ent hyper-parameters or settings in our experiments. Then
we show qualitative examples on the two components of our
proposed method to intuitively demonstrate their effects.

6.5.1 Hyper-parameters and settings

Plane hypothesis range. We first study the effect of the
plane hypothesis range we set. We compare the results of
different hypothesis ranges while keeping the hypothesis
number N unchanged: (i) use the same range of (—2, 2) for
the x,y, z axes; (ii) broaden the range to (—2.5,2.5); (iii)
shorten the range to (—1.75,1.75); (iv) employ the same
range of (—2,2) for the x,y axes and a different range of
(—2,0.5) for the z axis. As shown in Tab. 6, setting (iv),
which serves as our default setting, achieves the best re-
sult. The performance drops when using the same range
for all axes as (i), since z values mainly distribute between
(—2,0.5). Using a broader range, e.g. (i) and (ii), covers
some marginal values but decreases the density of the plane
hypothesis, thus leading to less accurate results. In setting
(iv), although shortening ranges can increase the hypothe-
sis density, some non-negligible groundtruth values are not
well covered, thus also leading to worse results.

Hypos range AbsRel| 0 < 1.251
(-2, 2) for x,y,z 0.093 0.920
(-1.75, 1.75) for x,y,z 0.094 0.921
(-2.5,2.5) for x,y,z 0.096 0.919
(-2, 2) for x,y; (-2, 0.5) for z| 0.088 0.926

Table 6. Ablation study on the range of slanted plane hypothesis.

Plane hypothesis number. When keeping the plane
hypothesis range constant, varying hypothesis number N
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Figure 5. Plane hypothesis distribution of the three axes.
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Figure 6. Examples of planar semantic and instance groudtruths on
ScanNet [6]. Different colors represent different plane instances
(2™ column) or semantic categories (3" column).

changes the hypothesis density. We test our model using
6, 8, 10 hypotheses per axis, i.e., N = 216,512 and 1, 000
respectively. The results are listed in Tab. 7. As expected, in
general, the higher density we set, the better geometry per-
formance we achieve. The performance gaps among differ-
ent numbers are small, which demonstrates that our model
is robust to these hyper-parameters to some extent. Note
that using N = 1,000 will substantially increase the mem-
ory consumption. So we choose N = 512 in our default
setting.

Plane instance-aware soft pooling. We now evalu-
ate the recovered depths among different pooling strate-
gies reflecting the efficacy of plane detection on the learned
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Hypos number per axis |[AbsRel] § < 1.257
6 hypos (216 in total) 0.091 0.924
8 hypos (512 in total) 0.088 0.926
10 hypos (1,000 in total)| 0.088 0.927

Table 7. Ablation study on plane hypothesis number.

Method AbsRel| § < 1.257
Pixel-planar w/o pooling 0.091 0.920
Pooling with predicted masks 0.088 0.925
Soft-pooling with predicted masks| 0.088 0.926
Pooling with groundtruth masks 0.087 0.932

Table 8. Ablation study on plane instance pooling with plane
masks during testing.

3D planar geometry. As shown in Tab. 8, when evaluat-
ing the depth reconstructed from pixel-level plane parame-
ters, it underperforms the results with plane instance pool-
ing since the generated depth maps cannot capture piece-
wise planarity. The result improves when we apply hard-
pooling with predicted plane masks over the pixel-level
plane parameters. Applying soft-pooling weighted with
pixel-level probability further brings a minor improvement
since the probability reflects the confidence of a pixel be-
longing to a plane instance. Finally, we use groundtruth
plane masks to perform pooling, which represents the up-
per bound of the impact of plane detection on geometry.
As expected, it achieves the best result among the settings.
Since groundtruth plane masks are not available during test-
ing, we always apply the soft-pooling with predicted masks
in other experiments.

Depth on planar region. We further compare the re-
constructed depth over only planar regions v.s. the whole
image. Specifically, we conduct experiments only evaluat-
ing depth on the pixels that belong to any of the groundtruth
planes. As shown in Tab. 9, compared with the depth over
the whole image, the quantitative result over planar regions
is better, no matter whether plane-instance-pooling is ap-
plied or not. This demonstrates that our proposed method’s
geometry improvement mainly comes from the pixels of
planar regions, which conforms to our initial motivation and
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Figure 7. The plane reconstruction results on 7-scenes [14] among different methods. “FT” denotes “finetuned” and “det” is short for
“detection”. Regions with salient differences are highlighted with blue and red boxes.
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Figure 8. The plane reconstruction results on TUM-RGBD [44] among different methods. Regions with salient differences are highlighted
with blue and red boxes.

objective. set with 66, 000 stereo pairs from the same scene split but
keep the evaluation split unchanged. As shown in Tab. 10,
Method AbsRel| 0 < 1.251 p p g . .
Depth over whole image w/o pooling | 0.091  0.920 our performance can be further improved with more train-
Depth over planar region w/o pooling| 0.086  0.929 ing data on both plane detection and geometry metrics.
Depth over whole image 0.088 0.926
Depth over planar region 0.081 0.938
Dataset Scale AbsRel| 6 < 1.251 APY?™ 4 APt
Table 9. Ablation study on the evaluations over planar region. 20,000 training pairs| 0.088  0.926 0456 0.564
66,000 training pairs| 0.082 0.934 0.470 0.570

Training dataset scale. In our default setting, we only
sample 20, 000 stereo pairs for training. To analyze the im-
pact of the scale of training data, we sample a larger training

Table 10. Ablation study on the scale of training dataset.
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6.5.2 Qualitative ablation analysis

This section gives some qualitative ablation analysis on
the two components (i.e., convex upsampling and the soft-
pooling loss) used in our method. Fig. 9 shows the efficacy
of convex upsampling. We show the depth map recovered
from pixel-level parameters to eliminate the effect of plane
instance pooling. It is clear that the results upsampled by
convex combination have sharper boundaries and fewer ar-
tifacts than using bilinear upsampling.

Fig. 10 shows the effectiveness of the proposed soft-
pooling loss. The detected planes from the model trained
with the soft-pooling loss are much more complete and
align better with their boundaries.

Image Bilinear Upsampling Convex Upsampling Groundtruth
Figure 9. Effects of the convex upsampling on the depth map from
pixel-level plane parameters. Regions with salient differences are

highlighted with red boxes. Best viewed on screen with zoom-in.

Image

w/o soft-pooling loss

w/ soft-pooling loss

Figure 10. Effects of the soft-pooling loss on plane detection. Re-
gions with salient differences are highlighted with red boxes.

6.6. Additional visualizations

We provide additional visualizations on predicted in-
stance plane detection, planar semantic map, reconstructed
planar depth map and 3D point cloud in Fig. 11, from our
testing set on ScanNet [6].

6.7. Discussions and limitations

Our method v.s. patchmatch stereo. Our method
shares high-level ideas with traditional patchmatch stereo
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works [2, | 1] which aim to estimate a slanted plane for
each pixel on the stereo reconstruction problem. However,
our method differs from them in several aspects. (i) They
perform patch matching around a pixel within a squared
support window, where the patch size requires to be care-
fully set, thus not flexible and adaptive across various real-
world cases. Instead of explicitly defining a patch, we as-
sociate and match the multi-view deep features. This is
based on the observation that a pixel’s receptive field on the
feature map is far beyond itself because of stacked CNNs.
The model can automatically learn the appropriate field for
matching local features with end-to-end training. (ii) These
methods usually first initialize pixels with random slanted
plane hypotheses, then undergo sophisticated, multi-stage
schemes with iterative optimizations. In contrast, we gen-
erate more reliable slanted plane hypotheses based on a
data-driven approach (i.e., analyzing the groundtruth plane
distribution), and learn the pixel-wise plane parameters in
an end-to-end manner, which is much easier to optimize.
(iii) They usually adopt the photometric pixel dissimilarity
as the matching cost function, which is sensitive to illumi-
nation changes and motion blurs across views. In contrast,
we apply a feature-metric matching strategy, which is more
robust to potential noises compared with applying photo-
metric distance.

Potential limitations. Although we have achieved su-
perior performance in most images, our system generates
some failure cases as well. Firstly, as shown in Fig. 12,
because of the large temporal gap, there exist areas in the
target image which are invisible in the source image and
thus do not follow the planar homography relationship. This
issue may be mitigated by introducing a network to learn
the pixel-wise visibility or uncertainty [62]. Secondly, as
in Fig. 13, there exist holes on some adjacent planes recon-
structed from our method. An existing work [39] proposes
to infer and enforce the inter-plane relationship from sin-
gle images. This approach may solve the second issue and
could be incorporated to further improve the final plane re-
construction. We also leave it into future work to explore.
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