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Abstract

Robust model fitting is a fundamental problem in com-
puter vision: used to pre-process raw data in the presence
of outliers. Maximisation of Consensus (MaxCon) is one of
the most popular robust criteria and widely used. Recently
(Tennakoon et al. CVPR2021), a connection has been made
between MaxCon and estimation of influences of a Mono-
tone Boolean function. Equipping the Boolean cube with
different measures and adopting different sampling strate-
gies (two sides of the same coin) can have differing effects:
which leads to the current study. This paper studies the con-
cept of weighted influences for solving MaxCon. In particu-
lar, we study endowing the Boolean cube with the Bernoulli
measure and performing biased (as opposed to uniform)
sampling. Theoretically, we prove the weighted influences,
under this measure, of points belonging to larger structures
are smaller than those of points belonging to smaller struc-
tures in general. We also consider another “natural” fam-
ily of sampling/weighting strategies, sampling with uniform
measure concentrated on a particular (Hamming) level of
the cube.

Based on weighted sampling, we modify the algorithm
of Tennakoon et al., and test on both synthetic and real
datasets. This paper is not promoting a new approach per
se, but rather studying the issue of weighted sampling. Ac-
cordingly, we are not claiming to have produced a superior
algorithm: rather we show some modest gains of Bernoulli
sampling, and we illuminate some of the interactions be-
tween structure in data and weighted sampling.

1. Introduction

Robust model fitting is a fundamental problem in pro-
cessing data in the presence of outliers, which is a long-
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standing and challenging research topic. Maximisation of
Consensus (MaxCon) is one of the most popular criteria for
robust fitting, which aims at finding a model that has the
largest consensus on the given measurements. Formally,
given a data set ¥ = {a;}7_, of size n and a prescribed
threshold € > 0, the maximum consensus criterion for pre-
scribed type of mathematical model is formulated as,

max  |Z|,
0cQICXx (1)

st. r(z;,0)<e, Vz; eI,

where € is a subset of R?, p is the dimension of the pre-
scribed mathematical model', 6 is the model parameter, |Z|
is the size of the subset Z C X, r(z;, ) is the fitting resid-
ual of datum z; with respect to the model 6.

Random sample consensus (RANSAC), “the original
MaxCon algorithm”, is probably one of the most influen-
tial and widely used method since it was proposed in the
1980s [10]. The key idea is to adopt a hypothesize and ver-
ification procedure, which randomly samples subsets to fit
the model and computes the consensus with respect to the
obtained model. Such randomized methods can be very
fast but there is no guarantee for the optimality of solu-
tions. Variants of RANSAC, such as LO-RANSAC [6] and
PROSAC [5], may improve the original RANSAC, but, they
still inherit the drawback of randomized methods.

Another type of approach is based on the M -estimator
paradigm, or other ways to modify the residual measure.
Examples include: [; method [20], [, method [22,23], iter-
atively reweighted least squares [ 1], reweighted [; method
[21], exact penalty method [15, 16]. Such approaches solve
MaxCon deterministically, but like RANSAC, only approx-
imately.

Tn some cases, p should be a dimension larger than the dimension of
the prescribed model. For example, in rotation registration, § € SO(3) C
R?, p = 9 rather than dim/(SO(3)) = 3.



It is known that the MaxCon problem is combinatori-
ally hard [3]. Optimal methods, (branch-and-bound (BnB)
search [17] and A* tree search [2,4]) exist but their (worst
case) runtime increases exponentially with the size of the
problem, which makes them ineffective for large scale and
high dimensional problems.

This work directly follows [24] - here examining alter-
native definitions of influences and associated estimation
methods. That work, in turn, uses the same basic “tree”
strategy of Chin et al. [4], which used A* search on a tree
structure, founded on the notion of “basis” in LP-type the-
ory. The A* search is able to find global optimal solutions.
However, this method is slow in general, despite speedups
introduced by Cai ef al. [2]. In [25], an unsupervised
learning approach was proposed to determine which point
in a basis to remove in solving robust model fitting prob-
lems. This approach adopted the framework of reinforce-
ment learning, where removing points are guided by max-
imising rewards. Like many learning based approaches, it
may take a long time to train and it is hard to analyse the
method and its ability to generalise. Like [25] and [24],
modifications to the basic tree search that lose the priority
queue guarantees of A*, sacrifice optimality guarantees for
speed. This paper is also spiritually in that context.

1.1. Influence and consensus maximisation

Recently, Tennakoon et al. [24] characterized the max-
imum consensus problem by Monotone Boolean Function
Theory and investigated the characterisation of the MaxCon
solutions by influences of a monotone Boolean function. In
detail, any subset Z C X = {a,}, can be represented by
a bit vector b of length n, where its i-th component b; = 0
denotes the exclusion of the datum z; and b; = 1 denotes
the inclusion of the datum z;. Then, any subset Z is nothing
more than a vertex of an n-dimensional Boolean cube. A
Boolean function f : {0,1}" — {0,1}:

), it (@) > —_—
f) = {07 it r(0,2,) < Vie{j:b; =1} (2
defines feasbility (the subset {z; } denoted by b is called fea-
sible if f(b) = 0 and infeasible otherwise). Solving Max-
Con is a search for the feasible subset of maximal size.

A Boolean function is called monotone if f(a) < f(b)
holds for any @ < b, where the ordering relation < means
i-th component a; < b; for any 1 < ¢ < n. We can
easily see that the Boolean function (2) is monotone. The
reason is that adding data points to infeasible subsets still
keeps them infeasible while deleting data points from feasi-
ble subsets keeps them feasible. An upper zero b of a mono-
tone Boolean function f is a vertex such that f(b) = 0 and
f(a) = 1 for any a satisfying b < a. A maximum up-
per zero b of f is an upper zero with the maximal size, i.e.,

10001101

00001101 01100010 11010000

Figure 1. Top: 2D line fitting problem with 8 points. Bot-
tom: Boolean cube associated with the fitting problem. The 8D
Boolean cube is flattened on the plane, where every blue dot rep-
resents an infeasible subset of the line fitting problem and other
colored dots represent feasible subsets. These dots are arranged
by the ordering relation < from top to bottom. In this toy ex-
ample, there are four upper zeros, i.e., b = 00111111 (maxi-
mum upper zero, superscript represents how many data points are
chosen), b* = 10001101, 6> = 011000010, b* = 11010000,
which are highlighted in the cube and the sub-cubes determined
by these vertices are distinguished by different colors. The vertex
b*" = 00001101 is a pseudo upper zero (see definition in Section
3). Note that all vertices below level 3, i.e., less than 3 points are
fitted, must be feasible.

f(b) = 0and f(a) = 1 for any a satisfying ||a||; > ||b||1.
where || - ||1 is the [; norm. The upper zeros essentially
characterise all possible candidate consensus solutions sys-
tematically and finding maximum consensus is equivalent
to finding the maximum upper zero of associated Boolean
function. See Figure 1 for a toy example of 2D line fit-
ting, which illustrates the connection between monotone
Boolean functions and the MaxCon problem.

The key concept in [24] is influence. When endowing
the Boolean cube with a uniform measure, the influence of
b; of a Boolean function f is defined [19] as,

Inf;[f] := Pygo1yn [f(B) # F(BF)], 3)

where b®? denotes flipping the i-th bit in b, b ~ {0, 1}"
means b is uniformly distributed on the Boolean cube.
To estimate the influences in equation (3), the most ob-



vious and natural way would be to uniformly sample, and
use the empirical counts as (unbiased) estimates. The whole
Boolean Cube is, unfortunately, so vast, that spreading the
samples uniformly is not an efficient sampling strategy.
This undoubtedly led to the “uniform at level p”” (for p’
slightly larger than the combinatorial dimension p) sam-
pling strategy of [24], which will produce biased estimates.

1.2. Motivation of this paper

Given the above, one can thus view the method of [24]
as employing biased estimates of uniform measure influ-
ence (equation (3)). Alternatively, one could take the sam-
pling distribution used in [24] as implicitly defining a new
(weighted) influence measure (and the sampling strategy is
now an unbiased estimator of this new influence measure).
Both views are really two sides of the same coin. However,
the primary issue is whether the biased estimates of uniform
measure influence (first viewpoint: biased estimator - sec-
ond viewpoint: new influence measure) actually preserve
the ordering of the sizes of influences.

Put simply, in [24] there is a disconnect between the
measure used in the definition (and also in the proof of influ-
ence being greater for outliers) and the measure used in the
empirical estimation: but one can reconcile this by using a
definition of influences that entails the same biased measure
as would be used in sampling (to estimate the influences).
We are thus led to a more systematic and coherent study of
a topic called “weighted” (or biased) influences.

In section 2.1, we equip the Boolean cube {0, 1}" with
the Bernoulli(q) measure f,, namely, the probability of
b; = 11is ¢ and the probability of b; = 0is 1 — ¢, which
includes the uniform measure as a special case (¢ = %). For
this, an unbiased estimator is:

Inf{?[f] = I(f(z) # f@®)], @

Tropig ()

where I(-) is the indicator function, E[-] is the sample mean
of random variables. Empirical evidence (see section 4)
shows that a Bernoulli weighted influence based method
can achieve similar optimal solutions with less runtime or
even better results with similar runtime. But perhaps more
importantly, we analytically prove that this weighted mea-
sure preserves the necessary ordering of influences - see
section 3. In fact, since the expressions we derive for
Bernoulli weighted influence subsume uniform influence as
a special case, and since we cover more general data charac-
teristics (section 3.2) than that in the corresponding sections
of [24], this paper provides a more comprehensive theoreti-
cal analysis of the uniform measure as well.

Another family of measures, we call Hamming(k), puts
equal mass on subsets of a fixed size (fixed Hamming norm)
k, and zero elsewhere. A particular case of which is applied
in [24]. For these measures, it turns out that we do not need

to conduct an analysis from scratch. The expressions we
have for Bernoulli(q) weighted influence naturally stratify
by level (as do of course the corresponding equations in [24]
which are the special case Bernoulli(0.5)). This allows us to
obtain the number of feasibility/infeasibility flips per level
by inspection (and the corresponding weighted influence is
then just the appropriate normalisation produced by divid-
ing these counts by the number of vertices/subsets in the
given level). Nonetheless, this was not pointed out in [24],
nor were any resulting observations made. Moreover, since
we analyse a more general set of data assumptions we also
have a more comprehensive picture than can be deduced
simply by inspection of equations in [24].
Our main contributions can be summarised as:

e We characterize the influence of outliers/inliers in
MaxCon by the concept of weighted influence in the
Boolean function theory. By analysis, we prove that
the weighted influences of points belonging to the
larger structure in the data are generally smaller for
both ideal and non-ideal cases (see section 3 for defi-
nitions). Note that our analysis is much more general,
and correctly aligned with sampling, compared to [24].
Albeit, from the very large set of weighted influences
one could define, we examine only two families of
weighted influence: Bernoulli(q) and Hamming(k).

* We empirically test modifications made to the basic
algorithm of [24], to accommodate weighted sampling
by Bernoulli measure. On several robust fitting tasks,
our weighted influence based variant is an effective al-
ternative to the version in [24].

We also provide a conjecture, motivated by the structure of
the equations we derive, that possibly links and explains the
inherent structural complexity of MaxCon, by some recent
constructs of what characterises hard problems - see Con-
jecture 3.1 section 3.2.

In concluding this introduction we emphasize that we are
not proposing a hugely novel and vastly superior algorith-
mic approach. The aims and claims in the paper are in re-
lation to investigating MaxCon under new definitions of in-
fluence, and corresponding estimation strategies. The spirit
is a more careful and comprehensive study of those issues -
not of producing the “next leaderboard winning” algorithm.

1.3. Notation

We adopt the following notation: (1) Bold b denotes a
vertex (a vector of n bits) in the Boolean cube {0, 1}" and
its i-th component is denoted by b;. (2) [n] = {1,2,--- ,n}.
(3) Ly, := {b € {0,1}"] ||b|]s = k} denotes level k of the
Boolean cube {0,1}" for 0 < k < n. 4) L¢i, = {b €
{0,1}™] ||b|j1 < k} represents levels below level k + 1 in
the cube {0,1}". Similar definitions for L.y, L>y, L>.



(5) For b* € Ly, By := {b € {0,1}"|A(b,b*) = ,b €
Li—1,1 <1< k—p—1} denotes the sub-cube determined
by b*, where A(b,b*) = |{i : b; # b}}| is the Hamming
distance between b and b*. (6) Sgki ={l e n]| b =3},
where 5 = 0, 1. S;ki and Sl())ki represent the set of indices
of data points who are inliers and outliers with respect to
b € Ly, respectively.

2. Weighted Influences

In this section, we will introduce the definitions of
(Bernoulli) weighted influences (section 2.1) of mono-
tone Boolean functions in section and (Uniform Hamming)
weighted influences (section 2.2).

2.1. Bernoulli(q) weighted influences

Let ©, = {0,1}" be the discrete n-dimensional cube
endowed with the Bernoulli measure p,, where pu({b: b, =
1}) = ¢ € (0,1), namely, p14(b) = ¢l®Ih (1 — g)n~I1¥l,
Then, we can define a metric on €2, [19],

(fi, f2) = ) f1(b) f2(b) g (D)

bNQn
for any f1, fo defined on §2,,. The parity functions

Diesbi |SI=icsbi
X§(b) :=q= %" gy <9

form a basis of the space (2., (-, -)), where S is a subset of

convention.
The weighted first-order Fourier coefficient of a Boolean
function f on ¢-th variable can be given by

FIHEY) = (fxty) = Y flb)g 1q(®). (5

b~Q,,

With respect to the Bernoulli measure i, the weighted
influence of the i-th variable on a Boolean function f de-
fined on (2, is defined as (see Page 9 in [14])

pq({b: f(b) # F(0°)}). (6)

The relationship between f7({i}) and Inf?[f] is given

by the following theorem?.

Infq[ ] —

Theorem 2.1. If f : {0,1}" — {0,1} is a monotone
Bool tion, then Inf{[f] = ———— fa({i}).
oolean function, then Inf}|[f] mf ({i})

In practice, it is not very realistic to calculate the ex-
act value of (5) or (6) since the summation or probability
contains 2" possible b to evaluate. Since we will take ad-
vantage of the order information of all weighted influences

ZRefer to Appendix A for the proof. Similar result can be found in [14]
(Page 20) but without proof.

rather than their exact values to design algorithms for Max-
Con, it is sufficient to get approximated weighted influences
of good quality.

The way we estimate weighted influences is illustrated
as follows: Given a sample size h > p and a Weight

g € (0,1), we sample half of a set of vertices {b; }L 1 on
the Boolean cube (2,, according to the Bernoulli measure
ttq and then flip -th bit in all b; to generate another half

samples {b; } YT The monotone Boolean function f

is evaluated on these vertices. Therefore, by (5), (6) and
Theorem 2.1, we estimate the weight influence Infg [f] as

Inf; [f] = (b)), (D)

WTZf

where b; ; is the i-th component of b;. Note that the evalu-

ate of f on b; can be simplified by the monotonicity of f: if
f(b;) =0and b;; = 1, then f(b?i) = 0;if f(b;) = 1 and
bji = 0, then f(b;ei) = 1. Figure 2 shows the estimated
and exact weighted influences of data points illustrated in
Figure 1, where influences are normalized by maximal in-
fluence.

1 2 3 a 5 6 7 8

Figure 2. Comparison of normalized exact and estimated weighted
influences of all data points used in Figure 1, where g is set to 0.5
and we set the number of samples h = 100.

2.2. Hamming(k) weighted influences

Defining a Fourier transform (and in general analysis) re-
stricted to the Boolean slice (level of equal Hamming norm)
is actually a more complex topic, only recently researched.
See for example, [8, 9, 27] - arguments that might appeal
to Fourier theory for the uniform cube, often side-step the
more complicated Fourier picture on the slice. Likewise,
we will make no reference to Fourier coefficients.

In essence, one can go “direct” from the definition of ex-
pectations of the counts of transitions (from feasibility to
infeasibility) by flipping the i-th bit (including or excluding
the ¢-th data point) to the appropriate definition of influence
for the slice-concentrated measures (and thereby for sam-
pling/estimation strategies). Moreover, since these transi-
tions are counted by level (slice) in the appropriate formulae
for the Bernoulli(q) influences (given in section 3 or in [24]
for the Bernoulli(0.5) measure): one does not have to repeat



complicated derivations/analysis but can merely “pick off”
the relevant counts for the level under consideration, and
then normalize by the total count measure on a slice C}" for
slice k. Moreover, since one is only interested in relative
sizes of influences, normalization can be omitted.

3. Analysis of weighted influence

In this section, we theoretically show that points belong-
ing to larger structures have smaller weighted influences:
intuitively, the weighted influence of an “inlier” data point
is smaller than that of an “outlier” data point. Proofs of all
theoretical results in the following two subsections can be
found in Appendix A. Informed by our analysis, once can
search for the MaxCon solution, using weighted sampling
for influence: with some assurance the estimates have the
right relative order to identify outliers.

3.1. Bernoulli(q) - Ideal case

Real datasets are “non-ideal”, i.e., there are multiple
structures in the dataset and these often share many data
points; yet the ideal case is a useful starting point.

Definition 3.1 (Ideal Structure). Suppose {b*}7°, are up-
per zeros of a monotone Boolean function, where b* € Ly,
p+1<k <ko <o <kyy <n. Then

[ is called ideal if V i,j € [ngl, |Sy, N S;kj\ < p
namely, the structures have very small overlap.

f is called non-ideal if 3 i,j € [ng), S;,Cj | > p.
Namely, at least two structures have significant overlap. We
callb® = (b3, - -+ ,b%) defined by

b — 17
[ 0’

a pseudo upper zero with respect to b¥ and b*i, where
a =S 1k ns 1k | is the level that the pseudo upper zero
belongs to. Suppose ¥} (p+1< g <ap <+ <
Qg < kng) is the set of all pseudo upper zeros if f is non-
ideal.

L€ S, NSk,

. Vie|[n],
otherwise,

Theorem 3.1. (Ideal Single Structure) If ng = 1, namely,
f is ideal with respect to a single maximum upper zero b*',

then, fori € S;kl (inliers),
If{[f] = (Cp ' = Cp "L -)" "7, ®

and for i € Sy, (outliers),

k1
Iff[f] = Cp '’ (1—q)" "'+ > Cfg'(1—g)" ',
l=p+1
©)
which implies Inf] [f] — Inf] [f] = Cllfl—lqp(l _
q)" P+ Zl —p+1 Clqul(l - q)”‘l‘l > 0, where i1 €
Sbk1> Z2 S S

This theorem indicates that if there is only one ideal
structure, namely, points are either inliers or outliers with
respect to that structure, the weighted influences of out-
liers (all outliers share the same weighted influences) are
strictly larger than those of inliers (all inliers share the same
weighted influences).

Theorem 3.2. (Ideal Multiple Structure) If ny > 1, i.e,
[ is ideal with several upper zeros, then, ¥ i € N}, S” (if
non-empty), Inf?|f] is

(Cpt=> Gy Pl —gn

1s=1

ks
+> > G-

is=01l=p+1

(10)

Put simply, we can see (from the summations over i)
that the influence of a data point decreases when belonging
to a structure (and the decrease is more the larger the struc-
ture is) and increases for every structure the point does not
belong to (again, by more if that structure is large). These
increases and decreases are weighted differently (terms in-
volving ), complicating the relationship.

Note: with multiple structures, one has to be careful to
qualify “inlier” and “outlier”. These only have meaning
with respect to a nominated single structure. For that struc-
ture, all points “inlier” to other structures are actually outlier
to the nominated one.

From (15), we find that the influence Inf}[f] of data
point ¢ is larger if it is an outlier with respect to more upper
zeros. (So of course data outlier to all structures will have
the largest influence of all).

Here, we introduce a new Boolean cube {0, 1}, for any
iene S;@i , it corresponds to a vertex (i1,%2,- - ,in,) €
{0, 1}”0 Then, Inf?[f] is a real-valued Boolean function
on {0, 1}™. To shorten notation, we denote Inf?[f] for i €

0, Syt by f1(S%).
Corollary 3.2.1. The influences (15) have the following or-
der relationship

Vi e {0,137 i-j = fU(S%) < fUS7). A
Note that f9(S*) exists only if S® is non-empty.

3.2. Bernoulli(q) - Non-ideal case

“Given a pseudo upper zero b*, we introduce the notation
b% = {l € [n]|b)" = 1 — j}, where j = 0,1. For any
€ (M215,%,) N (N2 SZL% 41 ) (if non-empty), denote the
influence Inf?[f] of i-th variable on f by f9(S%), where
1= (il,ig, te aino+m0)-
Observe that if b*i is a pseudo upper zero with respect
to upper zeros b*i1 and b2, a data point i is an inlier with
respect to b*i1 and b¥2, then it must be an inlier with respect



to b%io; if 7 is an outlier with respect to any upper zero, then
it must be an outlier with respect to b%io .

Theorem 3.3. If f is non-ideal, then the weighted influence
fa(S) is given by

n—1 ks—1 as—1\ p n—p—1
(Cp — E Cp + E Cp )¢’ (1—q)
is=1 ing4s=0
1<s<ng 1<s<myg

ks o
DD D¢ W W ¢/ VA € E)

is=0 I=p+1 ing+s=11=p+1
1<s<ng 1<s<mg

where f1(S®) doesn’t exist if S® = ().

The core strategy to prove this theorem is by induction
on the number of pseudo upper zeros and taking advantage
of Theorem 3.2. Similar to the ideal case, by Theorem 3.3,
we can see that the weighted influences of points belong-
ing to larger structures are smaller. What becomes appar-
ent is that with many structures, the expressions become
hugely complicated by the combinatorics of possible inter-
sections/overlap between them - complicating the measure
of inlier/outlier dichotomy (with respect to any given struc-
ture). This leads us to conjecture:

Conjecture 3.1. (Complexity of MaxCon and Overlap
Gap Property (OGP)) In [/]] (and the works referred
therein), the computational complexity of many algorithms
has been linked to what is called the OGP. Essentially it
is argued that if the solution space is highly clustered (and
here locality is measured by overlap of the solutions) then
the problem will be hard for whole classes of algorithms.
In short, the existence of potential solutions that are ei-
ther very similar/have large overlap, or are widely sepa-
rately (few intermediate separated) - is a “signature” of a
hard problem to solve. We conjecture that this is true of
the MaxCon landscape of possible data configurations, and
the above reflects (through the lens of influence) how this
complicated data instance scenario manifests in a property
related to the sought solution - influence.

This conjecture is particularly intriguing because of the
link between maximum independent set (studied in [11])
and MaxCon - it can be shown that the MaxCon solution is
the maximum independent set of the (hyper)graph formed
by the infeasible minimal sized subsets (and also to the min-
imum vertex cover of the complement hypergraph).

3.3. Uniform Hamming measure Influence

Consider the ideal single structure case define in Theo-
rem 3.1. Firstly, it is easy to see the for the ideal single
structure, any algorithm that starts with a feasible set of size
large than the combinatorial dimension, and then greedily
adds points if the larger set remains feasible, will obtain the

MaxCon solution. So it is an easy problem with obvious so-
lution strategies. But if we did decide to use influences we
can note that from equation (3.1) the inlier influences came
from counting feasible/infeasible transitions between levels
p and p + 1 only. Thus for sampling uniform Hamming
level above level p + 1, there are no feasibility/infeasibility
transitions caused by inliers. In other words, the Uniform
Hamming influence measure, at that level or above, will be
exactly zero for inliers. Since the influences of outliers, for
the same measure will be non-zero, this seems to promise
a remarkably efficient sampling strategy - one could elimi-
nate outliers at the first sample that revealed a count for the
associated influence - without the need to continue with the
full estimation process. Of course, practically, this is too
good to hold for real data - it is very brittle to our strict as-
sumptions here. Nonetheless, it does hint at the usefulness
of a less brittle strategy of early termination of the counting
process once a count reaches some degree of statistically
significantly higher than the rest, rather than a set number
of samples always being used: a future research topic.

Now consider the ideal multiple structure setting. From
equation 15, the influence accrued by being inlier to some
structure (first term) is only accrued between level p and
p + 1. The subtraction is due to feasibility transitions “that
didn’t occur” because the subset with added inlier remains
within the same structure). So once again, sampling above
level p will not “see” those counts. But since inliers to one
structure are outliers to another (we assumed no significant
overlap): hence the influence of inliers to any structure will
not be zero - different to the single structure case, as all
structures are outliers to to (all) other structures and thus
accrue influence from the second term in the equation. It is
also easy to see that so long as the level is “not too high”
(above the largest structure) the Hamming sampled influ-
ences will be an appropriate guide (influence of inliers of a
larger structure will be smaller). (In that second term the
largest structure is excluded from the sum over is = 0,
when calculating influence for that structure.)

For space reasons, we relegate further discussion to Ap-
pendix B.

4. Experiments with Bernoulli measure

In this section, we empirically demonstrate that
Bernoulli weighted influence behaves generally as our anal-
ysis predicts (essentially retaining the correct ordering of
influences for inlier/outlier separation) across several robust
model fitting tasks on both synthetic and real datasets.The
main algorithm we use is presented in Appendix C (Algo-
rithm 1 - which follows [24] ). To reduce the risk of losing
genuine inliers, we also implement the local expansion (see
Algorithm 2 in Appendix C) at the last step in Algorithm 1,
which likewise follows the strategy of [24]. Note: the algo-
rithm of [24] is using uniform sampling at fixed Hamming



'
ool 1 M . =05
'
'

'
h
08
07 i 07
'
806 ! 8os
£ . s
] [ 205!
2 L
'
H .
'

[

SF dist

g

'
' T
' '

1 [N

1L P O I O O

05 06 07 08 09

04 100 200 300 400 1000 2000 3000 4000 5000
Probability q Number of samples

pl

Figure 3. Comparison results for 2-dimensional robust linear re-
gression: Variation of the SF distance with respect to different
(Left) sample probability ¢ and (Right) number of samples h. All
experiments were run 50 times.

level (so is implicitly providing a Hamming measure based
result), though there it was interpreted as a biased way to
estimate uniform measure influence, rather than, as here, a
new measure of influence. [24] empirically optimised their
sampling level - hence we do not experiment with Hamming
sampling here.

For comparison we include results from: RANSAC [10],
Lo-RANSAC [6], A*-NAPA-DIBP [2] (We only use it to
generate ground truth solutions for synthetic data with low
rate of outliers.), MBF [24], L1 [20].

Experiments employed Matlab R2020b on a computer
with Intel(R) i7-8700K CPU and 32GB RAM.

4.1. Robust linear regression

Analysis of parameters in weighted influences esti-
mation: Evaluation of the weighted influence (7) requires
two parameters: sample probability ¢ and sample size h.
Here, we study the effect of ¢ and h using synthetic data
on the 2-dimensional line fitting problem. We generate
n = 15 points® around a straight line and randomly select
30% points as outliers, which are perturbed with uniformly
distributed noise in range [—4, —0.1)N (0.1, 4]. The remain-
ing points are perturbed with uniformly distributed noise in
[—0.1,0.1]. We set the inliers threshold € as 0.1 in all ex-
periments throughout this subsection.

Let r., and r., be the top k (in decreasing order) of es-
timated weighted influences (calculated by (7)) and exact
weighted influences (calculated by (6)) of all points, respec-
tively. The value % is determined by the number of outliers
(found by A*-NAPA-DIBP). We measure the difference be-
tween r.s and r., by the normalized Spearman Footrule
(SF) distance [7]. Denote a set of elements contained in 7,
by R(re) and the position of the element z € R(r,) in 74
by z"*. The normalized SF distance between ., and ., is
given by

1
r esylex) = Tes — ples ’
(Fes:Tea) = F 7 D) 2l

2ER(Tes) "R (Tez)

3We choose the number of data points very low since the exact
weighted influences require exponential time to compute as n increases.
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Figure 4. Comparison results for 8-dimensional robust linear re-
gression: Compare (Left) consensus error and (Right) run time
with different number of outliers. The ground truth is found by
A*-NAPA-DIBP. All experiments were repeated 50 times.

where we use k + 1 for 2" if z ¢ R(r.). The smaller the
SF distance is, the more likely that ., and r., share the
same top k order of weighted influences.

For fixed number of samples (h = 300, 1000, 3000), we
vary the probability ¢ from 0.1 to 0.9; and for fixed prob-
ability (¢ = 0.3,0.5,0.7), we vary the number of samples
from 100 to 5000. The results are shown in Figure 3, from
which we can see that the SF distance is relatively small
when ¢ € (0.2,0.4); and for more samples, the SF distance
is smaller. In the following experiments, we will set the
probability ¢ between (p + 1)/n and 0.4 and sample size h
between 100 to 500 to maintain a trade-off between estima-
tion accuracy and run time. Note that the SF distance is not
able to distinguish points in r.s or 7., who share the same
weighted influences. These experiments also show the ne-
cessity of iteratively re-estimate weighted influences since
evaluating all weighted influences once does not match the
order of exact weighted influences perfectly.

Relative Performance: In this experiment, we consider
8-dimensional linear regression problem, where the syn-
thetic data are generated in the same way as we did in
last experiments. The number of data points n is cho-
sen as 200 and we vary the number of outliers from 10
to 40, which is limited by the computation time of A*-
NAPA-DIBP for generating ground truth. From Figure 4,
we can find both Bernoulli weighted influences and the orig-
inal MBF can achieve optimal solutions and the Bernoulli
weighted method is faster than MBF in general. The effect
of local expansion is compared in Appendix D.

4.2. Linearised fundamental matrix estimation

We further test the Bernoulli weighted influence based
approach on five image pairs from sequence “00” of the
KITTI Odometry dataset [12] in this subsection. For two
given image pairs, SIFT keypoints [18] are detected and
matched by the VLFeat toolbox [26]. Suppose pi,po are
two features that are matched, where p; = (x;,v;,1)7 is
the coordinate in view ¢, ¢« = 1,2, then each correspon-
dence provides a linear constraint on the fundamental ma-



Table 1. Results for linearised fundamental matrix estimation. Runtime of RANSAC and Lo-RANSAC is set to that of WI.

104-108 198-201 417-420 579-582 738-742
L1 Consensus 252 264 317 497 429
Time (s) 0.85 0.07 0.04 0.06 0.09
RANSAC Consensus 266.55 284.00 353.30 497.05 432.60
(262,270) (283,285) (351,356) (492,503) (428,440)
Lo-RANSAC  Consensus 268.55 284.90 355.25 501.45 439.35
(266,273) (284,287) (354,356) (496,506) (432,443)
MBF Consensus 271.70 287.70 358.95 507.15 444 .20
(268,274) (284,289) (357,360) (503,510) (442,446)
Time (s) 3.17 1.88 2.36 3.61 3.19
(2.65,4.41) (1.65,2.47) (1.96,2.66) (3.17,4.36) (2.68,3.56)
WI Consensus 271.55 288.35 359.05 507.65 444.15
(269,274) (286,289) (356,360) (502,510) (442,446)
Time (s) 2.64 1.75 2.10 3.42 3.09
(2.26,3.31) (1.43,2.03) (1.82,2.51) (2.93,4.15) (2.80,3.57)

trix F € R3*3 as pI Fp, = 0. In this experiment, we
consider the linearised version of fundamental matrix esti-
mation [13], where the inliers threshold is set to 0.02 for all
image pairs. The iteration numbers of RANSAC and Lo-
RANSAC are set to match the runtime of W1

After running all algorithms 20 times, the average con-
sensus and runtime including their variance are reported
in Table 1. We found that: (1) Although L1 is generally
very fast, the consensus size found is smaller than that of
the Bernoulli based approach WI; (2) RANSAC and Lo-
RANSAC are allowed to run the same time as WI, yet
WI is still better in terms of returned consensus size; (3)
WI achieves almost the same consensus size as MBF but
with less time cost (on image pairs 198-201, 417-420, 579-
582, WI finds a slightly higher average consensus size than
MBF). Further detail is in Appendix E.

4.3. Homography estimation

This experiment considers homography estimation to-
gether with linear residual model. For a set of corre-
spondences from two views represented by {(z;,y;)} with
z,,y; € R% letz; = (z;,1)T, 9, = (y;,1)7 be the
homogeneous representation, homography estimation is to
find a matrix H € R3*3 such that §; = Hz; for in-
liers. Since H is 8 dimensional uniquely defined up to
scale, it is possible to express homography estimation with
linear residual as a linear regression problem (see Chap-
ter 4 in [13] for details). We use 4 image pairs from the
Zurich Buildings datasets (Building 5, 22, 28, 37). Similar
to linearised fundamental matrix estimation, VLFeat tool-
box is used for extracting SIFT features and correspondence
matching. Note that each correspondence match produces

two residual functions, which means the number of data
points, inliers/outliers are doubled in optimisation.
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Figure 5. Comparison results for linearised homography estima-
tion on 4 Zurich Building image pairs: (Left) Compare consensus
size and (Right) run time. All experiment were repeated 20 times.

In this experiment, we allow RANSAC and Lo-
RANSAC to run for the same time as WI. The inliers thresh-
old is set to 0.1. From Figure 5, we find that WI can achieve
(roughly) the best performance among the four sampling
based methods. The run time of WI is smaller than that
of MBF on average. Further comparison between WI and
MBEF can be found in Appendix F.

5. Conclusion

We studied weighted influence in relation to the Max-
Con problem. Our analysis is more general than [24] in
terms of both the inclusion of weighted measures and in the
study of the “non-ideal case”. Incorporating weighted in-
fluences into the algorithm of [24], is straightforward. As
demonstrated by experiments on both synthetic and real
data, doing so is an effective alternative of [24] (roughly,
saving some run time while achieving similar consensus or



achieve better consensus with similar time budget). How-
ever, the main message is that, rather than viewing biased
sampling as some way to (more efficiently) estimate uni-
form influence, and “trusting” that the bias (in the estimates)
thereby introduced has no detrimental effect on the ordering
of influences (specifically of outliers having larger influence
than inliers), a proper study of biased measures allows us
to characterise the changes in these influence measures and
check for retention of the correct ordering. We address this
for two “natural” families of biased measures: Bernoulli
and Uniform at a fixed Hamming level.

Of course our work has two obvious limitations: our ana-
ysis (of ideal cases) necessarily involves assumptions whose
relevance to real world data could be challenged, and our
experiments are not exhaustive.
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A. Proofs of theoretical results
Theorem 2.1. If f : {0,1}" — {0,1} is a monotone
Boolean function, then Inf![f] = — qu({i}).

Proof. The i-th derivative operator D; maps a Boolean
function f to a function D; f defined by [19]

D;f(b) := f(0"") — f(b"), (12)

where b"7% = (by,--- ,b;_1,a,b;41, - ,b,). Since f :
{0,1}™ — {0, 1} is Boolean-valued, we have

+1, if f(b) # f(b%Y),
Dif(b) = {O, it £(b) = F(65), (13)
which means
Inf![f] = (D f, Dif),. 14
By definition,
1 "y
Dix§(b) = {_ T Xsn®),  HiE€S,
0, ifigS.
Then
SCn
1 ~
- F9(5)x“
Val—9) Slzes S\{i}
If f is monotone,
1 .
Iff[f] = (Dif,xj) = - T Fad)
O

Theorem 3.1 (Ideal Single Structure). If ng = 1, namely,
f is ideal with respect to a single maximum upper zero b*',
then, for i € S;kl (inliers),

Inf?[/] =

(G =g (L —a)"

and fori € S, bh (outliers),

k1
Inf![f] = Cp " (1— )" "7 + > Ol (1 —g" ',
l=p+1
L o
which implies Inf! [f] — Inf] [f] = C)~'¢?(1 —

q) P 4 Zl —p+1 Clqul(l - q)”‘l‘l > 0, where i1 €

Sbkl’ 19 € Sbkl

Proof. For any i € Sy, if b € L, 1 or Lypio, then
f(b) = f(b%"); if b € Ly, then f(b) # f(b®?) holds for
(Cp~t — Cf*~1)-possible vertices b; if b € Ly, then
f(b) # f(%) holds also for (Cp—! — Ck1=1)-possible
vertices b. Therefore, we have

f][f] = (C; 7" = Cp 7 H)gP (L — )" 7
(& &/ L O ) Lo
= (G =P (=gl
Forany i € Sp,,,ifb € Lgp_1 or Lxjio, then f(b) =
f(%); if b € Ly, then f(b) # f(b®) holds for C7'~!-
possible vertices b; if b € L,11, then f(b) # f(b¥%) holds
for (Cp~' + C;fjrl) -possible vertices b; if b € L; (p + 2 <
I < k), then f(b) # f(b%) holds for (Cf*, + Cf*)-

possible vertices b; if b € Ly, 11, then f(b) # f(b®%) holds
for C,fll -possible vertices b. Therefore, we have

Inf?[f] = C27 P (1 — q)" 7 + (Ci ™" 4 CF1 )¢+ x

k1
L= 7'+ > (G + ) -

l=p+2
+ Ckl k1+1(1 _ q)nfklfl

k1
L=g)" 77+ Y G (1—g" T

l=p+1

=Cp g (

O

Theorem 3.2 (Ideal Multi-Structure). Suppose ng > 1, i.e.,

[ is ideal with several upper zeros, then, ¥ i € N;"° S’Z; (if
non-empty),

Infl[f] = (C; 7' = > Gy Pl —g" 77!

is=1

ks
+> D G-

is=01l=p+1

15)

Proof. We prove this theorem by induction on ny. By The-
orem 3.1, (15) is true for ng = 1. Suppose (15) holds for

ng — 1, namely, V ¢ ic Ny 15;2 ,

Inf[f] = Cp 7 g (1 —g)" 7"

ks
LD DD DR Al

is=0 I=p+1
1<s<ng—1
ks—1 p n—p—1
- > CrTl¢P(l—q) :
ig=1
1<s<ng—1

Now we only have to prove that, V i € N} S;ﬁc ,

e (] = Tnf? /]

_Ckno qp(l - q) 17 Z"no = 17
n kn n—l—
S CEr g (L — g



When adding one more upper zero b0, for any i €
ﬁ?:(’flSZL N Sbkn , i-boundary edges will decrease by
C’ﬁ”"_l at level p and p + 1. Thatis, if b € L, or L1,
then f(b) = f(b%%) holds for C}I;""_l possible vertices b.

Then, the decrease amount for Inf?[f] is

Cpmo g (1 — )™ P 4 Cpo

=Gy (1

o1 *1qp+1(1 _q)n—p—l

n—p—1

—q)

Forany i € N, 15” N Sl(,)knn , i--boundary edges will in-
crease. In details, if b e Lk, +1, then f(b) # f(b¥7) holds
for C,lz": = 1 possible vertex b,ifb € L; (p+2 <1 < ky,),
then f(b) # f(b¥") holds for (C’lk”0 + C’lkf )-possible ver-
tices b, if b € Lp,1, the possible vertices b have C Fno

p+1
Then, the increase amount for Infg [f] is
kng kpo+1 —kny—1
Crnod ™o (1—¢)" "m0
kng
kn kn, _
+ (@O (g
l=p+2
K n—p
+C T (1) T
k"O
kn n—Il—
= Z Cl Oql(l_q) : 17
l=p+1
which complete this proof. O

Theorem 3.3. If f is non-ideal, then the weighted influence
fa(S?) is given by

ks—1 as—1y p n—p—1
Z Cp + Z Cp )q (1_‘])
is=1 ingts=0
1<s<ng 1<Dsgm0

ks [
A DD DR DD W e/ ) K

is=0 l=p+1 ingt+a=11l=p+1
1<s<ng 1<s<mg

B (16)
where f24(S®) doesn’t exist if S® = ().

To better understand Theorem 3.3, let us consider the
simplest non-ideal case where ng = 2 and mg = 1.
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Theorem 3.4. The existing influences are represented as

qu(S(llo)) _ (Cnfl . Cklfl . Ck271 _’_Cglfl) %

n p— 1
S(101) (C; 1 Ckl 1) p(l_q)nfpfl
Z CkQ Z Cal _ )n—l—l
l=p+1 l=p+1
5(011) ( Ckg 1) p(l_q)nfpfl
ai
Z D DN KU R
l=p+1 l=p+1
f (001) Cm 1 p n p—1
k1 k1 a1
o I DR W e/ N e I
l=p+1 l=p+1 l=p+1
)

which implies
FUSU) < FHST), FUS) < FrSO).

Proof. By Theorem 3.2, we only have to prove

Jo(s) = fa(se)
ColgP (L= Pl iy =0,
- X arda-or =1

l=p+1

Vi € S(**0) the verticesb € L, or L, for f(b) # f(b%)
have increased C)! ~! because of the ovelap sub-cube By, ,
then

(ee0 a1 —1 n—
FUSE0) =F1(Sea) + Cp NP (1 — )" 7
+ Cgl 1qp+1(1 _ q)n—p—l
_F oo a1—1 n—p—1
=fUSE) + O P (1— )P
Vie SV ifb € L,, 1, then i-boundary edges de-
crease by Ol if b € L; (p+2 < < ay), then i-boundary

edges decrease by C}"* + C}",, if b € L, 1, the decrease
amount is 1 | . Therefore,

Fo(S#0) =fU(54) — (Crg T (1 g
+ D G+ (-
l=p+2
+C +1qp“(1 ")
_fq S(" Z Coq l — )" l—l’

_p+1

which complete the proof.



By Theorem 3.2 and Theorem 3.4, Theorem 3.3 can be
proved by induction on my.

B. Uniform Hamming measure Influence

Consider the ideal single structure case define in Theo-
rem 3.1. Firstly, it is easy to see the for the ideal single
structure, any algorithm that starts with a feasible set of size
large than the combinatorial dimension, and then greedily
adds points if the larger set remains feasible, will obtain the
MaxCon solution. So it is an easy problem with obvious so-
lution strategies. But if we did decide to use influences we
can note that from equation (3.1) the inlier influences came
from counting feasible/infeasible transitions between levels
p and p + 1 only. Thus for sampling uniform Hamming
level above level p + 1, there are no feasibility/infeasibility
transitions caused by inliers. In other words, the Uniform
Hamming influence measure, at that level or above, will be
exactly zero for inliers. Since the influences of outliers, for
the same measure will be non-zero, this seems to promise
a remarkably efficient sampling strategy - one could elimi-
nate outliers at the first sample that revealed a count for the
associated influence - without the need to continue with the
full estimation process. Of course, practically, this is too
good to hold for real data - it is very brittle to our strict as-
sumptions here. Nonetheless, it does hint at the usefulness
of a less brittle strategy of early termination of the counting
process once a count reaches some degree of statistically
significantly higher than the rest, rather than a set number
of samples always being used: a future research topic.

Now consider the ideal multiple structure setting. From
equation (15), the influence accrued by being inlier to some
structure (first term) is only accrued between level p and
p + 1. The subtraction is due to feasibility transitions “that
didn’t occur” because the subset with added inlier remains
within the same structure). So once again, sampling above
level p will not “see” those counts. But since inliers to one
structure are outliers to another (we assumed no significant
overlap): hence the influence of inliers to any structure will
not be zero - different to the single structure case, as all
structures are outliers to (all) other structures and thus ac-
crue influence from the second term in the equation. It is
also easy to see that so long as the level is “not too high”
(above the largest structure) the Hamming sampled influ-
ences will be an appropriate guide (influence of inliers of a
larger structure will be smaller). (In that second term the
largest structure is excluded from the sum over i, = 0,
when calculating influence for that structure.)

In more detail, since a point is a member of at most one
structure (we forbid overlaps in the definition of “ideal”),
we observe that an inlier to any structure is associated with
only one term in the subtraction and

Analysis of the non-ideal case is complicated (hugely)
by the complex combinatorics of possible overlaps.
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Nonetheless, for structures with little overlap with any other
(we would argue the majority of structures in situations of
interest) the “perurbation” from the ideal case calculations
will be minimal. For situations with very large overlap in
structures, one could alternatively view these as minor vari-
ants of one and the same structure (simply including a few
extra points and losing one or two) and thus - with respect
to the overlaps involving the largest structure, these could
be considered as minor sub-optimal variants and essentially
recovering one of the slightly smaller variants, compared
with the actual optimal, is something of likely minor prac-
tical consequence. Of course, we realise that such observa-
tions are far short of conclusive argument and we make no
claims of otherwise.

C. Algorithms based on Bernoulli weighted in-
fluences

Algorithm 1 is essentially similar to that presented in
[24], where p+ 1 is the combinatorial dimension of the pre-
scribed model, the function f is evaluated as

f@) = ]I(moinma)zir(.’t,;,a) <e) 17

x; €

with [(+) the indicator function. The key difference is how
we evaluate the estimated weighted influences Inf ? [f]-

D. Comparison of the effect of local expansion
in MBF and WI

In this section, we will compare the effect of local expan-
sion in MBF and WI using the example of 8-dimensional
linear regression. The experiment setting is the same as
Subsection 4.1 in the main paper. We denote MBF and
WI without local expansion by MBF-nL and WI-nL, respec-
tively.

From Figure 6, we find that the number of inliers re-
turned by the proposed method without local expansion WI-
nL is less than that of MBF-nL, however, with the help of
local expansion, both WI and MBF can find the same num-
ber of inliers. More importantly, our method WI (WI-nL)
is generally faster than MBF (MBF-nL), especially in the
presence of higher number of outliers.

E. Further results on linearised fundamental
matrix estimation

This section further examines the performance of our
proposed method on linearised fundamental matrix estima-
tion on the KITTI dataset that is used in the main paper.
In this experiment, we choose the confidence p = 0.99
for the standard stopping criteria in both RANSAC and Lo-
RANSAC. The average consensus size and runtime includ-
ing their variance over 20 repeated runs are shown in Table
2.



Algorithm 1: Consensus maximisation using
weighted influences (WI)
Input: Dataset X = {x;}}" ,, probability ¢ € (0,1),
sample size h, threshold € > 0.
Output: Inliers set Z*
1 Initialization: Z < 17 y,,.
2 while |Z| > p do
3 Solve the minmax problem

min ;Iilaem%r(xi,ﬂ),

to get a basis B.
4 Evaluate the estimated weighted influences

ﬁ?[f] fori € B by

h
S b)Y ¢ (b))

Jj=1

It [f) = L

5 h/al—q)

T+ I\argmaxi{fr?fg[f] | i € B}.

6
7 | if f(Z) =0 then
8 I* 1.
9 Break.
10 end if
11 Conduct Algorithm 2 for local expansion to add

possible missing inliers.
12 end while
3 return Z*

-

Algorithm 2: Local expansion step

Input: Dataset X = {z;}!" ,, threshold ¢ > 0,
initial solution Z.
Output: Inliers set 7
1 Candidates «+ X'\ Z.
2 for 7 in Candidates do
T+ TU{i}.
if f(Z) =1 then
\ T+ T\ {i}.
6 end if
7 end for
8 return 7

[T I )

From Table 2, we can find that: (1) With respect to the
standard stopping criteria, RANSAC-p and Lo-RANSAC-p
are much faster than the proposed method, however, they
sacrifice the consensus size a lot, especially on the image
pair 738-742; (2) With the help of local expansion, both
MBF and WI improve the returned consensus size from
MBF-nL and WI-nL with a small amount of extra time bud-
get. Moreover, without local expansion, WI-nL is slightly
better than MBF-nL in terms of returned consensus size and
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Figure 6. Comparison results of 8 dimensional linear regression
with synthetic data: (Top) consensus size and (Bottom) runtime.
All experiments were repeated 50 times.

runtime, on average.

To further compare the performance of Lo-RANSAC,
MBF/MBF-nL and WI/WI-nL, we plot the distributions of
consensus size and runtime on the image pair 417 —420 and
579—582 in Figure 7. From which, we can see that although
WI and MBF can get similar average consensus size, WI
has a higher probability to achieve better results with less
time budget. Obviously, the more iterations of RANSAC
and Lo-RANSAC use, the higher consensus size they re-
turn. However, our method as well as MBF can increase
results by sampling more vertices in the Boolean cube to
get more accurate (weighted) influences.

A fair and safe conclusion is that on some datasets,
WI and MBF (including their variants) perform better than
RANSAC and Lo-RANSAC with some prescribed time
(generally longer than the rule of thumb prescriptions for
termination of those algorithms: thus when one is prepared
to spend extra computation for better results, WI and MBF
may be alternatives worth considering). More importantly,
W1 is able to achieve similar consensus size with less time
budget, which means W1 is an effective alternative of MBF.



Table 2. Results for linearised fundamental matrix estimation. RANSAC-p and Lo-RANSAC-p refer to RANSAC and Lo-RANSAC with
standard stopping criteria of the confidence p = 0.99, respectively. MBF-nL and WI-nL refer to implementing MBF and WI without local

expansion steps, respectively. All experiments were repeated over 20 random runs.

104-108 198-201 417-420 579-582 738-742
RANSAC-p Consensus ~ 252.05 276.00 341.20 474.20 411.60
(238,266) (267,282) (317,351) (453,496) (401,425)
Time (s) 0.01 0.01 0.01 0.01 0.01
(0.01,0.01)  (0.01,0.01)  (0.01,0.01)  (0.01,0.01)  (0.01,0.01)
Lo-RANSAC-p  Consensus  264.15 281.75 354.05 492.25 423.15
(255,269) (279,285) (352,356) (480,500) (413,435)
Time (s) 0.04 0.04 0.08 0.14 0.13
(0.01,0.07)  (0.01,0.07)  (0.03,0.13)  (0.08,0.27)  (0.05,0.26)
MBF-nL Consensus ~ 261.80 285.60 352.75 503.75 441.40
(253,268) (281,288) (348.,356) (499,509) (434,445)
Time (s) 3.03 1.84 2.41 3.57 3.25
(2.56,3.55)  (1.65,2.29)  (2.13,2.82) (293435 (2.82,4.10)
WI-nL Consensus  269.50 287.40 357.40 504.75 441.90
(266,272) (282,289) (352,359) (501,508) (439,444)
Time (s) 2.53 1.67 2.07 3.40 3.02
(2.27,290)  (1.56,2.04)  (1.78,2.69)  (2.98,4.05)  (2.79,3.41)
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Figure 7. Distributions of consensus size (left column) and run
time (right column) of linearised fundamental matrix estimation
on KITTI image pairs 417 — 420 (top row) and 579 — 582 (bottom

row).

F. Further results on linearised homography

estimation

In this section, we compare the distributions of consen-
sus size returned by MBF and WI, which is shown in Figure

WL

8. It can be seen that WI can achieve better results with high

probability.
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