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Abstract

Few-shot learning (FSL) is an important and topical prob-
lem in computer vision that has motivated extensive research
into numerous methods spanning from sophisticated meta-
learning methods to simple transfer learning baselines. We
seek to push the limits of a simple-but-effective pipeline
for real-world few-shot image classification in practice. To
this end, we explore few-shot learning from the perspective
of neural architecture, as well as a three stage pipeline of
pre-training on external data, meta-training with labelled
few-shot tasks, and task-specific fine-tuning on unseen tasks.
We investigate questions such as: 1 How pre-training on
external data benefits FSL? 2 How state of the art trans-
former architectures can be exploited? and 3 How to
best exploit fine-tuning? Ultimately, we show that a sim-
ple transformer-based pipeline yields surprisingly good per-
formance on standard benchmarks such as Mini-ImageNet,
CIFAR-FS, CDFSL and Meta-Dataset. Our code is available
at https://hushell.github.io/pmf.

1. Introduction
Mainstream supervised deep learning achieves excellent

results in applications where huge annotated datasets are
available. However, this assumption is not met in many ap-
plications where data (e.g., rare categories), or the cost of
human annotation are prohibitive bottlenecks. This has moti-
vated a large and growing set of research in few-shot learning
(FSL), which aims to emulate the human ability to learn new
concepts from few training examples. The FSL challenge
has proven fertile ground for developing and testing a vast
array of sophisticated research ideas spanning metric learn-
ing [55, 57], gradient-based meta-learning [29], program
induction [40], differentiable optimization layers [41], hy-
pernetworks [9], neural optimizers [50], transductive label
propagation [51], neural loss learning [4], Bayesian neural
priors [66] and more [64]. But how much practical progress
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Figure 1. How does pre-training and architecture affect few-
shot learning? Learning from a few shots can be achieved by a)
meta-learning [62,66] and b) transfer learning from self-supervised
foundation models pre-trained on large-scale external data [18, 49].
While the majority of FSL community focuses on the former, we
show that the latter can be more effective because it enables the use
of stronger architectures such as vision transformer (ViT) [25] – and
can be combined with simple meta-learners such as ProtoNet. The
figure shows results aggregated from dozens of studies from the past
5 years of FSL research and the result of ProtoNet + ViT backbone
+ contrastive language-image pretraining (CLIP) [49] (yellow star).
To emphasize the importance of pre-training, ProtoNet + randomly
initialized ViT (blue square) is also compared.

have we made based on all these technical advances?
A few studies [19, 20, 23, 47, 59, 63] have investigated

whether simpler baselines can offer comparable performance
to sophisticated state of the art few-shot learners. While there
is no conclusive answer, due to on-going developments in
both sophisticated learners [66] and simple baselines, there
is a trend that simple approaches often perform surprisingly
well compared to sophisticated counterparts. Their simplic-
ity and efficacy leads these simple methods to be taken up
in many practical applications of few-shot learning from

https://hushell.github.io/pmf


medical data analysis [11] to electronic engineering [39].
We follow this line of enquiry, but go further in inves-

tigating previously under-studied factors that influence the
performance of simple few-shot pipelines. In particular we
start with a simple ProtoNet [55]-like pipeline, and investi-
gate three practically important design choices: pre-training
data, neural architecture, and fine-tuning in meta-test.
Source data While FSL addresses the small data regime,
in reality FSL research is almost always about algorithms to
transfer knowledge from large scale source tasks (aka meta-
train) to small scale target tasks (aka meta-test). Existing
literature almost always controls the source data, in order to
carefully compare the impact of different knowledge transfer
mechanisms of interest from hyper-networks [9] to gradient-
based meta-learners [29]. While this is helpful to drive
research on sophisticated algorithms, it does not answer the
question of how choice of source data impacts performance?
This question has been studied in other areas of vision and
pattern recognition [10, 31, 56], but not for FSL. This is un-
helpful for consumers of computer vision FSL research, who
would be interested to know how much a simple change of
source data can improve their applications? Especially since
freely available large datasets already exist [21, 58], and ex-
ploiting more external source data is easier in practice than
implementing sophisticated state-of-the-art meta-learners.
To this end we investigate the impact of unsupervised pre-
training on external data – a workflow recently termed as
exploiting a foundation model [10] – on FSL tasks. This
small change has substantial impact compared to 5 years of
FSL research (Figure 1). Although this may violate defini-
tions of the FSL problem that strictly prescribe the source
set, the efficacy of the approach may prompt reflection on
whether this is the best problem definition to focus on.

Neural architecture Similarly to the situation with source
data, FSL studies often control neural architecture to a hand-
ful of small networks such as CNN-4-64 and ResNet-12.
This is partly to enable fair comparison of FSL algorithms,
but this particular suite of networks is also a consequence
of the small size of the source datasets used for training in
common benchmarks such as miniImageNet. Thus the archi-
tectures commonly studied in FSL are somewhat out-of-date
with regard to state-of-the-art computer vision. We there-
fore ask to what extent state-of-the-art architectures such as
vision transformers [25] can benefit few-shot performance,
especially in conjunction with larger pre-training datasets?

Fine-tuning The many studies in the FSL literature are
somewhat divided in whether they advocate [29,50,61] some
kind of fine-tuning during model deployment (aka meta-test)
for individual tasks, or whether a fixed feature representa-
tion should be sufficient [41, 55, 63]. We also investigate
this issue, and suggest that fine-tuning is necessary for de-
ploying foundation models to out-of-distribution tasks. We
also introduce an algorithmic improvement to fine-tuning by

Domain A

Domain B

Class 1 Class 2 Class 3

Class 4 Class 5 Class 6

Support set Augmented support set

Pre-trained backbone

External data

Meta-trained backbone Task-specifically fine-tuned backbone

Figure 2. Overview – A schematic of the simple pre-training,
meta-training, fine-tuning pipeline that we consider. Following the
red arrows, the pipeline turns a pre-trained feature backbone into a
task-specific one.

automating the learning rate selection via validation, which
leads to a more performant pipeline for cross-domain FSL.

In summary, we advance few-shot learning by studying
design choices of a simple pipeline [55] (Figure 2), rather
than developing new algorithms. We answer questions in-
cluding: How does pre-training impact FSL? Can recent
transformer architectures be adapted to FSL? and How to
best exploit fine-tuning? Based on this analysis we demon-
strate a new baseline for FSL that surpasses state-of-the-art
performance, while being simple and easy to implement.

2. Related Work

Few-shot learning Few-shot learning is now a deep and
widely studied area too large to review in detail here, and
we refer to relevant surveys for an overview [34, 64]. A
key point is that, despite the name, almost all FSL methods
provide algorithms for transferring knowledge from a large
set of source data, to a set of sparsely annotated target cate-
gories of interest. Much activity in the field falls under the
umbrella of meta-learning [34], which aims to construct a
data-efficient learner from the source (aka meta-train) dataset
by simulating few-shot learning problems, and then deploy
the customized learner on the target (aka meta-test) set. The
resulting learner may take the form of an initialization [29],
learned metric [55], Bayesian prior [66], or optimizer [50].
Simple-but-effective baselines In competition with the
plethora of sophisticated few-shot learners [34, 64] such as
those mentioned above, a number of recent studies have ad-
vocated strong baselines that perform comparably well while
being simpler. These are often based on a transfer learn-
ing [65] pipeline. They apply a conventional deep learner on
the source data, before adapting to the few-shot target data by
training a simple linear [19,47,59] or centroid [63] classifier
on the fixed representation, or fine-tuning the feature back-
bone as well [23]. These methods mostly use standardized
FSL source datasets (such as miniImageNet) and architec-
tures (such as ResNet-12 and WRN-10-28) to enable direct



comparisons of the advocated simple baselines to sophisti-
cated learners. In contrast, we specifically aim to explore
how far practical FSL performance can be pushed by exploit-
ing other available pre-training datasets and architectures.

A few studies have evaluated FSL on a larger scale using
datasets such as ImageNet1K [20] or ImageNet21K [23].
However by changing both the source and target sets, this
does not make it clear how choice/scale of source data im-
pacts a given target problem – the question that we answer
here. Others have explored the impact of conventional pre-
training prior to meta-learning [20] or as a regularizer during
meta-learning [30] – but without exploiting extra data.

Bigger data and architectures The impact of source
datasets is widely studied in standard supervised [56] and
self-supervised [10, 31] learning in vision, and in pattern
recognition applications outside of vision [3,10,13,22]. How-
ever, it is not widely evaluated in FSL, which is a surprising
omission, since as we shall see it may well be the easiest
way to improve practical FSL performance. Similarly, ex-
isting FSL methods are almost exclusively based on a few
less common architectures (e.g., Conv-4-64 and ResNet-12),
which maybe due to the very first experimental setup on
small datasets like Omniglot [29, 62]. Transformers have
seen limited use in FSL, mainly for metric learning [24],
but not for feature extraction. We explore how recent trans-
former feature extractors can be trained and applied to FSL,
especially when combined with a foundation model [10]
pre-trained on larger source datasets.

Self-supervised & few-shot Our pipeline extends the typ-
ical unsupervised pre-train → supervised fine-tune workflow
of the self-supervised research community [28, 38], which
has recently demonstrated strong performance for low-shot
supervised learning [15, 18, 27]. However, there has been
limited direct comparison of self-supervised (SSL) and FSL
community methods for data efficient learning due to dif-
ferent typical evaluation practices and benchmarks. For
example, many SSL evaluations perform unsupervised repre-
sentation learning on ImageNet, before performing few-shot
supervised learning within ImageNet [15,18], which violates
usual FSL community requirement of disjoint source and
target data. One contribution of this paper is to provide a
degree of comparison between and combination of the SSL
and FSL approaches. For example, our MetaDataset, CDFSL
and Teaser Figure 1 results, use disjoint source and target
data but benefit from external self-supervised pre-training.

Cross-domain few-shot A FSL variant of particular
practical interest is cross-domain few-shot [32], where the
source/meta-train dataset is significantly different to the
target/meta-test dataset. This is more challenging than the
standard within-domain setting, but more practically relevant.
This is because in many scenarios where FSL is of interest
such as medical or earth observation imaging [32], the target

data for FSL is significantly different to available source data
(such as (mini)ImageNet [21]). Major benchmarks of this
type are CDFSL [32] and meta-dataset [61].

3. A Simple Pipeline for FSL

Problem formulation Few-shot learning (FSL) aims to
learn a model with only a few annotated examples. One
widely adopted formulation for FSL was introduced by
Vinyals et al. [62] from a meta-learning perspective, where
the assumption is that one should learn to solve new few-shot
tasks based on previously seen experience of many similar
few-shot tasks. Therefore, the FSL problem is usually or-
ganized in two phases: meta-training a few-shot learner on
a distribution of training tasks and meta-testing the result-
ing learner by evaluating it on novel few-shot tasks. Within
each phase, data arrives in an episodic fashion, where the
“train-set” and “test-set” of each task are called support set
and query set respectively to avoid terminology confusion.
In the case of classification, the difficulty level of an episode
is described as K-way-N-shot, which corresponds to learn-
ing a classifier for K classes given N examples per class in
the support set. It is common to learn one model for each
difficulty level, but a more realistic setting [61] is to learn
a global model for various K’s and N’s. This is sometimes
called various-way-various-shot, and we address this more
practical setting here. This is also a reason to prefer simple
pipelines over sophisticated meta-learners that may not be
easily extended to the various-way-various-shot setting.

A different approach to small-data learning appears in
the transfer learning [12, 65] and self-supervision [10, 17]
literature. In this case one pre-trains a model using some
large source data, and then re-purposes it for the sparse data
target task of interest. The pre-training step aims to reduce
the sample complexity of learning the target problem in the
adaptation step.

Although typically studied separately, both families of
approach provide mechanisms for knowledge transfer from
source data to the target few-shot problem of interest. To-
wards the goal of high performance few-shot learning, we
combine both pre-training (typically on auxiliary unlabeled
data, which is freely and ubiquitously available) and meta-
learning (episodic training with labels) together in a simple
sequential pipeline using a single feature extractor back-
bone. Our pipeline consists of three phases: 1) pre-training
the feature backbone on unlabeled external data using self-
supervised loss, 2) meta-training the feature backbone on
labeled simulated few-shot tasks using ProtoNet [55] loss,
and 3) deploying the feature backbone on novel few-shot
tasks with optional fine-tuning on the augmented support
set of each task. A schematic of our pipeline is shown in Fig-
ure 2, which we call P>M>F (i.e., the pipeline Pre-train →
Meta-Learn → Fine-Tune). We next outline how the feature



backbone is updated in different stages.

3.1. Pre-training of backbone

We consider the feature backbones of ResNet [33] or
ViT [25], to provide the foundation models in our pipeline.
There are then several well-established self-supervised learn-
ing algorithms for the pre-training step: DINO [15] uses
ImageNet1K and exploits the consistency in prediction be-
tween a large crop and multiple local crops of the same
image, where a large crop is highly likely to overlap with a
foreground object in the case of ImageNet images; BEiT [6]
amounts to solving a masked image reconstruction task on
the ImageNet-21K dataset in line with the original BERT
pre-training [22] for text data; and CLIP [49] leverages im-
age captions in the YFCC100m dataset to align image and
caption representations in a common feature space. For
more flexible architectures like ViT [25], pre-training on ex-
ternal data is important, as they are hard to train on common
small-sized FSL benchmarks (Figure 1 and Table 1).

3.2. Meta-training with ProtoNet

As the goal is to build a simple pipeline, we consider the
prototypical network (ProtoNet) [55], which constructs class
centroids dynamically for each episode and then performs
nearest centroid classification. Specifically, ProtoNet only
requires a feature backbone f to map data points to a m-
dimensional feature space: f : X → Rm, and the probability
of a query image x belonging to class k is given by

p(y = k|x) =
exp

(
− d(f(x), ck)

)∑
k′ exp

(
− d(f(x), ck′)

) , (1)

where d is implemented by a cosine distance in our work
as opposed to the commonly chosen Euclidean distance
and ck is the prototype of class k, defined as ck =
1
Nk

∑
i:yi=k f(xi) and Nk =

∑
i:yi=k 1 on the support set.

Note that the prototypes can be computed regardless of the
value of k. This enables ProtoNet to be trained and deployed
under various-way-various-shot setting.

3.3. Meta-testing with fine-tuning

To be consistent with meta-training, by default, we de-
ploy the meta-trained ProtoNet directly on all novel tasks.
However, if the a novel task is drawn from an unseen domain,
the learned feature representation may fail to generalize due
to a substantial shift in the data distribution. To this end, we
propose to fine-tune the feature backbone by a few gradient
steps with the assistance of data augmentation. The details
are summarized as PyTorch pseudo code in Algorithm 1.

Our fine-tuning algorithm is similar to that of [32,42] who
fine-tune the model weights using the support set since this is
the only accessible labeled data at meta-test time. We exploit
the support set slightly differently: we use data augmentation

Algorithm 1 PyTorch pseudo code for fine-tuning

# Inputs: a task including supp_x, supp_y, query_x
# backbone_state: meta-trained backbone weights
# optimizer: Adam optimizer
# Outputs: logits

backbone = create_model_from_checkpoint(backbone_state)

def single_step(z):
supp_f = backbone(supp_x)
proto = compute_prototypes(supp_f, supp_y)
f = backbone(z)
logits = f.norm() @ proto.norm().T # cos similarity
loss = cross_entropy_loss(logits, supp_y)
return logits, loss

# fine-tuning loop
for i in range(num_steps):

aug_supp_x = rand_data_augment(supp_x)
_, loss = single_step(aug_supp_x)
loss.backward() # back-prop
optimizer.step() # gradient descent

logits, _ = single_step(query_x) # classification

to create a pseudo query set derived from the support set;
as such, we do not need to compute prototypes using the
support set and then again apply the prototypes on the same
support set using eq. (1). Empirically, we find that updating
the entire backbone is not a problem even though only a few
examples are available for fine-tuning. While some layers
could be frozen to save some computation, which layers to
freeze may be domain-specific, complicating tuning.

Learning Rate Selection Fine-tuning performance is rel-
atively sensitive to the choice of learning rate. To this end
we propose an algorithm for automated learning rate tun-
ing. We generate another pseudo query set from the support
set using data augmentation, which is used to decide the
learning rate within {0, 0.01, 0.001, 0.0001}. This adds 4×
computation cost to the model deployment, to perform per-
episode learning rate selection. If multiple episodes can be
used – essentially corresponding to assuming a per-domain
set of validation episodes – learning rate can be selected
per-dataset for greater efficiently. Details on this and other
ablation studies can be found in the supplemental material.

4. Experiments

Meta-Training Datasets We use standard benchmarks
to evaluate our proposed pipeline. miniImageNet [62] con-
tains 100 classes from ImageNet-1k, which is then split into
64 training, 16 validation and 20 testing classes; each image
is downsampled to 84×84. CIFAR-FS [8] is created by
dividing the original CIFAR-100 into 64 training, 16 valida-
tion and 20 testing classes. The images are of size 32×32.
Meta-Dataset [61] subsumes 10 public image datasets of a
diverse range of domains: ImageNet-1k, Omniglot, FGVC-
Aircraft, CUB-200-2011, Describable Textures, QuickDraw,
FGVCx Fungi, VGG Flower, Traffic Signs and MSCOCO.
Each dataset has train/val/test splits. We follow the two



training protocols proposed by [61] and [24] respectively.
For the former, the train/val splits of the first 8 datasets (in-
domain) are used for meta-training and validation, and the
test splits of all datasets are used for meta-testing. The latter
considers only ImageNet-1k’s train-split for meta-training,
and the other settings remain the same. For more details on
Meta-Dataset we refer the readers to Appendix.3 of [61].
Evaluation For evaluating few-shot classification perfor-
mance, we simulate 600 episodes/tasks from the test-split
for each dataset of interest. The evaluation metric is the av-
erage classification accuracy over tasks. For miniImageNet
and CIFAR-FS, the convention is to evaluate 5-way-1-shot
(5w1s) and 5-way-5-shot episodes, and the size of the query
set for each episode is fixed to 15× 5. For Meta-Dataset, the
number of ways, shots and query images are sampled uni-
formly at random with respect to the dataset specifications,
except for ImageNet-1k and Omniglot (they have specific
sampling strategies according to the hierarchy of classes). In
addition, we evaluate the (5w5s) meta-trained model from
miniImageNet for a cross-domain evaluation (CDFSL) [32],
where 4 out-of-domain datasets are considered, and the re-
sults are reported under 5-way-5/20/50-shot settings.
Training details To avoid over-engineering training for
different datasets and architectures, we adopt a common
training strategy for meta-training the backbone from pre-
trained model checkpoints (for both ResNet and ViT). This
may lead to sub-optimal results for some cases, but it sim-
plifies comparison. Specifically, we train the backbone for
100 epochs, where each epoch consists of 2000 episodes/-
tasks. We use a warm-up plus cosine annealing learning rate
schedule: the learning rate starts from 10−6, increases to
5× 10−5 in 5 epochs and then gradually decreases to 10−6

with a cosine annealing. We use the validation set to decide
when to early stop, and turn off strong regularization and
data augmentation techniques for simplicity.

4.1. Analysis

We now use the pipeline outlined in Sec 3 to answer a
series of questions about few-shot learner pipeline design.
Notably, 1 How does pre-training regime affect FSL? 2

Can contemporary architectures such as ViT be adapted to
FSL? 3 How to exploit fine-tuning in meta-testing?

4.1.1 Pre-training and architectures

We first evaluate the impact of pre-training regime (includ-
ing algorithm and dataset), as well as neural architecture
on FSL benchmarks Meta-Dataset [61] (train on 8 datasets),
miniImageNet [62], and CIFAR-FS [8]. To clearly con-
vey the configuration of each experiment, results in Table 1
are organized by architecture, pre-training algorithm (and
dataset) and meta-training algorithm. We assume ProtoNet
(nearest-centroid) classifier as the standard approach for

meta-testing throughout, and compare either episodically
trained ProtoNet or nothing as the meta-learning step be-
tween pre-training and meta-testing (column MetaTr).

1 How does pre-training regime affect FSL? From the
results in Table 1 we can draw the following conclusions: (i)
Pre-training on ImageNet1K generally provides a significant
improvement across the board compared to the conventional
pipeline used by prior work which does not make use of pre-
training (compare model M9 with M7 and M8, etc). (ii) We
are primarily interested in unsupervised pre-training, with
supervised pre-training being included as an unfair upper
bound. However, state of the art unsupervised pre-training
with DINO performs close to supervised pre-training (com-
pare M3 vs M2, etc). This is noteworthy, because while
there is some semantic overlap between some of the source
(ImageNet1K) and target (Meta-Dataset, miniImageNet, CI-
FAR) datasets considered here, good performance can be
achieved without using source labels, where there is no train-
test label leakage1. (iii) Given a strong pre-training regime
such as DINO, simple nearest centroid classification based
on pre-trained features performs well (top block including
M2, etc). In particular, off-the-shelf features from a founda-
tion model without dataset-specific meta-learning perform
favorably compared to conventional dataset-specific training
of ProtoNet-ResNet18 (M2 vs M10), which is arguably the
closest to industry standard in FSL. (iv) Nevertheless, dataset
specific meta-learning does improve further (M7 vs M2, etc).
Simple linear readout of a frozen foundation model [18, 27]
is not competitive.

2 Can state of the art architectures such as ViT be
adapted to FSL? Using the results in Table 1, we can
also answer this question. In particular, while ViT does not
train well on the smaller meta-train benchmarks (miniIma-
geNet, CIFAR) compared to smaller architectures (see M6
vs M9, M10), it generally performs excellently when bene-
fiting from large pre-training data (M6 vs M4). Overall ViT
outperforms the industry standard ResNet18, as well as our
ResNet50 baseline, across the board when benefitting from
pre-training. We remark that our ResNet50 baseline also per-
forms comparitively poorly without pre-training, especially
on the smaller miniImageNet and CIFAR, suggesting that it
is also too large to train well on the target datasets alone.

Other Foundation Models Overall we can see that larger

1In the case of miniImageNet and Meta-Dataset, parts of ImageNet1K
are used in both meta-train and meta-test splits. EG: since Meta-Dataset’s
ImageNet is uses a 712/288 source/target class split, this means that for one
of Meta-Dataset’s 10 domains, there is some data (but not label) overlap
between pre-train and meta-test for some foundation models. As discussed
in Sec. 2, this overlap is ubiquitious in typical self-supervision evaluation
pipelines [15, 17]. It is less common in FSL evaluation pipelines, but
corresponds to making a semi-supervised or transductive assumption in
terms of data access as per [37, 44, 46, 51]. Nevertheless, we do not think
this is a significant factor in the strong results, as CLIP’s YFCC does not
have this overlap and performs similarly to the ImageNet1K based models.



Training Configuration Benchmark Results
ID Arch Pre Train MetaTr MD miniIN CIFAR
0 ViT-small DINO (IN1K) - 67.4 97.0 79.8
1 ViT-small DeiT (IN1K) - 67.5 98.8 84.6
2 ResNet50 DINO (IN1K) - 63.8 91.5 76.1
3 ResNet50 Sup. (IN1K) - 62.4 96.4 82.3
4 ViT-small DINO (IN1K) PN 78.4 98.0 92.5
5 ViT-small DEIT (IN1K) PN 79.3 99.4 93.6
6 ViT-small - PN 52.8 49.1 59.8
7 ResNet50 DINO (IN1K) PN 72.4 92.0 84.0
8 ResNet50 Sup. (IN1K) PN 70.2 97.4 87.6
9 ResNet50 - PN 62.9 72.2 68.4
10 ResNet18 - PN 63.3 73.7 70.2
11 ViT-base DINO (IN1K) PN 79.2 98.4 92.2
12 ViT-base CLIP (YFCC) PN 80.0 98.1 93.2
13 ViT-base Sup (IN21K) PN 81.4 99.2 96.7
14 ViT-base BEIT (IN21K) PN 82.8 99.0 97.5
15 ResNet50 CLIP (YFCC) PN 75.0 92.2 82.6

Table 1. The impact of architecture and pre-training algorithm
(dataset) on downstream few-shot learning performance on Meta-
Dataset (MD), miniImageNet (miniIN) and CIFAR-FS. Meta-
Dataset results are averaged over all target datasets while minIN and
CIFAR results are 5-way-5-shot. ProtoNet (PN) nearest-centroid
classifier is used throughout for few-shot learning on the support set
during meta-test. MetaTr indicates the algorithm used for episodic
learning on the corresponding benchmark.

pre-training data sources, and recent architectures make a
huge difference to downstream FSL performance on stan-
dard benchmarks. We also compared a selection of other
foundation models [10] in M11-15. We can see that (i) All
the foundation models lead to substantial improvements on
standard within-dataset training (M10,M9), (ii) The largest
foundation models using, e.g., ViT-base and ImageNet21K
or YFCC data source lead to strongest performance across
the board, but do not outperform hugely the more economic
DINO+ImageNet1K-based ViT-small (M4). For efficiency
of pre-training and deployment, we take this to be our default
model in the following section.

1 + 2 How does pre-training and architecture impact
other Few-Shot Learners? Our main experiments built
upon ProtoNet as a widely used industry standard. We next
explore how our pipeline impacts two few-shot learners that
are more representative of recent state of the art, namely
MetaOptNet [41] and MetaQDA [66]. From the results in
Table 2, we can see that: (i) MetaQDA and MetaOptNet do
improve on direct feature transfer (M5 and M3 vs M0) and
on the simpler ResNet features they were initially evaluated
with (M5 vs M4, M3 vs M2). But (ii) With the stronger
features, they are outperformed by the simpler ProtoNet
learner (M3 and M5 vs M1). This suggests previous con-
clusions about comparative meta-learner performance may
need re-evaluating in this new regime of stronger features.

Discussion Existing literature generally fails to directly
compare algorithms from the few-shot learning community

Train Config Benchmark

ID Arch Pre Train MetaTr miniIN CIFAR
5/1 5/5 5/1 5/5

0 ViT-small DINO (IN1K) - 88.8 97.0 59.1 79.8
1 ViT-small DINO (IN1K) PN 93.1 98.0 81.1 92.5
2 ResNet18 - MetaQDA 65.1 81.0 - -
3 ViT-small DINO (IN1K) MetaQDA 92.0 97.0 77.2 90.1
4 ResNet12 - MetaOptNet 64.1 80.0 72.8 85.0
5 ViT-small DINO (IN1K) MetaOptNet 92.2 97.8 70.2 84.1

Table 2. Impact of architecture and pre-training on state of the art
few-shot learners

(such as ProtoNet, [55], MAML [29], MetaOptNet [41], etc),
with those from the self-supervised community (such as
DINO [15], SimCLR [17, 18], etc). This is partly because
the popular evaluation protocol is different: For example
5-way-1-shot regime is popular the FSL community, vs 1%
labels (≈ 1000-way-10-shot in the case of ImageNet) in the
SSL community; network architectures differ (≤ResNet18
vs ≥ResNet50 respectively); and image resolutions differ
(84× vs full). Our results provide a taster of such a direct
comparison. Overall they suggest that frozen self-supervised
foundation models (using extra pre-training data) are compet-
itive out of the box compared to standard few-shot learners
(using only meta-training data). However, more interestingly,
combining these two paradigms as we have done, easily leads
to state of the art performance on typical FSL metrics.

4.1.2 Fine-tuning

The previous experiments used a fixed feature extractor to-
gether with ProtoNet for meta-testing. We next investigate
use of fine-tuning during meta-testing to further improve per-
formance. We focus on the DINO pre-trained ViT models,
based on their strong performance in Section 4.1.1.
3 How to best exploit fine-tuning for meta-testing? To

answer this question, we compare vanilla feature transfer
as explored previously, with ProtoNet, and ProtoNet with
episode-wise fine-tuning on the support set (ProtoNet+FT)
as outlined in Section 3.3. We use Meta-Dataset including
both conditions of treating ImageNet alone as the source, and
joint meta-training on all of Meta-Dataset. From the results
in Figure 3 and Table 3 we can draw the following conclu-
sions: (i) Meta-training on the full Meta-Dataset improves
on meta-training on ImageNet-training alone (M5 vs M1).
(ii) Fine-tuning during meta-test improves substantially in
the out-of-distribution datasets, and especially in the case
where meta-training is conducted on ImageNet, and then
deployed across-domain to all the other Meta-Dataset tasks:
See Out-D column and M2 vs M1 in Table 3; blue vs orange
bars in Figure 3 for OmniGlot, QuickDraw, traffic signs,
etc. However, for the condition where more Meta-Dataset
domains are used for training and testing, fine-tuning has
inconsistent impact across domains: While it is helpful for



M Arch PreTr MetaTr MetaTe Avg Out-D
1 ViT-small DINO PN (IN) PN 68.38 67.68
2 ViT-small DINO PN (IN) PN+FT(lr=0.01) 76.05 76.54
3 ViT-small DINO PN (IN) PN+FT(lr=0.001) 74.47 74.51
4 ViT-small DINO PN (IN) PN+FT(Tuned) 77.53 77.85
5 ViT-small DINO PN (MD) PN 78.43 55.71
6 ViT-small DINO PN (MD) PN+FT(lr=0.01) 76.09 73.26
7 ViT-small DINO PN (MD) PN+FT(lr=0.001) 74.64 69.97
8 ViT-small DINO PN (MD) PN+FT(Tuned) 83.13 75.72

Table 3. Fine-tuning (FT) during meta-test on Meta-Dataset. The
meta-train (MetaTr) setting indicates the source dataset as Ima-
geNet only (IN) or full MetaDataset (MD). Results are the averages
across all domains within meta-dataset (Avg), and just the out-of-
distribution subset (Out-D).

the remaining OOD datasets, it is not helpful overall (M5 vs
M6 for Avg and Out-D). Overall feature backbone updates
by fine-tuning are more helpful for domains unseen during
meta-training, concurring with [42, 61]. On analysing the
inconsistent impact of fine-tuning, we found this is due to
difficulty in choosing an appropriate learning rate. Using any
single learning rate throughout, as we did above (lr=0.01) is
poorly tuned for some datasets. We therefore also explore
our learning rate selection heuristic proposed in Section 3.3,
and we see this leads to the best performance (M4 vs M2).
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Figure 3. The impact of fine-tuning during meta-test on Meta-
Dataset. Held out datasets such as Signs and COCO benefit from
fine-tuning; as do those very different from ImageNet such as
omniglot and QuickDraw.

4.2. Results on standard benchmarks

We call our pipeline P>M>F, which can be instantiated
with any pre-training algorithm and backbone architectures,
e.g., DINO > ProtoNet (PN) > Fine-tuning (FT). We next
compare our pipeline with prior state of the art. We empha-
size that our results are not directly comparable to much prior
SotA in terms of architecture and use of external data. We
draw this comparison to see how simple changes (such as ex-
ploiting publicly available pre-training data and updating to
a modern architecture) compares against 5 years of intensive
research on FSL algorithms. The results for single-domain
miniImageNet and CIFAR-FS are summarized in Table 4,

Method (Backbone) Ext. Ext. CIFAR-FS MiniImageNet
dat. lab. 5w1s 5w5s 5w1s 5w5s

Inductive
ProtoNet (CNN-4-64) [55] 49.4 68.2 55.5 72.0
Baseline++ (CNN-4-64) [19] 48.2 66.4
MetaOpt-SVM (ResNet12) [41] 72.0 84.3 61.4 77.9
Meta-Baseline (ResNet12) [20] 68.6 83.7
RS-FSL (ResNet12) [2] ✓ 65.3
Transductive
Fine-tuning (WRN-28-10) [23] 76.6 85.8 65.7 78.4
SIB (WRN-28-10) [35] 80.0 85.3 70.0 79.2
PT-MAP (WRN-28-10) [36] 87.7 90.7 82.9 88.8
CNAPS + FETI (ResNet18) [7] ✓ ✓ 79.9 91.5
Self-supervised
ProtoNet (WRN-28-10) [30] 73.6 86.1 62.9 79.9
ProtoNet (AMDIM ResNet) [16] ✓ 76.8 91.0
EPNet + SSL (WRN-28-10) [53] ✓ 79.2 88.1
Semi-supervised
LST (ResNet12) [44] ✓ 70.1 78.7
PLCM (ResNet12) [37] ✓ 77.6 86.1 70.1 83.7
P>M>F (IN1K, RN50) ✓ 73.7 84.0 79.2 92.0
P>M>F (IN1K, ViT-Small) ✓ 81.1 92.5 93.1 98.0
P>M>F (IN1K, ViT-base) ✓ 84.3 92.2 95.3 98.4

Table 4. miniImageNet & CIFAR – Comparison with represen-
tative SotA FSL algorithms. Methods using external data and/or
labels are indicated.

while the results for cross-domain datasets Meta-Dataset
and Broader Study CDFSL are shown in Table 5 and 6 re-
spectively. From the results we can see that our framework
outperforms much state of the art in both within-domain and
cross-domain conditions despite being significantly simpler
than some sophisticated competitors. We remark that for
the single source benchmarks in Table 4, a few competitors
also used external data or ImageNet pre-training as indi-
cated. Meanwhile our hybrid pipeline outperforms SotA
pure external self-supervision [14, 27] for CDFSL in Tab 6.

4.3. Discussion

Taken together, the results show that our simple pipeline
of exploiting available pre-training data and a modern ar-
chitecture often outperforms sophisticated state of the art in
few-shot learning. This margin is increased using our pro-
posed adaptive fine-tuning mechanism in the meta-test stage.
Based on these observations we make recommendations both
for practitioners and few-shot learning researchers.
Practitioners: Increasing pre-training data size or simply
using a foundation model [10, 15] and upgrading to modern
architectures is likely to be more productive (and much easier
to implement) than keeping up with and implementing state
of the art few-shot learning algorithms. Fine-tuning is likely
to be important if the target few-shot task of interest is less
similar to the pre-training and meta-training data.
FSL researchers: Our results show that using external data
and modern architectures is an easy and effective way to
achieve strong FSL performance, and also that some SotA
meta-learners fail to provide expected improvements in this
regime. While external data violates definitions of the FSL
problem that insist on a specific limited meta-train set, we



8 in-domain datasets In-domain Out-of-domain
INet Omglot Acraft CUB DTD QDraw Fungi Flower Sign COCO Avg

ProtoNet [61] (RN18) 67.01 44.5 79.56 71.14 67.01 65.18 64.88 40.26 86.85 46.48 63.29
CNAPs [52] (RN18+Adapter) 50.8 91.7 83.7 73.6 59.5 74.7 50.2 88.9 56.5 39.4 66.90
SUR [26] (RN18+Adapter) 57.2 93.2 90.1 82.3 73.5 81.9 67.9 88.4 67.4 51.3 75.32
T-SCNAPs [7] (RN18+Adapter) 58.8 93.9 84.1 76.8 69.0 78.6 48.8 91.6 76.1 48.7 72.64
URT [45] (RN18+Adapter) 55.7 94.4 85.8 76.3 71.8 82.5 63.5 88.2 69.4 52.2 73.98
FLUTE [60] (RN18) 51.8 93.2 87.2 79.2 68.8 79.5 58.1 91.6 58.4 50.0 71.78
URL [43] (RN18+Adapter) 57.51 94.51 88.59 80.54 76.17 81.94 68.75 92.11 63.34 54.03 75.75
ITA [42] (RN18+Adapter) 57.35 94.96 89.33 81.42 76.74 82.01 67.4 92.18 83.55 55.75 78.07
P>M>F (DINO/IN1K, RN50) 67.51 85.91 80.3 81.67 87.08 72.84 60.03 94.69 87.17 58.92 77.61
P>M>F (DINO/IN1K, ViT-small) 74.59 91.79 88.33 91.02 86.61 79.23 74.2 94.12 88.85 62.59 83.13
P>M>F (DINO/IN1K, ViT-base) 77.02 91.76 89.73 92.94 86.94 80.2 78.28 95.79 89.86 64.97 84.75

In-domain = ImageNet In-domain Out-of-domain
INet Omglot Acraft CUB DTD QDraw Fungi Flower Sign COCO Avg

ProtoNet [61] (RN18) 50.5 59.98 53.1 68.79 66.56 48.96 39.71 85.27 47.12 41 56.10
ALFA+FP-MAML [5] (RN12) 52.8 61.87 63.43 69.75 70.78 59.17 41.49 85.96 60.78 48.11 61.41
BOHB [54] (RN18) 51.92 67.57 54.12 70.69 68.34 50.33 41.38 87.34 51.8 48.03 59.15
CTX [24] (RN34) 62.76 82.21 79.49 80.63 75.57 72.68 51.58 95.34 82.65 59.9 74.28
P>M>F (DINO/IN1K, RN50) 67.08 75.33 75.39 72.08 86.42 66.79 50.53 94.14 86.54 58.2 73.25
P>M>F (DINO/IN1K, ViT-small) 74.69 80.68 76.78 85.04 86.63 71.25 54.78 94.57 88.33 62.57 77.53
P>M>F (DINO/IN1K, ViT-base) 76.69 81.42 80.33 84.38 86.87 75.43 55.93 95.14 89.68 65.01 79.09

Table 5. Meta-Dataset – Comparison with SotA FSL algorithms.

ChestX ISIC EuroSAT CropDisease
5w5s 5w20s 5w50s 5w5s 5w20s 5w50s 5w5s 5w20s 5w50s 5w5s 5w20s 5w50s

ProtoNet [55] (RN10) 24.05 28.21 29.32 39.57 49.50 51.99 73.29 82.27 80.48 79.72 88.15 90.81
RelationNet [57] (RN10) 22.96 26.63 28.45 39.41 41.77 49.32 61.31 74.43 74.91 68.99 80.45 85.08
MetaOptNet [41] (RN10) 22.53 25.53 29.35 36.28 49.42 54.80 64.44 79.19 83.62 68.41 82.89 91.76
Finetune [32] (RN10) 25.97 31.32 35.49 48.11 59.31 66.48 79.08 87.64 90.89 89.25 95.51 97.68
CHEF [1] (RN10) 24.72 29.71 31.25 41.26 54.30 60.86 74.15 83.31 86.55 86.87 94.78 96.77
STARTUP [48] (RN10) 26.94 33.19 36.91 47.22 58.63 64.16 82.29 89.26 91.99 93.02 97.51 98.45
DeepCluster2 [14, 27] (IN1K, RN50) 26.51 31.51 34.17 40.73 49.91 53.65 88.39 92.02 93.07 93.63 96.63 97.04
P>M>F (DINO/IN1K, ResNet50) 27.13 31.57 34.17 43.78 54.06 57.86 89.18 93.08 96.06 95.06 97.25 97.77
P>M>F (DINO/IN1K, ViT-small) 27.27 35.33 41.39 50.12 65.78 73.50 85.98 91.32 95.40 92.96 98.12 99.24

Table 6. Broader study of cross-domain few-shot learning – Comparison with SotA FSL algorithms.

should take this setting seriously to maintain practical rele-
vance in the face of advancing self-supervision [15,28,38,49].
In particular, we recommend a new evaluation setting for
all the standard FSL benchmarks, where pre-train data and
architecture are freely chosen and clearly reported. Few-shot
meta-learning methods are then evaluated on their ability to
improve on linear readout, fine-tuning, or our PMF baseline
for the given external dataset and architecture.

5. Conclusions
We advanced few-shot learning from the perspective of

pushing the limits of a simple pre-train + ProtoNet pipeline
in terms of dataset, architecture and fine-tuning strategy.
We showed that source dataset, and neural architecture are
dominant factors in FSL performance. When there is a
domain shift between training and testing, we showed that
fine-tuning the feature backbone with data augmentation is
also important. We verified that our simple pipelines achieve
very competitive performance in four FSL benchmarks.

Limitations and Future Work There are several limita-
tions of our empirical study. We only scratched the surface
of the impact of external data and correspondingly larger
architectures on FSL. Our renewed focus on external data
emphasizes the need for algorithms from the FSL commu-
nity [29, 41, 55] to be directly compared against algorithms
from the self-supervised community [10, 17], or possibly
synergistically combined, as we attempt here. The hybrid
pipeline that we propose is obviously restricted to modalities
where large external datasets already exist, and would re-
quire significant up-front investment in compute and energy
cost where pre-trained foundation models do not already ex-
ist. Possible bias within foundation models is also a potential
risk [10]. Finally, while effective, our adaptive fine-tuning
strategy, is rather computationally expensive at meta-test
time, and may be unsupported on embedded platforms with-
out backpropagation. Feed-forward representation adapta-
tion methods [52] may be important for future work.
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