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Abstract

Synthesizing pseudo samples is currently the most ef-
fective way to solve the Generalized Zero-Shot Learning
(GZSL) problem. Most models achieve competitive per-
formance but still suffer from two problems: (1) Feature
confounding, the overall representations confound task-
correlated and task-independent features, and existing mod-
els disentangle them in a generative way, but they are unrea-
sonable to synthesize reliable pseudo samples with limited
samples; (2) Distribution uncertainty, that massive data is
needed when existing models synthesize samples from the
uncertain distribution, which causes poor performance in
limited samples of seen classes. In this paper, we propose
a non-generative model to address these problems corre-
spondingly in two modules: (1) Task-correlated feature dis-
entanglement, to exclude the task-correlated features from
task-independent ones by adversarial learning of domain
adaption towards reasonable synthesis; (2) Controllable
pseudo sample synthesis, to synthesize edge-pseudo and
center-pseudo samples with certain characteristics towards
more diversity generated and intuitive transfer. In adda-
tion, to describe the new scene that is the limit seen class
samples in the training process, we further formulate a new
ZSL task named the ’Few-shot Seen class and Zero-shot Un-
seen class learning’ (FSZU). Extensive experiments on four
benchmarks verify that the proposed method is competitive
in the GZSL and the FSZU tasks.

1. Introduction
The explosion of data and the rapid development of deep

learning need massive precise but expensive labels. In the
real world, these labels are usually sparse/missing, Zero-
Shot Learning (ZSL) techniques offer a good solution to
address such problem, which trains on seen classes and tests
on unseen classes (the seen classes and unseen classes are
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Figure 1. An illustration of core idea of our method. Different
classes share class semantics. The images in the right half are
the task-correlated features of the left half. They are excluded
from task-independent features and are more consistent with class
semantics, which is reasonable for the knowledge transfer in the
GZSL task.

independent). In this paper, we focus on the Generalized
ZSL (GZSL) task. It is a realistic setting of ZSL in mak-
ing predictions on recognizing samples from both classes
simultaneously rather than classifying only data samples of
the unseen classes.

At present, the method of synthesizing pseudo samples
for unseen classes has proven to be one of the most effec-
tive ways of knowledge transfer to solve the GZSL prob-
lem. But there are still two challenging problems: (1) Fea-
ture Confounding. Most GZSL models are based on over-
all representations of samples extracted in pre-trained CNN
(e.g., ResNet101 [13]) while the semantic features are class-
level attributes or class-level sentence embeddings [21, 40].
The former contains more rich information and inconsistent
with human cognition. So it is unreasonable to construct a
mapping from visual features to semantic features directly
and synthesize reliable pseudo samples based on the con-
founding visual features. Although some models [7, 23]
contribute to extracting more human-consistent-cognition
features, they are related to generative models and hard to
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guarantee the diversity of sample synthesis with limited real
samples.

(2) Distribution Uncertainty. The existed methods,
especially the generative models, usually require a large
amount of data to fit the distribution of real data, and can
only synthesize pseudo samples with the uncertain distribu-
tion. So these models have poor performances when sam-
ples of seen class are few shot.

Figure 1 illustrates the motivation of our method. We
first exclude the task-independent feature from horse image
to horse object. Then we synthesize zebra’s pseudo samples
of target class based on the horse’s task-correlated feature of
source class in a non-generative way.

To be specific, we propose a non-generative approach
named Task-correlated Disentanglement and Controllable
Samples Synthesis (TDCSS) method that handles above is-
sues. The TDCSS mainly consists of two components. (1)
Task-correlated Feature Disentanglement Module. Our
model is based on class semantic features to complete the
image classification task. According to whether the visual
features are corresponding to class semantics, we disentan-
gle the confounding features into task-correlated features
and task-independent features. The task-correlated features
are more consistent with class semantics. We introduce the
adversarial training of domain adaptation to achieve feature
disentanglement. (2) Controllable Pseudo Samples Syn-
thesis Module. Based on task-correlated features, we add
different offsets to synthesize two types of pseudo samples
which are edge-pseudo samples and center-pseudo samples
in a non-generative way. For the edge-pseudo samples, we
treat them as the adversarial examples in the feature-level
and the edge offsets can be seen as perturbations in adver-
sarial examples. For the center-pseudo samples, we make
them distributed closer to the center of one class. Both of
them guarantee the generative diversity of samples based on
the limited seen samples. In addition, synthesizing pseudo
samples with certain characteristics contribute to exploring
the role of different types of pseudo samples in the knowl-
edge transfer of GZSL.

To describe the scene that only has the limited samples
on seen class in formulation, we further propose a new
ZSL task named ’Few-shot Seen class and Zero-shot Un-
seen class learning (FSZU)’. The FSZU is also more rea-
sonable and more practical. In the GZSL task, all classes
have strong semantic relationships. So we believe that the
ZSL and the Few-Shot Learning (FSL) are coexistent. For
example, in the deep-space exploration and deep-sea explo-
ration, the machine (detector) always encounter new situ-
ations, and the number of seen class samples that humans
have obtained is also extremely limited. In this paper, we
perform the TDCSS and the similar methods on the new
task.

In summary, our main contributions of this work are

summarized as follows:
(1) We propose a novel non-generative model that dis-

entangles visual features into task-correlated and task-
independent by adversarial training of domain adaptation.
And we use the task-correlated features to synthesize two
types of pseudo samples as center-pseudo samples and
edge-pseudo samples to guarantee the diversity of sample
synthesis and the intuitive transfer.

(2) We propose a new zero-shot task named ’Few-shot
Seen class and Zero-shot Unseen class learning (FSZU)’,
which is more reasonable and more practical compared with
the GZSL task in real life.

(3) Extensive experiments in the GZSL task and the
FSZU task on four widely used datasets verify the results
of the TDCSS are competitive with similar methods.

2. Related Works

2.1. Generalized Zero-Shot Learning

Domain shift is a basic problem in GZSL. It is de-
scribed as ’due to having disjoint and potentially unrelated
classes, the projection functions learned from the auxiliary
dataset/domain are biased when applied directly to the tar-
get dataset/domain’ [9].

GZSL with pseudo sample synthesis. Many re-
searchers have proposed generative models to synthesize
pseudo samples for unseen classes to alleviate this problem.
The GAN-based models contribute to increasing the diver-
sity of pseudo samples [22] and preserving semantic consis-
tency [24,30]. The VAE-based models [6,19,34] contribute
to preserving semantic consistency of different representa-
tions of distribution in hidden layer. Some researchers in-
tegrate the VAE and GAN into a unified conditional feature
generating model [29,42] to integrate the advantages. There
are also some non-generative models [8, 11, 12, 15, 26, 27]
synthesizing pseudo samples. The models [15, 27] extract
attribute-based features and then combine them to synthe-
size unseen pseudo samples. The BPL [11] synthesizes
pseudo samples based on bidirectional projection learning
and linear interpolation. The AGZSL [8] uses the Image
Adaptive Semantics to expand the semantic features by us-
ing visual features, then it trains the seen class classifier
based on the expanded semantic features and trains the un-
seen class classifier by synthesizing virtual class by sam-
pling and interpolating over seen counterparts. The mod-
els [8, 11], synthesizing pseudo samples by perturbating or
interpolating, are simpler and more likely to transfer class
variations from seen class to unseen classes. So we use the
non-generative models to synthesize pseudo samples.

GZSL with representation disentanglement. Most of
GZSL models are based on the overall representations. Re-
searchers use the representation disentanglement to obtain
more consistent visual features with semantics. Some re-
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searchers disentangle visual features into ’object + attribute’
features [2, 28] by exploring their respective distributions.
For example, the ’red wine’ can be disentangled into ’red
(attribute)’ + ’wine (object)’. But these methods require
more strictly labeled datasets. Some researchers try to align
attribute-based features with their attribute semantic vec-
tors in fine-grained ZSL task [15, 16]. But their methods
are based on the feature map at the last convolutional layer.
Some researchers disentangle visual features according to
their understanding of the GZSL. The DLFZRL [38] dis-
entangles the feature into the semantic latent feature, the
non-semantic latent feature, and the non-discriminative la-
tent feature, in which the first two factors are learned by
adversarial learning and the last is learned by a hierarchical
structure. In addition, SP-AEN [5] disentangles the seman-
tic space into two subspaces for classification and recon-
struction respectively. Some researchers also use generative
models with random permuting to achieve representation
disentanglement [7,23]. In this paper, we disentangle visual
features into task-correlated features and task-independent
features by using domain adversarial, which is more robust
in different tasks.

2.2. Adversarial Example and Adversarial Self-
Supervised Learning

Recently, extensive experiments [1, 33, 35, 39] have
shown that model would have better generalization which
has better adversarial robustness. And it achieves higher
performance than the naturally trained models in ZSL [1].
These works usually use the gradient-based adversarial ex-
ample generation algorithm, such as FSGM [10] and PGD
[18]. Some self-supervised learning methods [14, 20] are
also upgraded to adversarial self-supervised learning based
on the adversarial examples in the way of contrastive learn-
ing, which extracts image features that are more consistent
with human cognition.

In this paper, we draw on that core idea and further pro-
pose the edge-pseudo samples that can be seen as feature-
level adversarial examples based on the targeted attack. We
also introduce a training mechanism of the adversarial self-
supervised to TDCSS to make our model extract more con-
sistent task-correlated features with class semantics.

3. The Proposed Method
3.1. Problem Formulation

In the GZSL task, let {X s,Ys} be the dataset with
S seen classes, which contains Ns training samples
X s = {xs(i)}

Ns

i=1 and the corresponding class labels Ys =

{ys(i)}
Ns

i=1. The class labels span from 1 to S, ys ∈ Ls =

{1, ...S}. In the FSZU task, the |S| is same with GZSL. But
the samples on every seen class are much less than GZSL,
which containsX s = {xs(i)}

Nf

i=1 andYs = {ys(i)}
Nf

i=1, where

Nf � Ns. For the test set which involves unseen classes,
the GZSL is the same as the FSZU. Specifically, given an-
other dataset {X u,Yu}, on which the classes are related
to the seen dataset. The dataset has U unseen classes and
consist of Nu data instances X u = {xu(i)}

Nu

i=1 with cor-
responding labels Yu = {yu(i)}

Nu

i=1. The class labels thus
range from S + 1 to S +U , yu ∈ Lu = {S + 1, ...S +U}.
The Ls ∩ Lu = ∅. Each class is associated with a class-
level semantic feature, which can be embedding and at-
tribute. And the semantic information can be represented
as A = {a(k)}S+U

k=1 . We denote As and Au as the semantic
features of seen and unseen classes. In this paper, the model
training is achieved in two stages. We split the seen classes
into source classes ({X ss,Yss}, Ass) and target classes
({X st,Yst}, Ast) in the first training stage. And we re-
gard the seen classes as source classes and unseen classes
as target classes in the second training stage.

3.2. Overall Framework

In this section, we present the details and the training
strategy of TDCSS. The overall framework is illustrated
in Figure 2. There are two key components: (1) Task-
correlated feature disentanglement. We first disentangle
the confounding visual features X ss of source classes to
task-correlated features hcor and task-independent features
hind by adversarial training of domain adaptation and mak-
ing sure that both of them are precise, meaningful and inde-
pendent to each other. The disentangled task-correlated fea-
tures hcor are then regarded as more reasonable representa-
tions for the sample synthesis. (2) Controllable pseudo
samples synthesis. We use the task-correlated features
hcor of source classes to add the Center Offset ocenter and
the Edge Offsets oedge respectively, which can synthesize
two types of pseudo samples that are center-pseudo sam-
ples ĥcenter and edge-pseudo samples ĥedge. The offsets
are outputted by convert networks.

3.3. Task-correlated Feature Disentanglement

This module is consists of adversarial training, recon-
struction, and mutual minimization.

Adversarial Training. We aim to disentangle the visual
features into hcor and hind in an adversarial way.

In the classification training step, we input visual
features X ss into Feature Extractor Network E, Task-
correlated Network Ecor and Task-independent Network
Eind to disentangle the vectors into two factors. Then we
train E, Ecor and Eind in the supervised ways by using the
compatibility loss which associates the visual and the se-
mantic. The compatibility score function is parameterized
by W , and is typically formulated as the bilinear compati-
bility function:

τki = hiWak (1)
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Figure 2. A schematic overview of TDCSS. The TDCSS is consist of two key component: (i) Feature Extractor Network E, Task-correlated
Network Ecor and Task-independent Network Eind, Reconstructor R, and W are set for Task-correlated Feature Disentanglement Module.
The representation disentanglement of task-correlated features hcor and task-independent features hind is achieved by adversarial training.
And the independence between hcor and hind and the meaningfulness of two factors are guaranteed by mutual minimization Lmine and
reconstruction Lrec. (ii) The E, Ecor , W , Center Convert Net Ccenter , Edge Convert Nets Cedge, and Domain Identifier DI are set for
Controllable Pseudo Samples Synthesis Module. The inputs of convert nets are the target semantic features minus the source semantic
features. And offsets ocenter and oedge add hcor of source images to synthesize center-pseudo samples ĥcenter and edge-pseudo samples
ĥedge of target classes, respectively. The characteristics of ĥcenter is guaranteed by the transfer loss Ltrans and the adversarial domain
classification loss LDI with hcor of target visual features X st.

where the hi can be hcor or hind of one sample after disen-
tangling. And we further denote the attribute matrix:

τi = hiWAs (2)

where the As should be A in the second training stage.
We can consider τi as a classification score in the cross-
entropy (CE) loss. So we further develop the compatibility
loss function [43], which can be formulated as:

Lce =
1

nb

nb∑
i=1

L(τi, yi) (3)

where the L(·) means the CE loss. The nb means the size
of one batch.

In the adversarial training step, we fix the parameter W
of compatibility function and train E and Eind to fool the
classifier by minimizing the negative entropy of the pre-
dicted class distribution of hind outputted by Eind.

Reconstruction. To guarantee the disentangled factors
are meaningful, we reconstruct the confounding vector from
them. Concretely, we concatenate hcor and hind, and then
input it into Reconstructor R to recover the confounding vi-
sual features X ss. Finally, the reconstruction loss function
can be formulated as:

Lrec =
∥∥∥X̂ ss −X ss

∥∥∥2
F

(4)

where the X̂ ss is the reconstructed vector of X ss, we use
the Lrec to train R

Mutual Minimization. We need to make sure two fac-
tors are independent of each other. Concretely, we minimize
the mutual information [3] between hcor and hind in an un-
supervised way. The mutual information minimization loss
function can be formulated as:

Lmine = Mine(hcor, hind)

= H(hcor)−H(hcor|hind)
= H(hind)−H(hind|hcor)

=
∑

hcor,hind

p(hcor, hind) log
p(hcor, hind)

p(hcor)p(hind)

where H(·) means the Shannon entropy and the
H(hcor|hind) means the conditional entropy of hcor

given hind. The p(hcor, hind) means the joint probability
distribution of (hcor, hind). We use the Lmine to train E,
Ecor and Eind.

3.4. Controllable Pseudo Samples Synthesis

This module is consists of pseudo sample synthesis and
adversarial domain classification.
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Pseudo Sample Synthesis. Firstly, we use the Center
Convert Net Ccenter and the Edge Convert Nets Cedge to
generate ocenter and oedge respectively. The inputs of these
networks are the difference between semantic features of
target classes and that of source classes. Then the cor-
responding offsets are further added to hcor to synthesize
ĥcenter and ĥedge of target classes respectively. This pro-
cess can be formulated as:

ĥcenter = hcor + ocenter (5)

ĥedge = hcor + oedge (6)

where the ocenter and oedge can be further formulated as:

ocenterij = Ccenter(ai − aj) (7)

oedgeij = Cedge(ai − aj) (8)

where i and j are the specific classes that from target classes
and source classes respectively.

For different synthesizing samples, we have the follow-
ing training process. Firstly, we use ĥcenter and ĥedge

to train the Ccenter and the Cedge with classification loss
in Eq. 2 and Eq. 3 by labeling as target classes. Fur-
thermore, to guarantee ĥcenter distribute in the center of
classes, we add the additional transfer loss to ĥcenter to
train the Ccenter. The transfer loss is based on Eq. 2 and
Eq. 3 but using the soft labels that are computed by co-
sine similarity of semantic features between source classes
and target classes. Then, we introduce the adversarial self-
supervised [20] that based on ĥedge to train the model. Con-
cretely, for the ĥedge, the aforementioned process is similar
to FSGM [10] algorithm and the offsets are similar to the
perturbations in adversarial examples. We still label ĥcenter

as target classes to train the parameters W of compatibility
function by Eq. 2 and Eq. 3 while we label ĥedge as source
classes. In this way, we can strengthen the model’s adver-
sarial robustness and further contribute to the generalization
of the model.

Adversarial Domain Classification. We aim to syn-
thesize pseudo samples more consistent with real samples
which are achieved by adversarial domain classification.
Specifically, we use the Domain Identifier DI , which takes
ĥcenter and hcor of X st as input and output the domain la-
bel lf and (1 − lf ) respectively. The loss function can be
formulated as:

LDI = −lf log(lf ) + (1− lf )log(1− lf ) (9)

Then the Ccenter is trained by exchanging domain la-
bels of real and pseudo samples to fool the DI . The ĥedge

distribute between source classes and target classes, so we
have not taken them into domain classification.

Table 1. The properties of datasets

Dataset
AWA1 AWA2 CUB FLO

#Samples 30475 37322 11788 8189
#Classes (train/test) 40/10 40/10 150/50 82/20

Attributes 85 85 1024 1024
Attribute value

(Real or Boolean) both both Real Real

Table 2. Difference between our and compared methods (The
details include Non-Generative Model (NGM), Soft Label (SL),
Overall Feature (OF), Representation Disentanglement (RD),
Pseudo Sample Synthesis (PSS))

Models NGM SL OF RD PSS
DEM X × X × ×

RELATION NET X × X × ×
DCN X × X × ×
TCN X X X × ×

SP-AEN X × × X ×
AREN+CS X × × × ×

AGZSL X × X × X
f-VAEGAN-D2 × × X × X

DLFZRL × × X X ×
TDCSS X X X X X

3.5. Optimization and Unseen Samples Prediction

Our model is trained with different losses iteratively. In
the second training stage, we regard the seen classes as
source classes and unseen classes as target classes. We use
the transfer loss to finetune Ccenter firstly and then synthe-
size ĥcenter of target classes to finetune W by Eq. 2 and
Eq. 3. The first training stage and the second training stage
are running alternately in one epoch.

Once the model training is completed, we can project the
visual features into semantic space and measure the simi-
larity with the semantic features of all classes in the GZSL
task. Specifically, to predict the class label, the location of
the maximum compatibility score can be chosen as the pre-
dicted label:

y = arg max
k∈S+U

φ(x)Tak (10)

where φ(·) includes the E, Ecor and the W .

4. Experiments

4.1. Experiments Setting

Datasets. We selected four popular datasets which
are Animal with Attribute (AWA1) [21], Animal with
Attribute2 (AWA2) [41], Caltech-UCSD Birds-200-2011
(CUB) [40] and Oxford 102 flowers (FLO) [31]. AwA1
and AwA2 are coarse-grained while others are fine-grained.
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Table 3. Performance (in %) comparisons for GZSL in terms of unseen accuracy (u), seen accuracy (s), and their harmonic mean (H).

Methods AWA1 AWA2 CUB FLO
u s H u s H u s H u s H

DEM [45] 32.8 84.7 47.3 30.5 86.4 45.1 19.6 57.9 29.2 57.2 67.7 62.0
RELATION NET [37] 31.4 91.3 46.7 30.0 93.4 45.3 38.1 61.1 47.0 50.8 88.5 64.5

DCN [25] - - - 25.5 84.2 39.1 28.4 60.7 38.7 - - -
TCN [17] - - - 61.2 65.8 63.4 52.6 52.0 52.3 - - -

SP-AEN [5] - - - 23.3 90.0 37.1 34.7 70.6 46.6 - - -
AREN+CS [43] - - - 54.7 79.1 64.7 63.2 69.0 66.0 - - -

AGZSL [8] - - - 46.6 74.2 57.3 42.1 48.1 44.9 - - -
f-VAEGAN-D2 [42] 57.6 70.6 63.5 - - - 48.4 60.1 53.6 56.8 74.9 64.6

DLFZRL [38] - - 61.2 - - 60.9 - - 51.9 - - -
TDCSS 54.4 69.8 60.9 59.2 74.9 66.1 44.2 62.8 51.9 54.1 85.1 66.2

Table 4. Ablation study (in %) of the TDCSS components on
AWA2 datasets in terms of unseen accuracy (u), seen accuracy (s),
and their harmonic mean (H).

Setting AWA2
u s H

TDCSS w/o TFD 52.7 74.4 61.7
TDCSS w/o EPS 44.5 71.9 55.0
TDCSS w/o CPS 34.9 79.3 48.4

TDCSS 59.2 74.9 66.1

The semantic features of CUB and FLO are from the CNN-
RNN features [32, 44]. Our dataset split is under the PS
setting [41]. The details are presented in Table 1.

Evaluation Metric. Average Class Accuracy (ACA) is
adopted as the evaluation metric in the GZSL and FSZU
tasks. We use the average per-class top-1 accuracy of un-
seen classes U and seen classes S to calculate the harmonic
mean H:

H =
(2× U × S)
U + S

(11)

Comparison Methods. Since our model is a non-
generative model, we mainly compare our proposed meth-
ods against current non-generative models. The main dif-
ferences between compared methods and our TDCSS are
shown in Table 2.

Implementation Details. We utilize the 2048D visual
features extracted by pre-trained ResNet-101 [13]. The E,
Ecor (Eind), and DI consist of two-layer fully connected
(FC) neural networks, in which the output units are 1800,
1024, and 2 respectively. The C, W , and R are three-layer
FC neural networks, in which the hidden units are 1024,
512, and 1800. The output units of C are 1024. We use
the LeakyReLU as the activation function for DI while the
ReLU for others. Our model is implemented with PyTorch
and optimized by ADAM optimizer. We set the learning
rate as 2e-4 in the first training stage and 1/10 in the second
training stage, epoch as 1500 for most. And in every epoch,
we iterate 30 batches in the first training stage and 10 in the
second training stage. Because of the limitation of sample

size on every class, the batch size is 32 for the FLO dataset
and 64 for the other datasets. For source/target split in the
first stage, we set the number of target classes to 2 for CUB
and 1 for others.

4.2. Evaluations in GZSL Setting

The classification performances in the GZSL tasks are
shown in Table 3. We observe that the TDCSS achieves
competitive results on four datasets.

Compared with non-generative models, the H value of
our model increases from 47.3% to 60.9% on AWA1, from
64.7% to 66.1% on AWA2, and from 64.5% to 66.2% on
FLO. Specifically, the TCN contains the soft labels to quan-
tify the transfer process in GZSL, which we add to ĥcenter

synthesis process. It can be concluded that our model
achieves improvement in addition to the transfer loss. The
SP-AEN and AREN are based on tensor-level features. For
the SP-AEN that tries to disentangle features, the experi-
mental results prove our model is more effective. For the
AREN+CS, our model is still competitive except on CUB
dataset. However, the mechanism of calibrated stacking
(CS) [4] helps the AREN achieve a great improvement in
the GZSL task. But it is a post-processing operation and
very susceptible to the influence of the parameter values that
are manually set by the researchers. Our model does not use
the CS but with comparable results, which shows TDCSS is
more robust. For the AGZSL synthesized samples but with
no representation disentanglement, which proves the effec-
tiveness of representation disentanglement of our model.

Compared with generative models, the H value of our
model increases from 60.9% to 66.1% on AWA2 and from
64.6% to 66.2% on FLO. However, the pseudo samples syn-
thesized by our model have certain characteristics, which
can further explore the role of different types of pseudo
samples in GZSL knowledge transfer. The further detailed
experiments are shown in section 4.3. The DLFZRL dis-
entangles features by generative networks, our model also
achieves comparable results generally but in a simpler con-
cept and method.
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Figure 3. Visualization of task-correlated features that from AWA2 dataset by saliency maps
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Figure 4. The t-SNE visual results of samples distributions on
AWA2 dataset. (a) The task-correlated features hcor . (b) The task-
independent features hind. (c) & (d) The distributions of the real
samples and different types of pseudo samples.

4.3. Ablation Study

We take the AWA2 dataset into the ablation analysis and
aim to demonstrate that the main components of the TD-
CSS both contribute to the final performance. We also ob-
serve the role of different types of pseudo samples in the
knowledge transfer of the GZSL task. The best performance
is achieved when TFD (Task-correlated Feature Disentan-
glement), EPS (Edge-Pseudo Samples) and CPS (Center-
Pseudo Samples) are both applied. We have the following
main findings:

(1) Compared with the model w/o TFD, it can be shown
that disentanglement has little effect on the recognition of
seen classes in the model, but has a greater impact on un-
seen classes. It proves that the disentanglement module,
which extracts more consistent visual features with class se-
mantics, is of great help to the knowledge transfer from the
seen class to the unseen class.

(2) Compared with the model w/o EPS, the experiments

show that our whole model has a certain improvement in
the accuracy of the seen and unseen classes, indicating that
ĥedge with adversarial self-supervised training contribute
to the consistency between hcor and class semantics, and
further improving the robustness and generalization of the
model.

(3) Compared with the model w/o CPS, on the one hand,
the precision on seen classes of the whole TDCSS is worse
than it. It has demonstrated that ĥedge can further perfect the
classification boundary for seen classes. On the other hand,
the precision on unseen classes has significantly declined, it
has proved ĥcenter play a key role in the knowledge transfer
from the seen classes to the unseen classes in the GZSL
task.

4.4. Qualitative Analysis

We take the AWA2 dataset into the following qualitative
analysis.

Task-correlated features visualization We visualize
hcor and hind in Figure 4 (a) and (b) to validate the proper-
ties of the disentanglement. It shows that hcor are much
more discriminative than hind. But hind remain some
discriminative, which we guess that some characteristics
are not annotated in semantics. We further visualize hcor

by saliency maps [36] which compute the gradient of the
output of Ecor against the original image inputted in the
backbone network. The results are shown in Figure 3.
We can observe that the saliency maps focus on the task-
correlated information, especially the objects. And the task-
independent information is effectively filtered. But there are
also some failed samples that animals blend with their sur-
roundings.

Distribution visualization of pseudo samples To
demonstrate that our method can synthesize two types of
pseudo samples effectively, we randomly select two classes
and visualize the distributions of part samples. As Figure 4
(c) and (d) shows, we can observe that the distributions of
ĥcenter are closer to real samples than that of ĥedge on the
whole, which are consistent with their characteristics.
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Table 5. Performance (in %) comparisons for FSZU in terms of unseen accuracy (u), seen accuracy (s), and their harmonic mean (H).

AWA2 All data Num = 10 Num = 5 Num = 2
u s H u s H u s H u s H

Disentangled-VAE [23] 50.9 79.8 62.2 50.8 64.7 56.9 39.2 58.1 46.8 29.8 39.7 34.1
SDGZSL [7] 74.4 63.6 68.6 47.1 53.3 50.0 25.7 56.1 35.3 6.8 39.9 11.6
AGZSL [8] 46.6 74.2 57.3 18.3 81.1 29.9 14.7 71.9 24.5 13.2 60.1 21.6

TDCSS 59.2 74.9 66.1 56.3 60.9 58.5 49.0 69.1 57.3 39.8 61.8 48.4

CUB All data Num = 10 Num = 5 Num = 2
u s H u s H u s H u s H

Disentangled-VAE [23] 52.1 54.2 53.1 44.7 47.5 46.1 38.9 39.8 39.4 37.9 26.6 31.2
SDGZSL [7] 61.2 65.3 63.2 39.4 59.1 47.3 26.2 55.6 35.6 7.5 47.0 12.9
AGZSL [8] 42.1 48.1 44.9 29.3 42.9 34.8 21.7 36.1 27.1 13.7 26.8 18.1

TDCSS 44.2 62.8 51.9 40.1 54.5 46.2 43.4 45.5 44.4 34.5 38.1 36.2
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Figure 5. The experimental results under different numbers of tar-
get classes when the sample size of each class is 2.

4.5. Evaluations in FSZU Setting

For compared methods, we select two generative models
that disentangle the overall representations into two factors
by random permuting. The Disentangled-VAE [23] consists
of two parallel VAEs and each with two branches. The
SDGZSL [7] consists of VAE, AE, and the RELATION
NET [37], while the VAE is used for data enhancement.
We also select the non-generative AGZSL that synthesizes
pseudo samples in mixup interpolation for comparison.

For experimental settings, We select AWA2 and CUB
datasets, that appeared simultaneously in the Disentangled-
VAE, SDGZSL, and AGZSL. And we reduce the sample
size of seen classes (the sizes are set to 10, 5, and 2)
to stimulate the FSZU. It should be pointed out that the
Disentangled-VAE is reproduced by us based on Python 3.6
and Pytorch 1.0.1. For SDGZSL and AGZSL, we use the
codes that have been released on Github. The performances
in the FSZU tasks are shown in Table 5.

Compared with generative models, we achieve 22.4%
improvement in H value on average for AWA2 and 8.8%
for CUB. These experimental results reflect that our model
can still work effectively in the new task. The generative
model, especially SDGZSL, has excellent performances in
GZSL but degrade sharply with the decrease in sample size,
which shows more non-robust compared with our model.
And our model can synthesize more diverse pseudo samples
based on the limited seen class samples in a non-generative
way.

Compared with the non-generative model that synthe-
sizes pseudo samples, we achieve 117.9% improvement in
H value on average for AWA2 and 65.5% for CUB. It shows
that the representation disentanglement before synthesizing
samples is reasonable and important. The results in the
FSZU also show that the mixup interpolation of the AGZSL
will lead the diversity of the synthesis samples to decrease
sharply as the sample size decreases.

In the task of FSZU, we can improve the model’s per-
formance by increasing the sample size of the target class
with increasing the number of target classes. The results
are shown in Figure 5. It shows that within a certain range,
the accuracy will increase as the number of target classes
increases, but too many target classes will cause the per-
formance to decrease. It is a corollary that too many syn-
thesized pseudo samples would be the leading data in the
training process and further distraction the model from rec-
ognizing real samples.

5. Conclusions
In this paper, we propose a non-generative model, TD-

CSS, to perform the task-correlated feature disentanglement
and diversity pseudo samples synthesis in the GZSL and the
FSZU tasks. For disentanglement, the TDCSS uses the ad-
versarial training of domain adaptation to achieve it. For
synthesis, the TDCSS synthesizes diverse pseudo samples
with certain characteristics. The above mechanisms make
our model achieve competitive performances in different
tasks, and help people intuitively understand the role of dif-
ferent types of pseudo-samples in the knowledge transfer of
ZSL.
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