
Overcoming Catastrophic Forgetting in Incremental Object Detection
via Elastic Response Distillation

Tao Feng1, Mang Wang1*, Hangjie Yuan2

1Alibaba Group 2Zhejiang University
fengtao.hi@gmail.com, wangmang.wm@alibaba-inc.com, hj.yuan@zju.edu.cn

Abstract

Traditional object detectors are ill-equipped for incre-
mental learning. However, fine-tuning directly on a well-
trained detection model with only new data will lead to
catastrophic forgetting. Knowledge distillation is a flexi-
ble way to mitigate catastrophic forgetting. In Incremen-
tal Object Detection (IOD), previous work mainly focuses
on distilling for the combination of features and responses.
However, they under-explore the information that contains
in responses. In this paper, we propose a response-based
incremental distillation method, dubbed Elastic Response
Distillation (ERD), which focuses on elastically learning
responses from the classification head and the regression
head. Firstly, our method transfers category knowledge
while equipping student detector with the ability to retain
localization information during incremental learning. In
addition, we further evaluate the quality of all locations and
provide valuable responses by the Elastic Response Selec-
tion (ERS) strategy. Finally, we elucidate that the knowl-
edge from different responses should be assigned with dif-
ferent importance during incremental distillation. Exten-
sive experiments conducted on MS COCO demonstrate our
method achieves state-of-the-art result, which substantially
narrows the performance gap towards full training. Code is
available at https://github.com/Hi-FT/ERD.

1. Introduction
In the natural world, the visual system of creatures

could constantly acquire, integrate and optimize knowl-
edge. Learning mode is inherently incremental for them.
In contrast, currently, the classic training paradigm of ob-
ject detection models [19,33] does not have such capability.
Supervised object detection paradigm relies on accessing
pre-defined labeled data. This learning paradigm implic-
itly assumes data distribution is fixed or stationary [9, 37],
while data from real world is represented by continuous
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Figure 1. The effect of various responses for IOD.

and dynamic data flow, whose distribution is non-stationary.
When the model continuously obtains knowledge from
non-stationary distribution, new knowledge would interfere
with the old one, triggering catastrophic forgetting [11, 26].
Based on whether the task identity is provided or must be
inferred [34], researchers divide Incremental Learning (IL)
into three types: task/domain/class IL. In this paper, we fo-
cus on the most intractable scenario for object detection:
class incremental object detection.

A flexible way to solve IOD is knowledge distillation
[14]. [28] stressed that the Tower layers could reduce catas-
trophic forgetting significantly. They implemented incre-
mental learning on an anchor-free detector and selectively
performed distillation on non-regression outputs. Mean-
while, in knowledge distillation for object detection where
incremental learning was not introduced, previous work ex-
tracted knowledge from the combined distillation of differ-
ent components. For example, [5] and [32] distilled all com-
ponents of the detector. Nevertheless, the nature of these
methods are designed using feature-based knowledge dis-
tillation [6], response-based method [12] has not been ex-
plored in IOD [25] yet. Besides, the advantage of response-
based method is that it provides the reasoning information
[14, 27] of the teacher detector. Therefore, an elaborate de-
sign for different responses is essential [23].

This paper focuses on a practical and challenging prob-
lem concerning IOD: how to learn response from classifica-
tion predictions and bounding boxes. Responses in object
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detection contain logits together with the offset of bound-
ing box [12]. Firstly, since the number of ground truth on
each new image is uncertain, one of the foremost considera-
tions is to validate the response of all samples, determining
which response is positive or negative and which response
each object should regress towards. Furthermore, as shown
in Figure 1, we find that not all responses are important to
prevent catastrophic forgetting, thus an appropriate number
of response nodes is ideal. [16] also proposed that synap-
tic consolidation achieves continuous learning by reducing
synaptic plasticity critical to previous learning tasks. To
sum up, we guide the student detector following the behav-
ior of teacher on the old objects by constraining important
responses to stay close to their old values.

To tackle the above problems, this paper rethinks
response-based knowledge distillation method, finding that
distillation at proper locations is crucial for facilitating IOD.
Driven by this inspiration, we proposed an Elastic Response
Distillation (ERD) scheme that elastically learns responses
from classification head and regression head respectively.
Unlike previous work, we introduce incremental localiza-
tion distillation [38] in regression response to equip student
detector with the ability to learn location ambiguity [20]
during incremental learning. Besides, we propose Elastic
Response Selection (ERS) strategy to automatically select
distillation nodes based on statistical characteristics from
different responses, which evaluates the qualities of all lo-
cations and provides valuable responses. In this paper, we
explain how we implement the constraint, and finally how
we determine which responses are important. We greatly
alleviate catastrophic forgetting problem and significantly
narrow the gap with full training. Extensive experiments on
the MS COCO dataset support our analysis and conclusion.

The our contributions can be summarized as follows,
(i) To the best of our knowledge, this paper is the first

work to explore the response-based distillation method in
IOD and dissect the essential differences between feature-
based and response-based solutions for IOD. (ii) We pro-
pose ERD based on statistical analysis, which separately
distills selective classification and regression responses us-
ing the proposed ERS strategy. (iii) Extensive experi-
ments on MS COCO demonstrate that the proposed method
achieves state-of-the-art performance and can be easily ex-
tended to different detectors.

2. Related work
Incremental Learning. Catastrophic forgetting is the core
challenge for incremental learning. Incremental learning
based on parameter constraints is a candidate solution for
such problem, which protects the old knowledge by intro-
ducing an additional parameter-related regularization term
to modify the gradient. EWC [16] and MAS [1] are two
typical representatives of such method. Another solution is

incremental learning based on knowledge distillation. This
kind of method mainly projects old knowledge by transfer-
ring knowledge in old tasks to new tasks through knowledge
distillation. LwF [21] is the first method that introduces the
concept of knowledge distillation into incremental learning,
in the purpose of making predictions of the new model on
new tasks similar to that of the old model and thereby pro-
tecting the old knowledge in the form of knowledge trans-
fer. However, it would cause knowledge confusion when the
correlation between new and old tasks is low. iCaRL [30]
algorithm uses knowledge distillation to avoid excessive de-
terioration of knowledge in the network, while BiC [36]
added a bias correction layer after the FC layer to offset the
category bias of new data when using the distillation loss.

Incremental Object Detection. Compared with incremen-
tal classification, IOD is less explored. Meanwhile, the high
complexity of the detection task also adds the difficulty of
incremental object detection. [31] proposed to apply LwF
to Fast RCNN detector [10], which is the first work on in-
cremental object detection. Thereafter, some researchers
move this area forward. [28] proposed SID approach for
IOD on anchor-free detector and conducted experiments on
FCOS [33] and CenterNet [39]. [18] studied object detec-
tion based on class-incremental learning on Faster RCNN
detector with emphasis on few-shot scenarios, which is also
the focus of ONCE algorithm [29]. [17] designed an incre-
mental object detection system with RetinaNet detector [24]
on edge devices. the latest work, [15] introduced the con-
cept of incremental learning when defining the problems of
Open World Object Detection (OWOD). However, existing
IOD distillation framework does not pay enough attention
to the significant role of head. In this study, we found head
has its great significance in the area of IOD.

Knowledge Distillation for Object Detection. Knowl-
edge distillation [2,4] is an effective way to transfer knowl-
edge between models. Widely applied in image classifica-
tion tasks in previous researches, knowledge distillation is
now used in object detection tasks frequently [8]. [5] imple-
mented distillation for all components of Faster RCNN (in-
cluding backbone, proposals in RPN, and head). To imitate
the high-level feature response of the teacher model with the
student model, [35] proposed a distillation method based
on fine-grained feature imitation. By synthesize category-
conditioned objects through inverse mapping, [3] proposed
a data-free distillation technology applicable for object de-
tection, but the method would trigger dream-image. [13] be-
lieving that foreground and background both play an unique
role in object detection, proposed an object detection distil-
lation method that decoupled foreground and background.
[38] proposed a localization distillation method introduc-
ing knowledge distillation into the regression branch of the
detector, so as to enable the student network to solve the
localization ambiguity as the teacher network.
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Figure 2. Overall structure of elastic response distillation for incremental object detection.

3. Method
3.1. Motivation

The purpose of IOD is to transfer old knowledge to stu-
dent detector, and this knowledge could be the features of
intermediate layers in backbone or neck, or the soft tar-
gets in head. Unlike feature-based method, response-based
method can provides the reasoning information of teacher
detector [14,27]. Therefore, we incrementally learn a strong
and efficient student object detector by the distillation of in-
cremental knowledge from responses of different heads.

3.2. Overall Structure

The overall framework of the proposed method is shown
in Figure 2. Firstly, ERD is applied to learn elastic re-
sponse from the classification head and regression head of
the teacher detector. Secondly, incremental localization dis-
tillation loss is applied to enhance the localization informa-
tion extraction ability of the student detector. Notably, the
ERS strategies are proposed to gain more meaningful in-
cremental responses from the teacher detector, that is, se-
lective calculation of the distillation loss from the response
provided by the teacher detector. The overall learning target
of the student detector is therefore defined as,

Ltotal = Lmodel + λ1LERD cls(CT , CS)
+ λ2LERD bbox(BT ,BS)

(1)

where λi is the parameters that balances the weights of dif-
ferent loss terms, and the subscript T and S separately rep-
resents teacher and student. The loss term Lmodel is the
detector-specific classification and localization loss to train
student detector for detecting new objects. The second loss
term LERD cls is the incremental L2 distillation loss for the

classification branch. The third loss term LERD bbox is the
incremental localization distillation loss for the regression
branch. Both LERD cls and LERD bbox are used for the out-
puts of old classes. We use λ1 = λ2 = 1 by default.

In the following subsection, we mainly present ERD and
ERS for GFLV1 [20] while we generalize our method to
FCOS in Table 7, which illustrates the effectiveness of our
method.

3.3. ERD at Classification Head

The soft predictions from the classification head con-
tains the knowledge of various categories discovered by the
teacher detector. Through the learning of soft predictions,
the student model can inherit hidden knowledge, which is
intuitive for classification tasks [14]. Let T be the teacher
model, we use SoftMax to transform logits CT into distribu-
tion, then the outputting probability distribution PT is de-
fined as,

PT = SoftMax (CT /t) (2)

Similarly, we define PS for the student model S as PS =
SoftMax (CS/t), where t is the temperature factor to soften
the probability distribution for PT and PS .

Previous work usually directly utilizes all the predicted
responses in classification head and treat each position
equally, e.g. Lcls =

∑N
i=1 LKL (PT ,PS). If there is any

inappropriate balance, the response generated by the back-
ground category may overwhelm the response generated by
the foreground category, thereby interfering with the reten-
tion of old knowledge. Here, we selectively calculate the
distillation loss from response, thus the incremental distil-
lation loss at classification head is as follows,

LERD cls (CT , CS) =
m∑
i=1

(
CT i − CS i

)2
(3)



where CT i is one of the m selected category responses from
the teacher detector using the new data. CS i is the corre-
sponding category responses of the student detector. By
distilling the selected responses, the student detector incre-
mentally inherits the old knowledge of the teacher detector.

3.4. ERD at Regression Head

The bounding box responses from the regression branch
are also important for IOD. Contrary to the discrete class
information, the output of regression branch may provide a
regression direction contradicting the real direction. Even
if an image does not contain any objects of old categories,
the regression branch would still predict bounding boxes,
though the confidence is low. This poses a challenge for
transferring regression knowledge from teacher detector to
student detector. Furthermore, in previous work, only the
bounding boxes of objects with high classification confi-
dence are utilized as the regression knowledge from the
teacher detector, which ignores the localization information
of regression branch.

Benefitting from the general representation of distribu-
tions for bounding boxes from GFLV1 detector, each edge
e of a bounding box can be represented as a probability dis-
tribution through SoftMax function [38]. Thus, the prob-
ability matrix of each bounding box B can be defined as,

B = [pt, pb, pl, pr] ∈ Rn×4 (4)

Therefore, we can extract the incremental localization
knowledge of bounding box B from the teacher detec-
tor T and transfer it to the student detector S using KL-
Divergence loss,

Lj
LD =

∑
e∈B
Le
KL

(
BT j ,BS j

)
(5)

Finally, the incremental localization distillation loss at
regression head is defined as,

LERD bbox (BT ,BS) =
J∑

j=1

Lj
LD (6)

where BT j is the regression response of the teacher detector
from J selected bounding boxes using the new data, and
BS j is the corresponding regression response of the student
detector. Notably, the incremental localization distillation
provides extra localization information.

3.5. Elastic Response Selection

As shown in Figure 1, choosing all the responses leads
to bad performance, thus response selection is important
to prevent catastrophic forgetting. Then a natural question
arises: how to select responses as the distillation nodes.

Common selection strategies depend on sensitive hyper-
parameters such as setting confidence thresholds or select-
ing Top-K scores. These empirical practices may result in a
consequence that small thresholds ignore several old objects
while large ones bring negative responses.

To solve the above problem, we propose the ERS strat-
egy as illustrated in Algorithm 1. We respectively select
responses from the classification head and regression head
as the distillation nodes.
Classification head. Statistical characteristics are utilized
to select responses of the classification head, as described
in L-3 to L-11. Specifically, We first calculate the confi-
dence score of each node. After that, we calculate the mean
µ′
C and standard deviation σ′

C in L-5 and L-6. With these
statistics, the elastic threshold τ ′C can be obtained in L-7.
Finally, we select response nodes whose confidence scores
are greater than the threshold τ ′C in L-8 to L-11 as the dis-
tillation nodes.
Regression head. Statistical distribution information is uti-
lized to select responses of the regression head, as described
in L-13 to L-22. For GFLV1, a certain and unambiguous
bounding box usually has a sharper distribution. There-
fore, the Top-1 value is relatively larger if the distribution
is sharp. Based on the above statistical properties, the Top-
1 value is used to measure the confidence of each bounding
box. Specifically, we first select the Top-1 value of each
distribution. After that, we calculate the mean µ′

B and the
standard deviation σ′

B of all Top-1 values in L-15 and L-16.
Then, the threshold τ ′B is obtained in L-17. Finally, we se-
lect these candidates whose confidence are greater than the
threshold τ ′B in L-18 to L-20. The nms operator returns a
sampled set that is filtered by NMS in L-21.

The motivations behind ERS are explained as follows:
Maintain fairness among different responses. In a nor-
mal distribution, approximately 16% and 2.5% of the sam-
ples are separately distributed in the interval [µ + σ,+∞]
and [µ + 2σ,+∞]. In our case, the number of positive re-
sponses are distributed from 100 to 1000 per image. In con-
trast, the strategy of selecting all or top-k responses leads to
unfairness for different responses.
Elastic selection by statistical characteristics. In the IOD
task, responses generated by background objects may over-
whelm the responses generated by foreground objects. Thus
a high µ indicates high-quality candidates, while a low one
indicates low-quality candidates. ERS can elastically select
enough positive responses following the statistical charac-
teristics of different branches.

4. Experiments and Discussions
In this section, we perform experiments on MS COCO

2017 [7] using the baseline detector GFLV1 to validate our
method. Then, we perform ablation studies to prove the
effectiveness of each component. Finally, we discuss the



Table 1. Incremental results (%) based on GFLV1 detector on COCO benchmark under different scenarios. (“∆” represents an improve-
ment over Catastrophic Forgetting. “∇” represents the gap towards the Upper Bound.)

Scenarios Method AP AP50 AP75 APS APM APL

Full data Upper Bound 40.2 58.3 43.6 23.2 44.1 52.2

Catastrophic Forgetting 17.8 25.9 19.3 8.3 19.2 24.6

40 classes + 40 classes
LwF [21] 17.2 (∆− 0.6/∇23.0) 25.4 18.6 7.9 18.4 24.3
RILOD [17] 29.9 (∆12.1/∇10.3) 45.0 32.0 15.8 33.0 40.5
SID [28] 34.0 (∆16.2/∇6.2) 51.4 36.3 18.4 38.4 44.9
ERD 36.9 (∆19.1/∇3.3) 54.5 39.6 21.3 40.4 47.5

Catastrophic Forgetting 14.1 20.6 15.2 7.0 14.5 19.2

50 classes + 30 classes
LwF [21] 5.0 (∆− 9.1/∇35.2) 9.5 4.6 5.0 6.7 5.7
RILOD [17] 28.5 (∆14.4/∇11.7) 43.2 30.2 15.4 31.6 38.0
SID [28] 33.8 (∆19.7/∇6.4) 51.0 36.1 17.6 38.1 45.1
ERD 36.6 (∆22.5/∇3.6) 54.0 38.9 19.4 40.4 48.0

Catastrophic Forgetting 9.8 14.0 10.6 4.3 14.1 13.5

60 classes + 20 classes
LwF [21] 5.8 (∆− 4.0/∇34.4) 10.8 5.3 4.0 8.5 7.7
RILOD [17] 25.4 (∆15.6/∇14.8) 38.8 26.8 13.9 29.0 33.7
SID [28] 32.7 (∆22.9/∇7.5) 49.8 34.6 17.2 37.6 43.5
ERD 35.8 (∆26.0/∇4.4) 52.9 38.4 20.6 39.4 46.5

Catastrophic Forgetting 4.3 6.5 4.5 2.1 5.1 6.8

70 classes + 10 classes
LwF [21] 7.1 (∆2.8/∇33.1) 12.4 7.0 4.8 9.5 10.0
RILOD [17] 24.5 (∆20.2/∇15.7) 37.9 25.7 14.2 27.4 33.5
SID [28] 32.8 (∆28.5/∇7.4) 49.0 35.0 17.1 36.9 44.5
ERD 34.9 (∆30.6/∇5.3) 51.9 37.4 18.7 38.8 45.5

application scenario of our method.
Implementation Details. We build our method on top of
the GFLV1 detector. The teacher and student detectors de-
fined in our experiments are standard GFLV1 architectures.
For GFLV1 detector, ResNet-50 is used as its backbone,
FPN [22] is used as its neck. We train the detector to follow-
ing the same settings as the original paper. All the experi-
ments are performed on 8 NVIDIA Tesla V100 GPUs, with
a batch size of 8. For the parameter α, we use α1 = α2 = 2
by default.
Datasets and Evaluation Metric. MS COCO 2017 is a
challenging dataset in object detection which contains 80
object classes. For experiments on this dataset, we use the
train set for training and the minival set for testing. The
standard COCO protocols are used as the evaluation met-
rics, i.e. AP , AP50, AP75, APS , APM and APL.
Experiment Setup. The detector is trained by 12 epochs
(1x mode) for each incremental step. The settings are con-
sistent for all the detectors in the different scenarios. Specif-
ically, we conduct experiments in the following Class Incre-
mental Learning scenarios with different splits:

(i) One-step: 40 + 40 to 70 + 10 with a step size of 10
classes, increasing base class numbers and decreasing new
class numbers. (ii) Multi-step: two-step and four-step set-

tings with 20 new classes and 10 new classes respectively
added each time. (iii) Last 40 + First 40: last 40 classes as
the base classes and first 40 classes as new classes.

4.1. Overall Performance

One-step. We reported the incremental results under the
first 40 classes + last 40 classes scenario in Table 1. In this
case, we observe that if the old detector and the new data
are directly used to conduct fine-tuning process, then the
AP drops to 17.8% as compared to the 40.2% in full data
training (Upper Bound). This is because the fine-tuning pro-
cess makes the detector’s memory of old objects close to 0,
resulting in catastrophic forgetting (ref to Figure 3b). Our
method far outperformed fine-tuning across various evalua-
tion criteria. Concretely, when the IoU is 0.5, 0.75 and 0.95,
the AP respectively improves by 19.1%, 28.6% and 20.3%,
which indicates that our method can well address the catas-
trophic forgetting problem. Notably, even compared with
the upper bound where the entire dataset is used for train-
ing, our method only has a performance gap of 3.3%. It
indicates that the student detector maintains a good mem-
ory of old objects while is able to learn knowledge of new
objects. Remarkably, as shown in Table 1, the performance
of fine-tuning decreases drastically as the number of new
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Figure 3. AP of per-class among different learning schemes. (a) Detector is trained with all data.(b) Student detector is fine-tuned with
new classes.(c) Student detector is learned via ERD.

Table 2. Incremental results (AP/AP50, %) based on GFLV1 detector on COCO benchmark under the four-step setting. A(a-b) is the
one-step normal training for categories a-b and +B(c-d) is the incremental training for categories c-d.

Method A(1-40) +B(40-50) +B(50-60) +B(60-70) +B(70-80) A(1-80)

Catastrophic Forgetting 5.8/ 8.5 5.7/ 8.3 6.3/ 8.5 3.3/ 4.8
RILOD [17] 45.7/ 66.3 25.4/ 38.9 11.2/ 17.3 10.5/ 15.6 8.4/ 12.5 40.2/ 58.3SID [28] 34.6/ 52.1 24.1/ 38.0 14.6/ 23.0 12.6/ 23.3
ERD 36.4/ 53.9 30.8/ 46.7 26.2/ 39.9 20.7/ 31.8

Table 3. Incremental results (AP/AP50, %) based on GFLV1 de-
tector on COCO benchmark under the two-step setting, where the
meanings of A(a-b) and +B(c-d) are similar to Table 2.

Method A(1-40) +B(40-60) +B(60-80) A(1-80)

Catastrophic Forgetting 10.7/ 15.8 9.4/ 13.3
RILOD [17] 45.7/ 66.3 27.8/ 42.8 15.8/ 4.0 40.2/ 58.3SID [28] 34.0/ 51.8 23.8/ 36.5
ERD 36.7/ 54.6 32.4/ 48.6

classes decreases (17.8% to 4.3%) under different incre-
mental conditions (50 classes + 30 classes, 60 classes + 20
classes, and 70 classes + 10 classes), while our method still
remains a high level performance (36.9% to 34.9%). To
sum up, our method has great robustness for overcoming
catastrophic forgetting.

In addition, we compare our method with LwF [21],
RILOD [17] and SID [28] as well. Table 1 shows that
although LwF works well in incremental classification, it
has even lower AP than direct fine-tuning in detection task,
which reveals naively borrowing methods from incremen-
tal classification area would generate negative influence to
the IOD task. For the typical IOD approaches (i.e. RILOD
and SID), in order to fairly compare with them, we repli-
cate them based on the GFLV1 detector. For RILOD, we
completely follow their implementations. For SID, we use
the component with the greatest improvement in the paper.
When compared with the aforementioned approaches, the
proposed method achieves state-of-the-art performance in
four incremental scenarios. Notably, the performance im-
provements are all significant.

To put it more intuitively, we visualize the AP of all
classes in first 40 classes and last 40 classes in Figure 4.
Furthermore, the per-class results are visualized in Figure
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Figure 4. AP of all classes in first 40 classes vs. last 40 classes.

3, where the blue columns denote the per-class AP in first
40 classes, and the orange columns denote the per-class AP
in last 40 classes. As Figure 3 shows, the proposed method
reserves a majority of information for the old classes while
learns knowledge from newly coming classes.

Multi-step. We reported the incremental results under
multi-step settings to illustrate the continual learning abil-
ity of the proposed method. In Table 3 (two-step) and Ta-
ble 2 (four-step), our method outperforms fine-tuning by a
large margin for each incremental step on both multi-step
settings. This is because, the detector continuously obtains
knowledge from the dynamic data flow, new knowledge in-
terferes with the old one, triggering catastrophic forgetting,
while ERD provides valuable responses in each step to al-
leviate the problem. In addition, ERD performs favorably
well on each incremental step against the previous state-of-
the-art. Remarkably, the AP of RILOD and SID decreases
drastically as the number of new classes increases (27.8%
to 15.8% and 34.0% to 23.8%, 25.4% to 8.4% and 34.6% to
12.6%) under two multi-step settings, while our method still
remains a high performance (36.7% to 32.4% and 36.4% to
20.7%). ERD is able to restore the previous class perfor-



Table 4. Ablation study (%) based on GFLV1 detector using the COCO benchmark under first 40 classes + last 40 classes. (“∆” represents
an improvement over Catastrophic Forgetting. “∇” represents the gap towards the Upper Bound.)

Method AP AP50 AP75 APS APM APL

Upper Bound 40.2 58.3 43.6 23.2 44.1 52.2
Catastrophic Forgetting 17.8 25.9 19.3 8.3 19.2 24.6

KD:all cls + all reg 31.5(∆13.7/∇8.7) 48.3 33.4 17.7 35.3 41.3
KD:all cls 23.8(∆6.0/∇16.4) 36.6 24.9 11.8 27.2 32.9
KD:all reg 13.0(∆− 4.8/∇27.2) 21.1 13.4 5.0 14.7 18.6
ERD:cls + ERS 33.2(∆15.4/∇7.0) 51.2 35.2 18.5 37.8 43.8
ERD:cls + reg + ERS 36.9(∆19.1/∇3.3) 54.5 39.6 21.3 40.4 47.5

Table 5. Varying α for ERS (%).

Threshold AP AP50 AP75 APS APM APL

α1,2 = 1, 1 36.5 54.2 39.2 20.6 40.3 46.9
α1,2 = 1, 2 36.8 54.4 39.6 21.5 40.4 47.5
α1,2 = 2, 1 36.7 54.3 39.6 21.5 40.4 47.6
α1,2 = 2, 2 36.9 54.5 39.6 21.3 40.4 47.5

mance to a respectable level. It indicates that the proposed
method has a significant ability to alleviate catastrophic for-
getting.

4.2. Ablation Study

We validate the effectiveness of each component of the
proposed method on MS COCO. In Table 4, “KD” de-
notes only use the distillation loss without selection, while
“ERD” denotes the selection strategy are introduced. “all
cls + all reg” denotes responses from both classification
and regression branch are treated equally in the incremen-
tal process, which is used as our baseline. “all cls” denotes
all classification responses in the incremental process are
treated equally. “all reg” denotes all regression responses
are treated equally in the incremental process. “cls + ERS”
denotes that the ERS strategy is employed on the classifi-
cation branch to conduct incremental distillation, as shown
in Equation 3. “cls + reg + ERS” denotes responses on re-
gression branch are added as well, as shown in Equation
6. In Table 4, distillation on either classification or re-
gression branch can merely obtain a low performance (i.e.
23.8% and 13.0% of AP). When all responses from the re-
gression branch are used, AP is even lower than the fine-
tuning strategy, which supports our findings shown in Fig-
ure 1. Comparatively, when combined responses from clas-
sification with regression branch, the AP reaches to 31.5%.
When ERS is involved to select responses from classifica-
tion branch, the student detector can obtain higher results
(i.e. 33.2%). Furthermore, when performing ERS on re-
gression branch, the AP continually increases to 36.9%,
which is a dramatically improvement (i.e. 5.4%) compared

with the baseline. All these results clearly point out the ad-
vantages of the proposed method.
Parameter α. We conduct four groups of experiments to
investigate the robustness of the proposed method on the
parameter α, which is utilized to elastically select positive
responses from classification head and regression head. In
table 5, different combinations of α1 and α2 are chosen
from the set ([1,1], [1,2], [2,1], [2,2]) to perform the training
process. We observe that the maximum performance gap is
merely 0.4%, which indicates the proposed ERS is insensi-
tive to the parameter α. Therefore, the proposed ERS can
be regarded as nearly parameter-free.

4.3. Discussions

In this section, we present further insights into response-
based IOD.
Generalization on different detectors. We perform ex-
tended experiments to validate the generality of the pro-
posed method on the FCOS detector. For FCOS, we only
need to replace the LD loss with GIoU loss. For both re-
gression and centerness branches, we employ the statisti-
cal characteristics of category information to determine the
elastic responses. Other settings are consistent with the pro-
posed method. Results in Table 7 show that our method
still brings stable gain regardless of the detector structure.
To sum up, we only need to adjust our method slightly for
adapting the head of different detectors, which indicates the
generalizability of the proposed method.
Elastic response helps both learning and generalization.
Considering the long-tail distribution of COCO, we config-
ure an experiment under the last 40 classes + first 40 classes
scenario. In this case, objects of the first 40 classes con-
tain more information, which means more responses could
be obtained. As shown in Table 6, the performance can be
further improved, with a smaller gap 2.7% against the upper
bound, which indicates the proposed method benefits from
more responses to alleviate catastrophic forgetting.
Distances of different components. In order to verify
why the response-based distillation can attain higher perfor-
mance compared to feature-based solutions, we randomly



Table 6. Incremental results (%) based on GFLV1 detector on COCO benchmark under last 40 classes + first 40 classes. (“∆” represents
an improvement over Catastrophic Forgetting. “∇” represents the gap towards the Upper Bound.)

Method AP AP50 AP75 APS APM APL

Upper Bound 40.2 58.3 43.6 23.2 44.1 52.2
Catastrophic Forgetting 22.6 32.7 24.2 15.1 25.0 27.6

LwF [21] 20.5 (∆− 2.1/∇19.7) 29.9 22.1 13.0 22.5 25.3
RILOD [17] 34.1 (∆11.5/∇6.1) 51.1 36.8 19.1 38.0 43.9
SID [28] 33.5 (∆10.9/∇6.7) 50.9 36.3 19.0 37.7 43.0
ERD 37.5 (∆14.9/∇2.7) 55.1 40.4 21.3 41.1 48.2

Table 7. Incremental results (%) based on FCOS detector.

Model Method Centerness Elastic AP AP50 AP75

Upper Bound ✔ 38.5 57.5 41.3
Fine-tuning ✔ 16.7 25.6 17.9

FCOS All 31.5 49.6 33.2
✔ 31.7 49.9 33.3

ERD ✔ 34.4 52.8 36.5
✔ ✔ 34.2 52.4 36.6

Table 8. Quantitative results (%) of feature-based and response-
based solutions.

Method Feature Response Elastic AP AP50 AP75

All ✔ 31.5 48.3 33.4
FPN + All ✔ ✔ 32.5 49.7 34.4
FPN + ERS ✔ ✔ ✔ 36.5 54.0 39.0
ERD ✔ ✔ 36.9 54.5 39.6
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Figure 5. Feature distance analysis of different components.

choose 10 images from COCO minival and calculate the
L2 feature distances in varying components using differ-
ent training strategies. As shown in Figure 5, “All” de-
notes the full data training strategy; “Finetune” denotes the
fine-tuning strategy; “Incremental” denotes the proposed
method. When compared “All vs. Incremental” with “All
vs. Finetune”, the distance of classification head is larger
than that of regression head, and distances of the former two
are larger than that of FPN (i.e. feature layers). It means that
the response-based distillation provides more contributions
to alleviate catastrophic forgetting.
Quantitative analysis of feature-based and response-
based solution. Besides qualitative analysis in Figure 5, we

further analyze the quantitative difference between feature-
based and response-based solutions. As shown in table 8,
when combined FPN (i.e. feature layers) with all responses
in head, it would produce positive effects. The reason is
that feature layers provide more capacity for the learning
procedure compared with head alone. Nevertheless, when
the ERS strategy is added to head, the final performance
is dramatically improved (32.5% vs. 36.9%), while the in-
volvement of feature layers brings negative impacts (-0.4%
in AP). We guess a feasible explanation could be the opti-
mization directions are changed, as feature layers tend to a
global direction while head expects to reserve positive re-
sponses after selection.

5. Conclusion

In this paper, we elaborately design a response-based
incremental paradigm in object detection field, which sig-
nificantly alleviates the catastrophic forgetting problem.
Firstly, we learn responses from the classification head and
regression head, and specifically introduce incremental lo-
calization distillation in regression responses. Secondly, the
elastic selection strategy is designed to provide suitable re-
sponses in different heads. Extensive experiments validate
the effectiveness of the proposed method. Finally, elaborate
analysis discusses the generalizability of our method and
essential differences between response-based and feature-
based distillation for incremental detection task, which pro-
vides insights for further exploration in this field.

Broader Impact

The study of IOD would make us better understand the
formation mechanism of neural networks from the system
level, which provides a technical basis for the develop-
ment of lifelong learning mechanism. The ultimate goal
is that detectors can perform continual learning like crea-
tures. However, models after incremental learning may lead
to some privacy issues, while we can mitigate it by limiting
the accessibility of trained models.
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Supplementary materials
This section contains more experimental results and dis-

cussions.

A. More discussions about responses of the
head.

We visualize the response in the classification head of
the P3 level (the first layer of the FPN) between differ-
ent samples in Figure 6. Z-axis indicates the classification
confidence score of each position. The outputs of classifi-
cation head on P3 level is 100 ∗ 152, which indicates the
number of all responses on P3 level. In Figure 6a (sample
1) and Figure 6b (sample 2), the positive responses (high-
confidence) accounted for only a fraction of all responses,
while the majority of the remaining responses are negative
(low-confidence close to 0). This visually demonstrates that
the response selection (ERS) is essential. Secondly, the
maximum confidence for responses in sample 1 is approxi-
mately 0.04, while the maximum confidence for responses
in sample 2 is approximately 0.14, which is 2.5 times higher
than that in sample 1. It’s a common situation that differ-
ent images have enormously different peak response con-
fidences. Selecting them by a fixed number will result in
redundant background responses or lacking foreground re-
sponses among different images. As shown in Figure 6c
and Figure 6d, if equipped with ERS, the model performs
a fairer selection as stated in Section 3.5 of the main paper,
which also supports our motivation for the proposed ERS.

B. Detailed results of various responses for
IOD.

In the Introduction section, we present that not all re-
sponses are important to prevent catastrophic forgetting. In
this subsection, we provide detailed results of Figure 1 in
Table 9. We gradually increase the number of responses
from 5 to all, corresponding to the less responses to all re-
sponses of Figure 1. The tables indicates that although by
exhaustively traversing the number of responses with ap-
propriate step sizes can find an adequate global number, it
still trails our elastic method.

C. Detailed results of base classes and new
classes.

In Table 10, we provide detailed results of base classes
and new classes for Table 1. The“Upper Bound” denotes
results of base and new classes by performing a standard
training with full data. “ERD” denotes results of base and
new classes by performing training with our method in an
incremental setting. In Table 1, catastrophic forgetting leads
to detection results of the base class collapsed to almost 0.
As shown in Table 10, our method significantly improves

Table 9. Performance (%) of various responses for IOD under first
40 classes + last 40 classes scenario.

Response AP AP50 AP75 APS APM APL

# = 5 30.0 44.3 32.1 13.0 33.9 41.4
# = 10 32.3 47.3 34.7 14.9 36.4 43.6
# = 50 35.6 52.5 38.3 19.0 39.2 46.4
# = 100 36.3 53.4 39.0 19.7 39.9 46.6
# = 1k 36.1 53.9 38.7 20.0 40.1 46.8
# = 2k 35.5 53.1 38.1 19.4 39.4 46.6
# = 4k 34.9 52.7 37.1 19.6 38.8 45.7
# = 6k 34.8 52.4 36.9 19.6 38.6 45.0
# = 8k 34.1 51.5 36.2 19.1 37.8 45.0
# = 10k 33.7 51.2 35.8 18.9 37.3 44.1
# = all 31.5 48.3 33.4 17.7 35.3 41.3

the performance of the base classes at the cost of a slight
decrease in the performance of the new classes.

Table 10. Performance (%) of base classes vs. new classes under
different scenarios.

Scenarios Method Classes AP

Full data Upper Bound Base 45.4
New 35.0

40 classes + 40 classes ERD Base 41.6
New 32.1

Full data Upper Bound Base 42.1
New 37.0

50 classes + 30 classes ERD Base 38.0
New 34.3

Full data Upper Bound Base 40.9
New 38.2

60 classes + 20 classes ERD Base 35.3
New 37.1

Full data Upper Bound Base 41.6
New 30.4

70 classes + 10 classes ERD Base 35.7
New 28.8

D. Ablation study of LD loss.

Considering that the LD distillation loss is limited for de-
tectors other than GFL. Therefore, we use the more general
L2 distillation loss instead of LD distillation loss to vali-
date our method. As shown in Table 11, even though drop-
ping LD loss causes the unavailability of extra localization
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(a) Original classification responses on sample 1
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(b) Original classification responses on sample 2
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(c) Classification responses after using ERS on sample 1
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(d) Classification responses after using ERS on sample 2

Figure 6. Visualization of responses in classification head (P3 level) between different samples.

(a) w/o LD loss (b) w LD loss

Figure 7. Detection results of w/o LD loss vs. w LD loss.

information, our method still maintains a high-level perfor-
mance (36.4 %). This validates a strong generalization of
our method.

In addition, we visualize the detection results of w LD
loss and w/o LD loss in incremental scenes in Figure 7. By
comparing both two figures, our method presents a more
accurate detection box.

E. Additional Visualizations of ERD.

Figure 8 illustrates one example detected with different
schemes under first 40 classes + last 40 classes scenario.
The detection results of our method (Figure 8d) has a signif-

Table 11. Performance (%) of w/o LD loss vs. w LD loss.

Loss AP AP50 AP75 APS APM APL

w/o LD 36.4 54.1 38.8 20.6 40.0 47.3
w LD 36.9 54.5 39.6 21.3 40.4 47.5

icant improvement over directly fine-tuning (Figure 8b) and
SID (Figure 8c). Directly fine-tuning barely detects the ob-
jects due to catastrophic forgetting. SID also misses most of
the objects, even though the AP reaches 34%. Our method
performs most closely to the Upper Bound method.



(a) Upper Bound (b) Fine-tuning

(c) SID (d) ERD

Figure 8. Visualization of experimental results before and after incremental learning: (a) Detection results with GFLV1 that train with
all data. (b) Detection results with GFLV1 that fine-tune with new classes (Catastrophic Forgetting). (c) Incremental results of SID with
GFLV1. (d) Incremental results of our method with GFLV1.

Algorithm 1 Elastic Response Selection (ERS)
Input: Unlabeled image I , teacher detector θ′

Output: Sampled response sets C, B
1: Inference I with θ′ yields the classification score C′

and predicted distribution B′

2:
// Classification branch

3: for i = 1 to C′ do
4: GC′ ←− confidence(C′i)
5: Compute µC′ = mean(GC′)
6: Compute σC′ = std(GC′)
7: Compute threshold τC′ = µC′ + α1σC′

8: for each candidate c in C′ do
9: if GC′

i
≥ τC′ then

10: Add candidate c to C
11: return C
12:

// Regression branch
13: for j = 1 to B′ do
14: GB′ ←− Top-1(B′j)
15: Compute µB′ = mean(GB′)
16: Compute σB′ = std(GB′)
17: Compute threshold τB′ = µB′ + α2σB′

18: for each candidate b in B′ do
19: if GB′

j
≥ τB′ then

20: Add candidate b to B
21: B←− nms(B, GB)
22: return B
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