
Expanding Low-Density Latent Regions for Open-Set Object Detection

Jiaming Han1,2∗, Yuqiang Ren3, Jian Ding1,2, Xingjia Pan3, Ke Yan3†, Gui-Song Xia1,2†
1NERCMS, School of Computer Science, Wuhan University

2State Key Lab. LIESMARS, Wuhan University
3YouTu Lab, Tencent

{hanjiaming, jian.ding, guisong.xia}@whu.edu.cn
{condiren, kerwinyan}@tencent.com, xjia.pan@gmail.com

Abstract

Modern object detectors have achieved impressive
progress under the close-set setup. However, open-set ob-
ject detection (OSOD) remains challenging since objects
of unknown categories are often misclassified to existing
known classes. In this work, we propose to identify un-
known objects by separating high/low-density regions in the
latent space, based on the consensus that unknown objects
are usually distributed in low-density latent regions. As
traditional threshold-based methods only maintain limited
low-density regions, which cannot cover all unknown ob-
jects, we present a novel Open-set Detector (OpenDet) with
expanded low-density regions. To this aim, we equip Open-
Det with two learners, Contrastive Feature Learner (CFL)
and Unknown Probability Learner (UPL). CFL performs
instance-level contrastive learning to encourage compact
features of known classes, leaving more low-density re-
gions for unknown classes; UPL optimizes unknown prob-
ability based on the uncertainty of predictions, which fur-
ther divides more low-density regions around the cluster
of known classes. Thus, unknown objects in low-density
regions can be easily identified with the learned unknown
probability. Extensive experiments demonstrate that our
method can significantly improve the OSOD performance,
e.g., OpenDet reduces the Absolute Open-Set Errors by
25%-35% on six OSOD benchmarks. Code is available at:
https://github.com/csuhan/opendet2.

1. Introduction
Although the past decade has witnessed significant

progress in object detection [3, 17, 31, 40, 42, 48], mod-
ern object detectors are often developed with a close-set as-

∗ Work done during internship at Tencent YouTu Lab.
† Corresponding author.

open-set testing image

close-set training image (a) Faster R-CNN

(b) OpenDet (Ours)

Detector

proposal embedding space

(a)

(b)

Ω𝒰𝒰

Figure 1. Trained on close-set images, (a) threshold-based meth-
ods, e.g., Faster R-CNN, usually misclassify unknown objects
(black triangles, e.g. zebra) into known classes (colored dots, e.g.
horse) due to limited low-density regions (in gray color). (b) Our
method identifies unknown objects by expanding low-density re-
gions. We encourage compact proposal features and learn clear
separation between known and unknown classes.

sumption that the object categories appearing in the testing
process are contained by the training sets, and quickly lose
their efficiency when handling real-world scenarios as many
objects categories have never been seen in the training. See
Fig. 1 for an instance, where a representative object detec-
tor, i.e., Faster R-CNN [42] trained on PASCAL VOC [14],
misclassifies zebra into horse with high confidence, as
the new class zebra is not contained by PASCAL VOC.
To alleviate this issue, Open-Set Object Detection (OSOD)
has been recently investigated, where the detector trained
on close-set datasets is asked to detect all known objects
and identify unknown objects in open-set conditions.

OSOD can be seen as an extension of Open-Set Recogni-
tion (OSR) [43]. Although OSR has been extensively stud-
ied [2, 7, 16, 43, 55, 57], rare works attempted to solve
the challenging OSOD. Dhamija et al. [12] first bench-
marked the open-set performance of some representative
methods [31, 40, 42], which indicates most detectors are
overestimated in open-set conditions. Miller et al. [35, 36]
adopt dropout sampling [15] to improve the robustness of

1

ar
X

iv
:2

20
3.

14
91

1v
2 

 [
cs

.C
V

] 
 8

 M
ay

 2
02

2

https://github.com/csuhan/opendet2


detectors in open-set conditions. Joseph et al. [25] pro-
posed an energy-based unknown identifier by fitting the en-
ergy distributions of known and unknown classes. In sum-
mary, prior works usually leverage hidden evidence (e.g.,
the output logits) of pre-trained models as unknown indica-
tors, with the cost of additional training step and complex
post-processing. Can we train an open-set detector with
only close-set data, and directly apply it to open-set envi-
ronments without complex post-processing?

We draw inspiration from the consensus that known ob-
jects are usually clustered to form high-density regions in
the latent space, while unknown objects (or novel patterns)
are distributed in low-density regions [5, 18, 41]. From this
perspective, proper separation of high/low-density latent re-
gions is crucial for unknown identification. However, tra-
ditional methods, e.g., hard-thresholding (Fig. 1 (a)), only
maintain limited low-density regions, as higher thresholds
will hinder the close-set accuracy. In this work, we propose
to identify unknown objects by expanding low-density la-
tent regions (Fig. 1 (b)). Firstly, we learn compact features
of known classes, leaving more low-density regions for un-
known classes. Then, we learn an unknown probability for
each instance, which serves as a threshold to divide more
low-density regions around the cluster of known classes.
Finally, unknown objects distributed in these regions can
be easily identified.

More specifically, we propose an Open-set Detector
(OpenDet) with two learners, Contrastive Feature Learner
(CFL) and Unknown Probability Learner (UPL), which ex-
pands low-density regions from two folds. Let us denote
the latent space with Ω = ΩK ∪ ΩU , where ΩK and ΩU
represent high/low-density sub-space, respectively. CFL
performs instance-level contrastive learning to encourage
intra-class compactness and inter-class separation of known
classes, which expands ΩU by narrowing ΩK. UPL learns
unknown probability for each instance based on the uncer-
tainty of predictions. As we carefully optimize UPL to
maintain the close-set accuracy, the learned unknown prob-
ability can serve as a threshold to divide more ΩU around
ΩK. In the testing phase, we directly classify an instance
into the unknown class if its unknown probability is the
largest among all classes.

To demonstrate the effectiveness of our method, we
take PASCAL VOC [14] for close-set training and con-
struct several open-set settings considering both VOC and
COCO [32]. Compared with previous methods, Open-
Det shows significant improvements on all open-set metrics
without compromising the close-set accuracy. For example,
OpenDet reduces the Absolute Open-Set Errors (introduced
in Sec. 4.1) by 25%-35% on six open-set settings. We also
visualize the latent feature in Fig. 2, where OpenDet learns
clear separation between known and unknown classes. Be-
sides, we conduct extensive ablation experiments to analyze

(a) baseline (b) Ours

Figure 2. t-SNE visualization of latent features. We take VOC
classes as known classes (colored dots), and non-VOC classes in
COCO as unknown classes (black triangles). Our method learns a
clear separation between known and unknown classes.

the effect of our main components and core design choices.
Furthermore, we show that OpenDet can be easily extended
to one-stage detectors and achieve satisfactory results. We
summarize our contributions as:
• To our best knowledge, we are the first to solve the chal-

lenging OSOD by modeling low-density latent regions.
• We present a novel Open-set Detector (OpenDet) with

two well-designed learners, CFL and UPL, which can be
trained in an end-to-end manner and directly applied to
open-set environments.

• We introduce a new OSOD benchmark. Compared with
previous methods, OpenDet shows significant improve-
ments on all open-set metrics, e.g., OpenDet reduces the
Absolute Open-Set Errors by 25%-35%.

2. Related Work
Open-Set Recognition. Early attempts on OSR [1, 24, 26,
44, 56] usually leverage traditional machine learning meth-
ods, e.g., SVM [24, 44]. Bendale et al. [2] introduced Open-
Max, the first deep learning-based OSR method, which
redistributes the output probabilities of the softmax layer.
Other approaches include generative adversarial network-
based methods [16, 37] which generate potential open-set
images to train an open-set classifier, reconstruction-based
methods [38, 47, 55] which adopt auto-encoder to recover
latent features and identify unknown by reconstruction er-
rors, and prototype-based methods [6, 7] which identify
open-set images by measuring the distance to learned pro-
totypes. In addition, Zhou et al. [57] proposed to learn data
placeholders to anticipate open-set data and classifier place-
holders to distinguish known and unknown. Kong et al. [28]
utilized an adversarially trained discriminator to detect un-
known examples. Our method is more related to [57]. Dif-
ferently, [57] requires close-set pre-train and calibration on
validation sets, while our method is trained in an end-to-end
manner, and the learned unknown probability is accurate
and calibration-free.
Open-Set Object Detection is an extension of OSR in ob-
ject detection. Dhamija et al. [12] first formalized OSOD

2



backbone

RPN

ℒ𝑟𝑟𝑟𝑟𝑟𝑟

RoI Align

CH

⋮
⋮

⋮

⋮ ⋮ ⋮ ⋮
𝐾𝐾

𝑄𝑄

ℒ𝐼𝐼𝐼𝐼

(a) CFL

𝐶𝐶𝒦𝒦 𝐶𝐶𝒰𝒰

𝑝𝑝𝑐𝑐∗
prob.

𝐶𝐶𝒦𝒦 𝐶𝐶𝒰𝒰

𝑤𝑤(𝑝𝑝𝑐𝑐∗)

label1.0

ℒ𝐼𝐼𝐶𝐶 + 𝛽𝛽ℒ𝑈𝑈𝑈𝑈

Memory bank

prop. em
bed.

(b) UPL

baseline
+C

FL
+U

PL

Figure 3. Overview of our proposed method. Left: OpenDet is a two-stage detector with (a) Contrastive Feature Learner (CFL) and (b)
Unknown Probability Learner (UPL). CFL first encodes proposal features into low-dimensional embeddings with the Contrastive Head
(CH). Then we optimize these embeddings between the mini-batch and memory bank with an Instance Contrastive Loss LIC . UPL learns
probabilities for both known classes CK and unknown class CU with cross-entropy loss LCE and Unknown Probability Loss LUP . Right:
A toy illustration of how different components work. Colored dots and triangles denote proposal features of different known and unknown
classes, respectively. Our method identifies unknown by expanding low-density latent regions (in gray color).

and benchmarked some representative detectors by their
classifiers. Classifiers with a background class [42] per-
forms better than one-vs-rest [31] and objectness-based [40]
classifiers in handling unknown objects. Dhamija et al. [12]
also show that the performance of most detectors is overes-
timated in open-set conditions. Miller et al. [35, 36] utilized
dropout sampling [15] to estimate uncertainty in object de-
tection and thus reduce open-set errors. Joseph et al. [25]
proposed an energy-based unknown identifier by fitting the
energy distributions of known and unknown classes. How-
ever, the approach in [25] requires extra open-set data of
unknown classes, which violates the original definition of
OSOD. In summary, previous methods leverage hidden ev-
idence (e.g., the output logits) of pre-trained models as un-
known indicators. But they need additional training step
and complex post-processing to estimate the unknown in-
dicator. In contrast, OpenDet can be trained with only
close-set data and directly identify unknown objects with
the learned unknown probability.
Contrastive Learning is a methodology to learn repre-
sentation by pulling together positive sample pairs while
pushing apart negative sample pairs, which has been re-
cently popularized for self-supervised representation learn-
ing [4, 8, 9, 13, 19, 20]. Khosla et al. [27] first extended self-
supervised contrastive learning to the full-supervised setting
and received a lot of attention from other fields, e.g., long-
tailed recognition [10, 51], semantic segmentation [49, 52]
and few-shot object detection [46]. Our approach is also in-
spired by supervised contrastive learning [27]. In this work,
we explore instance-level contrastive learning to learn com-
pact features of object proposals.
Uncertainty Estimation. Neural networks tend to produce
over-confident predictions [29]. Estimating the uncertainty

of model predictions is important for real-world applica-
tions. Currently, uncertainty estimation can be categorized
into sampling-based and sampling-free methods. Sampling-
based methods ensemble predictions of multiple runs [15]
or multiple models [29], which are not applicable for speed-
critical object detection. Sampling-free methods learn addi-
tional confidence value [11, 45] to estimate uncertainty. Our
method belongs to the latter family. The learned unknown
probability can reflects the uncertainty of predictions.

3. Methodology
3.1. Preliminary

We formalize OSOD based on prior works [12, 25].
Let us denote with D = {(x, y), x ∈ X, y ∈ Y } an
object detection dataset, where x is an input image and
y = {(ci,bi)}Ni=1 denotes a set of objects with corre-
sponding class label c and bounding box b. We train the
detector on the training set Dtr with K known classes
CK = {1, . . . ,K}, and test it on the testing set Dte with
objects from both known classes CK and unknown classes
CU . The goal is to detect all known objects (objects ∈ CK),
and identify unknown objects (objects ∈ CU ) so that they
will not be misclassified to CK. As it is impossible to list
infinite unknown classes, we denote them withCU = K+1.

Different from OSR, OSOD has its unique challenges.
In OSR, an image only belongs to CK or CU ; any exam-
ple out of CK is defined as unknown. In OSOD, an image
may contain objects from both CK and CU , which is de-
fined as mixed unknown [12]. That means unknown objects
will also appear in Dtr but have not been labeled yet. Be-
sides, detectors usually keep a background class Cbg which
is easily confused with CU .

3



3.2. Baseline Setup

We setup the baseline with Faster R-CNN [42], which
consists of a backbone, Region Proposal Network (RPN)
and R-CNN. The standard R-CNN includes a shared fully
connected (FC) layer and two separate FC layers for clas-
sification and regression. We augment R-CNN in three
ways. (a) We replace the shared FC layer with two par-
allel FC layers so that the module applied to the classifi-
cation branch will not affect the regression task. (b) In-
spired by [7, 53], we use cosine similarity-based classifier
to alleviate the over-confidence issue [2, 39]. Specifically,
we adopt scaled cosine similarity scores as output logits:
si,j =

αF(x)>i wj

‖F(x)i‖‖wj‖ , where si,j denotes the similar score
between i-th proposal features F(x)i and weight vector of
class j. α is the scaling factor (α=20 by default). (c) The
box regressor is set to class-agnostic, i.e., the regression
branch outputs a vector of length 4 rather than 4(K + 2).
Note that our baseline does not improve the open-set perfor-
mance, but it is effective for the whole framework (Fig. 3).

3.3. Contrastive Feature Learner

This section presents Contrastive Feature Learner (CFL)
to encourage intra-class compactness and inter-class sep-
aration, which expands low-density latent regions by nar-
rowing the cluster of known classes. As shown in Fig. 3
(a), CFL contains a contrastive head (CH), a memory bank,
and an instance contrastive loss LIC . For a proposal feature
F(x)i, we first encode it into a low-dimensional embedding
with CH. Then, we optimize the embeddings from the mini-
batch and memory bank with LIC . We give more details in
the following part.
Contrastive Head. We build a contrastive head (CH)
to map high-dimensional proposal feature F(x)i to low-
dimensional proposal embedding zi ∈ Rd (d = 128 by
default). In detail, CH is a multilayer perceptron with se-
quential FC, ReLU, FC, and L2-Norm layers, which is ap-
plied to the classification branch of R-CNN in training and
abandoned during inference.
Class-Balanced Memory Bank. Popular contrastive repre-
sentation learning usually adopts large-size mini-batch [27]
or memory bank [20] to increase the diversity of exemplars.
Here we build a novel class-balanced memory bank to in-
crease the diversity of object proposals. Specifically, for
each class c ∈ CK, we initialize a memory bank M(c) of
size Q. Then, we sample representative proposals from a
mini-batch with two steps: (a) We sample proposals with
Intersection of Union (IoU) > Tm where Tm is an IoU
threshold to ensure the proposals contain relevant seman-
tics. (b) For each mini-batch, we sample q(q ≤ Q) pro-
posals that are least similar (i.e., minimum cosine simi-
larity) with existing exemplars in M(c). This step makes
our memory banks store more diverse exemplars and enable

long-term memory. Finally, we repeat (a) and (b) every iter-
ation where the oldest proposals are out of the memory and
the newest into the queue.
Instance-Level Contrastive Learning. Inspired by super-
vised contrastive loss [27], we propose an Instance Con-
trastive (IC) Loss to learn more compact features of object
proposals. Assume we have a mini-batch of N proposals,
IC Loss is formulated as:

LIC =
1

N

N∑
i=1

LIC(zi), (1)

LIC(zi) = 1
|M(ci)|

∑
zj∈M(ci)

log
exp(zi·zj/τ)∑

zk∈A(ci)
exp(zi·zk/τ)

, (2)

where ci is the class label of i-the proposal, τ is a temper-
ature hyper-parameter, M(ci) denotes the memory bank of
class ci, and A(ci) = M\M(ci). Note that we only opti-
mize proposals with IoU> Tb where Tb is an IoU threshold
similar to Tm.

Although unknown objects are unavailable in training,
the separation of known classes benefits unknown identifi-
cation. Optimizing LIC is equivalent to pushing the cluster
of known classes away from low-density latent regions. As
shown in Fig. 2 (b), our method learns a clear separation
between known and unknown classes with only close-set
training data.

3.4. Unknown Probability Learner

As introduced in Sec. 3.3, CFL expands low-density
latent regions by narrowing the cluster of known classes
(i.e., high-density regions). However, we still lack explicit
boundaries to separate high/low-density regions. Tradi-
tional threshold-based methods with a small score thresh-
old (e.g., 0.05) only maintain limited low-density regions,
which cannot cover all unknown objects. Here we present
Unknown Probability Learner (UPL) to divide more low-
density latent regions around the cluster of known classes.

To this aim, we first augment the K-way classifier with
the K+1-way classifier, where K+1 denotes the unknown
class. Then the problem becomes: how to optimize the
unknown class with only close-set training data? Let us
consider a simple known vs. unknown classifier with avail-
able open-set data, we can directly train a good classifier by
maximizing margins between classes. Now, we only have
close-set data; To train such a classifier, we relax the max-
imum margin principle and only ensure all known objects
are correctly classified, i.e., maintaining the close-set accu-
racy. With this premise, we will introduce how to learn the
unknown probability in the following section.
Review Cross-Entropy (CE) Loss. We first review soft-
max CE Loss, the default classification loss of Faster R-
CNN. Let s denote the classification logits of a proposal,
the softmax probability p of class c is defined as:

4



Method
VOC VOC-COCO-20 VOC-COCO-40 VOC-COCO-60

mAPK↑ WI↓ AOSE↓ mAPK↑ APU↑ WI↓ AOSE↓ mAPK↑ APU↑ WI↓ AOSE↓ mAPK↑ APU↑

FR-CNN [42] 80.10 18.39 15118 58.45 0 22.74 23391 55.26 0 18.49 25472 55.83 0
FR-CNN∗ [42] 80.01 18.83 11941 57.91 0 23.24 18257 54.77 0 18.72 19566 55.34 0
PROSER [57] 79.68 19.16 13035 57.66 10.92 24.15 19831 54.66 7.62 19.64 21322 55.20 3.25
ORE [25] 79.80 18.18 12811 58.25 2.60 22.40 19752 55.30 1.70 18.35 21415 55.47 0.53
DS [36] 80.04 16.98 12868 58.35 5.13 20.86 19775 55.31 3.39 17.22 21921 55.77 1.25

OpenDet 80.02 14.95 11286 58.75 14.93 18.23 16800 55.83 10.58 14.24 18250 56.37 4.36

Table 1. Comparisons with other methods on VOC and VOC-COCO-T1. We report close-set performance (mAPK) on VOC, and both
close-set (mAPK) and open-set (WI, AOSE, APU ) performance of different methods on VOC-COCO-{20, 40, 60}. ∗ means a higher score
threshold (i.e. 0.1) for testing.

Method
VOC-COCO-0.5n VOC-COCO-n VOC-COCO-4n

WI↓ AOSE↓ mAPK↑ APU↑ WI↓ AOSE↓ mAPK↑ APU↑ WI↓ AOSE↓ mAPK↑ APU↑

FR-CNN [42] 9.25 6015 77.97 0 16.14 12409 74.52 0 32.89 48618 63.92 0
FR-CNN∗ [42] 9.01 4599 77.66 0 16.00 9477 74.17 0 33.11 37012 63.80 0
PROSER [57] 9.32 5105 77.35 7.48 16.65 10601 73.55 8.88 34.60 41569 63.09 11.15
ORE [25] 8.39 4945 77.84 1.75 15.36 10568 74.34 1.81 32.40 40865 64.59 2.14
DS [36] 8.30 4862 77.78 2.89 15.43 10136 73.67 4.11 31.79 39388 63.12 5.64

OpenDet 6.44 3944 78.61 9.05 11.70 8282 75.56 12.30 26.69 32419 65.55 16.76
Table 2. Comparisons with other methods on VOC-COCO-T2. Note that we put VOC-COCO-2n in the appendix due to limited space.

pc = softmax(sc) =
exp(sc)∑
j∈C exp(sj)

, (3)

where C = CK∪U∪bg denotes all known classes CK, un-
known class CU and background Cbg . Then, we formulate
softmax CE Loss LCE as:

LCE = −
∑
c∈C

yc log(pc), yc =

{
1, c = c∗

0, c 6= c∗
, (4)

where c∗ means the ground truth class, and y is the one-hot
class label. For simplicity, we re-write LCE as:

LCE = − log(pc∗). (5)

Learning Unknown Probability. Since there is no super-
vision for the unknown probability pu, we consider a condi-
tional probability p

′

u under the ground truth probability pc∗ .
Formally, we define p

′

u as a softmax probability without the
logit of ground truth class c∗:

p
′

u =
exp(su)∑

j∈C,j 6=c∗ exp(sj)
, (6)

where u is short for the unknown class CU . Then, similar to
CE Loss, we formulate an Unknown Probability (UP) Loss
LUP to optimize p

′

u, which is defined as:

LUP = − log(p
′

u). (7)

After that, we jointly optimize the CE Loss LCE and UP
Loss LUP (illustrated in Fig. 3 (b)), where LCE aims to

maintain the close-set accuracy, and LUP learns the un-
known probability. Take Fig. 3 (bottom-right) for an illus-
tration, optimizing LUP is equivalent to dividing more low-
density latent regions (in gray color) from known classes.
Once we finished the training, the learned unknown proba-
bility serves as an indicator to identify unknown objects in
these low-density regions.
Uncertainty-weighted Optimization. Although we opti-
mize the conditional probability p

′

u instead of pu, LUP will
still penalize the convergence of LCE , leading to the accu-
racy drop of known classes. Inspired by uncertainty estima-
tion [11, 45], we add a weighting factorw(·) to LUP , which
is defined as a function of pc∗ :

w(pc∗) = (1− pc∗)αpc∗ , (8)

where α is a hyper-parameter (α=1 by default). Despite
many design choices of w(·) (shown in Tab. 6), we choose
a simple yet effective one in Eq. 8. We are inspired by the
popular uncertainty signal: entropy w(p) = −p log(p).
Since Eq. 8 has a similar curve shape to entropy (see our
appendix), it can also reflect uncertainty. But our empir-
ical findings suggest that Eq. 8 is easier to optimize than
entropy. Finally, we formulate the uncertainty-weighted UP
Loss as follow:

LUP = −w(pc∗) log(p
′

u). (9)

Hard Example Mining. It is unreasonable to let all known
objects learn the unknown probability as they do not belong

5



to the unknown class. Therefore, we present uncertainty-
guided hard example mining to optimize LUP with high-
uncertainty proposals, which may overlap with real un-
known objects in the latent space. Here we consider two
uncertainty-guided mining methods:
• Max entropy. Entropy is a popular uncertainty mea-

sure [29, 34] defined as: H(p) = −
∑
c∈C pc log(pc).

For a mini-batch, We sort them in descending entropy or-
der, and select top-k examples.

• Min max-probability. Max-probability, i.e., the maximum
probability of all classes: max(p), is another uncertainty
signal. We select top-k examples with minimum max-
probability.

Furthermore, since background proposals usually over-
whelm the mini-batch, we sample the same number of fore-
ground and background proposals, enabling our model to
recall unknown objects from the background class.

3.5. Overall Optimization

Our method can be trained in an end-to-end manner with
the following multi-task loss:

L = Lrpn + Lreg + LCE + βLUP + γtLIC , (10)

where Lrpn denotes the total loss of RPN, Lreg is smooth
L1 loss for box regression, β and γt are weighting coeffi-
cients. Note γt is proportional to the current iteration t so
that we can gradually decrease the weight of LIC for better
convergence of LCE and LUP .

4. Experiment
4.1. Experimental Setup

Datasets. We construct an OSOD benchmark using pop-
ular PASCAL VOC [14] and MS COCO [32]. We take
the trainval set of VOC for close-set training. Mean-
while, we take 20 VOC classes and 60 non-VOC classes
in COCO to evaluate our method under different open-set
conditions. Here we define two settings: VOC-COCO-
{T1, T2}. For setting T1, we gradually increase open-
set classes to build three joint datasets with n=5000 VOC
testing images and {n, 2n, 3n} COCO images containing
{20, 40, 60} non-VOC classes, respectively. For setting
T2, we gradually increase the Wilderness Ratio (WR) 2 [12]
to construct four joint datasets with n VOC testing images
and {0.5n, n, 2n, 4n} COCO images disjointing with VOC
classes. See our appendix for more details.
Evaluation Metrics. We use the Wilderness Impact
(WI) [12] to measure the degree of unknown objects mis-
classified to known classes: WI = ( PK

PK∪U
−1)×100, where

PK and PK∪U denote the precision of close-set and open-set

2Wilderness Ratio is the ratio of #images with unknown objects to #im-
ages with known objects.

CFL UPL WI↓ AOSE↓ mAPK↑ APU↑
baseline 19.26 16433 58.33 0

X 17.92 15162 58.54 0
X 16.47 12018 57.91 14.27

X X 14.95 11286 58.75 14.93
Table 3. Effect of different components on VOC-COCO-20.

classes, respectively. Note that we scale the original WI by
100 for convenience. Following [25], we report WI under a
recall level of 0.8. Besides, we also use Absolute Open-Set
Error (AOSE) [36] to count the number of misclassified
unknown objects. Furthermore, we report the mean Aver-
age Precision (mAP) of known classes (mAPK). Lastly,
we measure the novelty discovery ability by APU (AP of
the unknown class). Note WI, AOSE, and APU are open-
set metrics, and mAPK is a close-set metric.
Comparison Methods. We compare OpenDet with the fol-
lowing methods: Faster R-CNN (FR-CNN) [42], Dropout
Sampling (DS) [36], ORE [25] and PROSER [57]. FR-
CNN is the base detector of other methods. We also report
FR-CNN∗, which adopts a higher score threshold for test-
ing. We use the official code of ORE and reimplement DS
and PROSER based on the FR-CNN framework.
Implementation Details. We use ResNet-50 [21] with Fea-
ture Pyramid Network [30] as the backbone of all meth-
ods. We adopt the same learning rate schedules with De-
tectron2 [54]. SGD optimizer is adopted with an initial
learning rate of 0.02, momentum of 0.9, and weight de-
cay of 0.0001. All models are trained on 8 GPUs with a
batch size of 16. For CFL, we set memory size Q=256
and sampling size q=16. We sample proposals with an IoU
threshold Tm=0.7 for the memory bank, and Tb=0.5 for the
mini-batch. For UPL, we sample k=3 examples for fore-
ground and background proposals respectively. Besides, we
set hyper-parameters α=1.0 and β=0.5. We set the initial
value of γt=0.1 and linearly decrease it to zero.

4.2. Main Results

We compare OpenDet with other methods on VOC-
COCO-{T1, T2}. Tab. 1 shows results on VOC-COCO-
T1 by gradually increasing unknown classes. Compared
with FR-CNN, FR-CNN∗ with a higher score threshold
(0.05→0.1) does not reduce WI, but results in a decrease
in mAPK, where known objects with low confidence are
filtered out. PROSER improves AOSE and APU to some
extent, but the WI and mAPK are even worse. Although
ORE and DS achieve comparable mAPK, the improvement
on open-set metrics is limited. The proposed OpenDet out-
performs other methods by a large margin. Taking VOC-
COCO-20 for an example, OpenDet gains about 20%, 25%,
14.93 on WI, AOSE and APU respectively without com-
promising the mAPK (58.75 vs. 58.45). Besides, we also
report mAPK on VOC, which indicates OpenDet is com-
petitive in the traditional close-set setting (80.02 vs. 80.10).

6



Memory size WI↓ mAPK↑
single-GPU mini-batch ˜50 16.19 58.29
cross-GPU mini-batch ˜50×8 15.88 58.07
class-agnostic memory bank 5120 15.99 57.47
class-agnostic memory bank∗ 65536 15.49 58.90
class-balanced memory bank 256×20 14.95 58.75

Table 4. Class-balanced memory bank. We compare our class-
balanced memory bank with other variants. We keep class-
agnostic memory bank the same size with ours (256×20=5120).
8 and 20 are the number of GPU and VOC classes, respectively. ∗

means a larger memory size.

(a) (b) (c) (d) (e) (f)
Tb 0.5 0.7 0.9 0.5 0.5 0.7
Tm 0.5 0.7 0.9 0.7 0.9 0.9
WI↓ 15.33 15.16 15.27 14.95 14.62 15.27

mAPK↑ 58.29 58.55 58.32 58.75 58.66 58.33

(a) IoU threshold

(a) (b) (c) (d) (e) (f)
q 16 16 16 32 64 128
Q 128 256 512 256 256 256

WI↓ 15.36 14.95 14.47 15.24 15.43 14.77
mAPK↑ 58.51 58.75 58.31 58.32 57.77 58.18

(b) Memory size and mini-batch sampling size
Table 5. Sampling strategy in CFL. We list different choices
of (a) memory sampling threshold Tm and mini-batch sampling
threshold Tb, (b) memory size Q and sampling size q.

We also compare OpenDet with other methods by in-
creasing the WR, where the results in Tab. 2 draws simi-
lar conclusions with Tab. 1. Our method performs better as
the WR increases. For example, the mAPK gains on VOC-
COCO-{0.5n, n, 4n} are {0.64, 1.04, 1.63}, indicating that
our method actually separates known and unknown classes.

4.3. Ablation Studies

In this section, we conduct ablation experiments on
VOC-COCO-20 to analyze the effect of our main compo-
nents and core design choices.
Overall Analysis. We first analyze the contribution of dif-
ferent components. As shown in Tab. 3, our two modules,
CFL and UPL, show substantial improvement compared
with the baseline. The combination of CFL and UPL fur-
ther boosts the performance. We also visualize the latent
features in Fig. 2, where our method learns clear separation
between known and unknown classes.
Contrastive Feature Learner. We carefully study the de-
sign choices of the memory bank and example sampling
strategy in CFL. As LIC is optimized between the cur-
rent mini-batch and the memory bank, we investigate dif-
ferent designs of memory in Tab. 4. Compared with
the mini-batch (i.e., short-term memory), the settings with
a memory bank perform better on WI. However, imbal-
anced training data makes the class-agnostic memory bank
filled with high-frequency classes, leading to a drop in

w(·) WI↓ AOSE↓ mAPK↑ APU↑
baseline 19.26 16433 58.33 0

(a) identity 10.50 12185 56.42 11.33
(b) −pc∗ log(pc∗) 14.70 11384 58.13 13.71
(c) (1− pc∗)αpc∗ 14.95 11286 58.75 14.93
(d) (1− pm)αpm 14.86 11296 58.03 14.15
(e) H(p)/ log(C) 14.29 11690 57.75 14.65

Table 6. Different designs of w(·) in LUP . pm is the maximum
probability of all classes: pm = max(p). (e) denotes normalized
entropy where H(p) = −

∑
c pc log(pc) and C is the number of

known classes.

Setting WI↓ AOSE↓ mAPK↑ APU↑
OpenDet (w/ HEM) 14.95 11286 58.75 14.93
(a) w/o HEM 18.33 13733 57.41 13.91
(b) w/o bg. 13.02 12230 56.53 13.49
(c) top-k:
1 14.46 12826 58.42 14.54
3 14.95 11286 58.75 14.93
5 14.66 10412 58.50 14.55
10 15.15 10358 58.25 14.86
all 18.40 11779 56.55 13.89
(d) metric:
random 17.01 13065 56.99 15.58
max entropy 14.29 11514 58.27 15.46
min max-probability 14.95 11286 58.75 14.93

Table 7. Hard example mining (HEM) in UPL. (a) without
HEM. (b) without background: we only sample foreground pro-
posals. (c) varying top-k. the setting all means all foreground and
equal number of background proposals. (d) mining methods.

mAPK (58.76→57.47). Enlarging the memory bank size
(5120→65536) can alleviate this issue, but it requires more
computation. The proposed class-balanced memory bank
can store more diverse examples with a small memory size,
outperforming other variants.

We further study the design choices of example sam-
pling strategies. For a mini-batch, we consider the IoU
threshold Tb; for the memory bank, we consider the IoU
threshold Tm, memory sizeQ and mini-batch sampling size
q. As shown in Tab. 5a, the settings (d) and (e) achieve the
best result in mAPK and WI, respectively, while (a)-(c) are
worse than (d)-(e) in WI. This indicates that the mini-batch
requires a loose constraint to gather more diverse examples,
while the memory bank needs high-quality examples to rep-
resent the class centers. In Tab. 5b, (b) and (c) perform bet-
ter than other settings, which demonstrates that long-term
memory (i.e., larger Q/q) is a good choice for CFL.
Unknown Probability Learner. We first explore dif-
ferent variants of w(·). Compared with the baseline,
Tab. 6 (a) significantly reduces WI and AOSE, but leads
to mAPK drop, which indicates the learned unknown prob-
ability is overestimated. The formula of (b) is similar to
entropy, and (c) is our default setting. As discussed in
Sec. 3.4, both (b) and (c) achieve satisfactory results in
WI and AOSE, but (c) is outperforms (b) in mAPK and

7



Figure 4. Qualitative comparisons between the baseline (top) and OpenDet (bottom). We train both models on VOC and visualize the
detection results on COCO. Note that we apply NMS between known classes and the unknown class for better visualization.

APU . (d) and (e) are two variants of w(·) based on max-
probability and entropy, respectively. They obtain compa-
rable performance on open-set metrics, but the mAPK is
lower than (c).

We also analyze the effect of Hard example mining
(HEM) in Tab. 7. Comparing Tab. 7 (a) (without HEM)
with our default setting (with HEM), we show HEM is
crucial for UPL. Tab. 7 (b) indicates background propos-
als are also necessary for unknown probability learning,
e.g., OpenDet without background leads to 2.22 and 1.44
drop in mAPK and APU . Besides, we varying the hyper-
parameter top-k in Tab. 7 (c) where HEM works in a wide
range of k (≤10), while optimizing all examples is not ap-
plicable. Tab. 7 (d) demonstrates the effectiveness of two
mining methods, i.e., max entropy and min max-probability.
Qualitative Comparisons. Fig. 4 compares the qualita-
tive results of baseline and OpenDet. OpenDet gives an
unknown label to unknown objects (bottom row), while
the baseline method classifies them to known classes or the
background (top row). See our appendix for more qualita-
tive results.

4.4. Extend to One-Stage Detector

Although OpenDet is based on a two-stage detector, it
can be easily extended to other architectures, e.g., a repre-
sentative one-stage detector RetinaNet [31]. RetinaNet has
a backbone and two parallel sub-networks for classification
and regression, respectively. Different from FR-CNN, Reti-
naNet adopts Focal Loss [31] for dense classification. Here
we show how to extend OpenDet to RetinaNet (denote with
Open-RetinaNet). For CFL, we append the contrastive head
to the second-last layer of the classification sub-network.
We adopt the same sampling strategies in CFL and opti-
mize LIC with pixel-wise features. For UPL, we only sam-
ple hard foreground examples as RetinaNet does not pre-
serve a background class. Then LUP is jointly optimized
with Focal Loss. Tab. 8 reports the results on VOC-COCO-
20, where Open-RetinaNet shows significant improvements

Method WI↓ AOSE↓ mAPK↑ APU↑
RetinaNet 14.58 38071 57.44 0
Open-RetinaNet 10.84 16815 57.25 11.02

Table 8. Performance of Open-RetinaNet on VOC-COCO-20.

on all open-set metrics and achieves comparable close-set
mAPK. For example, Open-RetinaNet gains 23.7%, 55.8%,
and 11.02 in WI, AOSE, and APU , respectively.

5. Conclusions

This paper proposes a novel Open-set Detector (Open-
Det) to solve the challenging OSOD task by expanding
low-density latent regions. OpenDet consists of two well-
designed learners, CFL and UPL, where CFL performs
instance-level contrastive learning to learn more compact
features and UPL learns the unknown probability that serves
as a threshold to further separate known and unknown
classes. We also build an OSOD benchmark and con-
duct extensive experiments to demonstrate the effectiveness
of our method. Compared with other methods, OpenDet
shows significant improvements on all metrics.
Limitations. We notice that some low-quality proposals be-
longing to known classes are given the unknown label dur-
ing inference, and cannot be filtered out by per-class non-
maximum suppression. Although these proposals do not
hurt the close-set mAPK, it raises a new question about re-
ducing false unknown predictions, which is also a direction
for our future work.

Acknowledgement

This work was supported by National Nature Science
Foundation of China under grant 61922065, 41820104006
and 61871299. The numerical calculations in this paper
have been done on the supercomputing system in the Super-
computing Center of Wuhan University. Jian Ding is also
supported by China Scholarship Council.

8



A. More Experimental Details

A.1. Datasets

In this section, we introduce more details about the
dataset construction.

PASCAL VOC [14]. We use VOC07 train and VOC12
trainval splits for the training, and VOC07 test split
to evaluate the close-set performance. We take VOC07 val
as the validation set.

VOC-COCO-T1. We divide 80 COCO classes into four
groups (20 classes per group) by their semantics [25]: (1)
VOC classes. (2) Outdoor, Accessories, Appliance, Truck.
(3) Sports, Food. (4) Electronic, Indoor, Kitchen, Furniture.
We construct VOC-COCO-{20, 40, 60} with n=5000 VOC
testing images and {n, 2n, 3n} COCO images containing
{20, 40, 60} non-VOC classes with semantic shifts, respec-
tively. Note that we only ensure each COCO image contains
objects of corresponding open-set classes, which means ob-
jects of VOC classes will also appear in these images. This
setting is more similar to real-world scenarios where detec-
tors need to carefully identify unknown objects and do not
classify known objects into the unknown class.

VOC-COCO-T2. We gradually increase the Wilderness
Ratio to build four dataset with n=5000 VOC testing im-
ages and {0.5n, n, 2n, 4n} COCO images disjointing with
VOC classes. Compared with the setting T1, T2 aims to
evaluate the model under a higher wilderness, where large
amounts of testing instances are not seen in the training.

Comparisons with existing benchmarks. [12] proposed
the first OSOD benchmark. They also use the data in VOC
for close-set training, and both VOC and COCO for open-
set testing. In the testing phase, they just vary the number
of open-set images sampled from COCO, while ignoring
the number of open-set categories. [25] proposed an open
world object detection benchmark. They divide the open-
set testing set into several groups by category. However, the
wilderness ratio of each group is limited, and such data par-
titioning cannot reflect the real performance of detectors un-
der extreme open-set conditions. In contrast, our proposed
benchmark considers both the number of open-set classes
(VOC-COCO-T1) and images (VOC-COCO-T2).

On the other hand, some works on open-set panoptic
segmentation [23] divide a single dataset into close-set and
open-set. If a image contains both close-set and open-set
instances, they just remove the annotations of open-set in-
stances. Differently, we strictly follows the definition in
OSR [43] that unknown instances should not appear in
training. To acquire enough open-set examples, we take
both VOC and COCO from cross-dataset evaluation, which
is a common practice in OSR [28, 47, 57].

A.2. Implementation Details

Training schedule. Inspired by [50] that a good close-set
classifier benefits OSR, we train all models with the 3×
schedule (i.e., 36 epochs). Besides, we enable UPL after
several warmup iterations (e.g., 100 iterations) to make sure
the model produce valid probabilities.
Open-RetinaNet. We change some hyper-parameters for
Open-RetinaNet. In OpenDet, we take object proposals
as examples and apply CFL to proposal-wise embeddings,
which are equivalent to the anchor boxes in RetinaNet.
Therefore, we optimize Instance Contrastive Loss LIC with
pixel-wise features of each anchor box. Since the number of
anchor box is much larger than the proposals in OpenDet,
we enlarge the memory size Q=1024, sampling size q=64,
and loss weight to 0.2 in CFL. Similar, we sample 10 hard
examples rather than 3 in UPL.

A.3. Evaluation Metrics

Firstly, we give a detailed formulation of the Wilderness
Impact [12], which is defined as:

WI =
PK
PK∪U

− 1

=
TPK

TPK + FPK
/

TPK
TPK + FPK + FPU

− 1

=
FPU

TPK + FPK
,

(11)

where FPU means that any detections belonging to the un-
known classes CU are classified to one of known classes
CK. For APU (AP of unknown classes), we merge the anno-
tations of all unknown classes into one class, and calculate
the class-agnostic AP between unknown’s predictions and
the ground truth.

B. Additional Main Results

Due to limited space in our main paper, we report the re-
sults on VOC-COCO-2n in Tab. A1, where OpenDet shows
significant improves than other methods.

Method WI↓ AOSE↓ mAPK↑ APU↑

FR-CNN [42] 24.18 24636 70.07 0
FR-CNN∗ [42] 24.05 18740 69.81 0
PROSER [57] 25.74 21107 69.32 10.31
ORE [25] 23.67 20839 70.01 2.13
DS [36] 23.21 20018 69.33 4.84

OpenDet 18.69 16329 71.44 14.96

Table A1. Comparisons with other methods on VOC-COCO-
2n. This table is an extension of Tab.2 in our main paper.

9



0 . 5 1 2
1 4 . 0

1 4 . 5

1 5 . 0

1 5 . 5

1 6 . 0

1 6 . 5

1 7 . 0
 W I ↓
 A O S E ↓

α
WI

1 1 . 0 k

1 1 . 2 k

1 1 . 4 k

1 1 . 6 k

1 1 . 8 k

1 2 . 0 k

1 2 . 2 k

1 2 . 4 k

 AO
SE

0 . 0 0 0 . 2 5 0 . 5 0 0 . 7 5 1 . 0 00 . 0

0 . 1

0 . 2

0 . 3

0 . 4

w(
p)

p

 - p · l o g ( p )
 ( 1 - p ) · p
 ( 1 - p ) 2 · p
 ( 1 - p ) ½ · p

Figure A1. Visualization of different w(·).

metric baseline +CFL +UPL Ours
intra-variance 3.79 2.83 3.05 2.47
inter-distance 62.74 65.17 64.69 66.31

Table A2. Quantitative analyses of the latent space. We calcu-
late the intra-class variance and inter-class distance of latent fea-
tures.

γt 0.01 0.1 0.5 1.0 w/o decay
WI↓ 16.13 14.95 12.26 9.71 15.65

mAPK↑ 58.90 58.75 57.47 53.36 58.43
Table A3. Loss weight of LIC . w/o decay: γt is a constant (i.e.,
0.1) instead of variable.

τ 0.07 [20] 0.1 [27] 0.2
WI↓ 15.48 14.95 15.50

mAPK↑ 57.80 58.75 58.87
Table A4. Temperature τ in LIC .

C. Additional Ablation Studies

Visual analyses of w(·). In Fig. A1, we plot the graph of
different w(·). Compared with entropy: −p log(p), the pro-
posed function (1 − p)α · p can adjsut the curve shape by
changing α. In other words, the model adjusts the weights
of examples as α changes. The right of Fig. A1 reports the
model’s open-set performance by varying α, where smaller
α reduces WI and AOSE.
Quantitative analyses of latent space. In Fig. 2 of the
main paper, we give a visual analyses of latent space. Here
we give a quantitative analyses of latent space in Tab. A2.
Specifically, we calculate the intra-class variance and inter-
class distance of latent features. Tab. A2 shows that CFL
and UPL, as well as their combination reduce intra-class
variance and enlarge inter-class distance. The results further
confirm our conclusion in the main paper that our method
can expand low-density latent regions.
More hyper-parameters in CFL. Loss weight: Tab. A3
shows that loss weight is important for LIC , where a small
weight (e.g., 0.01) cannot learn compact features and a large
weight (e.g., 1.0) hinder the generalization ability. Besides,
Tab. A3 (last column) also demonstrates the effectiveness
of loss decay. Temperature: We try different τ that used in
pervious works [20, 27]. Tab. A4 indicates that τ=0.1 [27]
works better than other settings.

setting backbone epoch WI↓ mAPK↑
end-to-end - - 14.95 58.75

fine-tune
fixed 1 17.98 56.88
fixed 12 17.43 56.86

trainable 12 17.01 57.19

Table A5. End-to-end vs. fine-tune in UPL. End-to-end: we
jointly optimize UPL and other modules in OpenDet. Fine-tune:
we pretrain a model without UPL, and optimize UPL in the fine-
tuning stage.

Method WI↓ AOSE↓ mAPK↑ APU↑
VOC:
RetinaNet - - 79.84 -
Open-RetinaNet - - 79.72 -
VOC-COCO-40:
RetinaNet 17.60 58383 53.81 0
Open-RetinaNet 13.65 25964 53.22 8.23
VOC-COCO-60:
RetinaNet 14.20 64327 54.68 0
Open-RetinaNet 11.28 30631 54.25 3.20

Table A6. Open-RetinaNet on more datasets.

Method backbone WI↓ AOSE↓ mAPK↑ APU↑

FR-CNN
ResNet-50 18.39 15118 58.45 0

Swin-T 15.99 13204 63.09 0

OpenDet
ResNet-50 14.95 11286 58.75 14.93

Swin-T 12.51 9875 63.17 15.77
Table A7. Comparisons of different backbones, i.e., ResNet-
50 [21] and Swin-T [33].

Training strategy. Some works in OSR [57] adopted a
pretrain-then-finetune paradigm to train the unknown iden-
tifier. We carefully design the UPL so that OpenDet can be
trained in an end-to-end manner. Tab. A5 shows that jointly
optimizing UPL performs better than that of fine-tuning.

Open-RetinaNet. To further demonstrates the effective-
ness of Open-RetinaNet, we report more results in Tab. A6,
where Open-RetinaNet shows substantial improvements on
WI, AOSE and APU , and achieves comparable performance
on mAPK.

Vision transformer as backbone. We find the detector
with vision transformer, e.g., Swin Transformer [33] is a
stronger baseline for OSOD. As shown in Tab. A7, models
with a Swin-T backbone significantly suppress their ResNet
counterparts.

Speed and computation. In the training stage, OpenDet
only increases 14% (1.4h vs. 1.2h) training time and 1.2%
(2424Mb vs. 2395Mb) memory usage. In the testing phase,
as we only add the unknown class to the classifier, Open-
Det keeps similar running speed and computation with FR-
CNN.

10



Method
train model

on valset
WI↓ AOSE↓ mAPK↑ APU↑

FR-CNN × 18.39 15118 58.45 0

ORE
× 8.46 2909 53.96 9.64
X 16.98 12868 58.35 5.13

OpenDet × 14.95 11286 58.75 14.93
Table A8. Comparison with ORE [25]. The row with gray back-
ground is reported in our main paper.

Method
use unknown’s annotation

WI↓ AOSE↓ mAPK↑in train set in val set
FR-CNN
(Oracle)

X × 4.27 6862 60.43

FR-CNN × × 6.03 8468 58.81
ORE × X 5.11 6833 58.93

OpenDet × × 4.44 5781 59.01

Table A9. Results on open world object detection [25].

D. Comparison with ORE [25]
Implementation details. The original ORE adopted a R50-
C4 FR-CNN framework, and train the model with 8 epochs.
For fair comparisons, we replace the R50-C4 architecture
with R50-FPN, and train all models with 3× schedule.
Besides, as discussed in these issues1, we report our re-
implemented results when comparing with ORE in an open
world object detection task (see Tab. A9).
Analysis of ORE. To learn the energy-based unknown iden-
tifier (Sec 4.3 in [25]), ORE requires an additional valida-
tion set with the annotations of unknown classes. We notice
that ORE continues to train on the validation set, so that the
model can leverage the information of unknown classes. In
Tab. A8, we find ORE without training on valset (i.e., froze
parameters) obtains a rather lower mAPK (53.96 vs. 58.45),
and large amounts of known examples are misclassified to
unknown. In contrast, OpenDet outperforms ORE without
using the information of unknown classes.
Results on open world object detection. We also compare
OpenDet with ORE in the task1 of open world object de-
tection. As shown in Tab. A9, without accessing open-set
data in the training set or validation set, OpenDet outper-
forms FR-CNN and ORE by a large margin and achieves
comparable results with the Oracle.

E. Comparison with DS [36]
Implementation details. DS averages multiple runs of a
dropout-enabled model to produce more confident predi-
tions. As DS has no public implementation, we implement
it based on the FR-CNN [42] framework. Specifically, we
insert a dropout layer to the second-last layer of the classi-
fication branch in R-CNN, and set the dropout probability
to 0.5. Previous works [12, 25] indicate that DS works even
worse than the baseline method; we show it is effective as

1https://github.com/JosephKJ/OWOD/issues?q=cannot+reproduce

Method #runs WI↓ AOSE↓ mAPK↑ APU↑
FR-CNN 1 18.39 15118 58.45 0

DS

1 15.26 18227 56.60 5.67
3 16.41 14593 57.88 5.48
5 16.76 13862 57.98 5.31
10 16.91 13327 58.24 4.97
30 16.98 12868 58.35 5.13
50 17.01 12757 58.29 4.94

OpenDet 1 14.95 11286 58.75 14.93

Table A10. Comparison with DS [36]. #runs denotes the num-
ber of runs used for ensemble. The row with gray background is
reported in our main paper.

long as we remove the dropout layer during training, i.e.,
we only use the dropout layer in the testing phase. Besides,
original DS can only tell what is known, but do not have
a metric for the unknown (e.g., the unknown probability in
OpenDet). We give DS the ability to identify unknown by
entropy thresholding [22]. In detail, we define proposals
with the entropy larger than a threshold (i.e., 0.25) as un-
known.
DS with different #runs. DS requires multiple runs for a
given image. We report DS with different number of #runs
in Tab. A10. By increasing #runs, DS shows substantial
improvements on AOSE and mAPK, while the performance
on WI becomes worse. We report DS with 30 #runs in our
main paper, which is consistent with its original paper [36].

F. More Qualitative Results.
Fig. A3 gives more qualitative comparisons between the

baseline method and OpenDet. OpenDet can recall un-
known objects from known classes and the ”background”.
Besides, we also give two failure cases in Fig. A2. (a) We
find OpenDet performs poorly in some scenes with dense
objects, e.g., images with lots of person. (b) OpenDet
classifies ”real” background to the unknown class.

(a) (b)

Figure A2. Failure cases.

11

https://github.com/JosephKJ/OWOD/issues?q=is:issue+cannot+reproduce


O
ur

s
ba

se
lin

e
O

ur
s

ba
se

lin
e

O
ur

s
ba

se
lin

e
O

ur
s

ba
se

lin
e

Figure A3. More qualitative comparisons between the baseline and OpenDet.

12



References
[1] Abhijit Bendale and Terrance Boult. Towards open world

recognition. In CVPR, pages 1893–1902, 2015. 2
[2] Abhijit Bendale and Terrance E Boult. Towards open set

deep networks. In CVPR, pages 1563–1572, 2016. 1, 2, 4
[3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-
to-end object detection with transformers. In ECCV, pages
213–229. Springer, 2020. 1

[4] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised learning
of visual features by contrasting cluster assignments. arXiv
preprint arXiv:2006.09882, 2020. 3

[5] Olivier Chapelle, Bernhard Scholkopf, and Alexander
Zien. Semi-supervised learning. 2006. Cambridge, Mas-
sachusettes: The MIT Press View Article, 2006. 2

[6] Guangyao Chen, Peixi Peng, Xiangqian Wang, and
Yonghong Tian. Adversarial reciprocal points learning for
open set recognition. arXiv preprint arXiv:2103.00953,
2021. 2

[7] Guangyao Chen, Limeng Qiao, Yemin Shi, Peixi Peng, Jia
Li, Tiejun Huang, Shiliang Pu, and Yonghong Tian. Learning
open set network with discriminative reciprocal points. In
ECCV, pages 507–522. Springer, 2020. 1, 2, 4

[8] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In ICML, pages 1597–1607, 2020.
3

[9] Xinlei Chen and Kaiming He. Exploring simple siamese rep-
resentation learning. In CVPR, pages 15750–15758, 2021. 3

[10] Jiequan Cui, Zhisheng Zhong, Shu Liu, Bei Yu, and Ji-
aya Jia. Parametric contrastive learning. arXiv preprint
arXiv:2107.12028, 2021. 3

[11] Terrance DeVries and Graham W Taylor. Learning confi-
dence for out-of-distribution detection in neural networks.
arXiv preprint arXiv:1802.04865, 2018. 3, 5

[12] Akshay Dhamija, Manuel Gunther, Jonathan Ventura, and
Terrance Boult. The overlooked elephant of object detection:
Open set. In WACV, pages 1021–1030, 2020. 1, 2, 3, 6, 9,
11

[13] Jian Ding, Enze Xie, Hang Xu, Chenhan Jiang, Zhenguo
Li, Ping Luo, and Gui-Song Xia. Unsupervised pretraining
for object detection by patch reidentification. arXiv preprint
arXiv:2103.04814, 2021. 3

[14] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. IJCV, 88(2):303–338, 2010. 1, 2, 6,
9

[15] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian
approximation: Representing model uncertainty in deep
learning. In ICML, pages 1050–1059. PMLR, 2016. 1, 3

[16] ZongYuan Ge, Sergey Demyanov, Zetao Chen, and Rahil
Garnavi. Generative openmax for multi-class open set clas-
sification. In BMVC, 2017. 1, 2

[17] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In CVPR, pages 580–587, 2014.
1

[18] Yves Grandvalet and Yoshua Bengio. Semi-supervised

learning by entropy minimization. NeurIPS, 17, 2004. 2
[19] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin

Tallec, Pierre H Richemond, Elena Buchatskaya, Carl Do-
ersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-
mad Gheshlaghi Azar, et al. Bootstrap your own latent: A
new approach to self-supervised learning. arXiv preprint
arXiv:2006.07733, 2020. 3

[20] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In CVPR, pages 9729–9738, 2020. 3,
4, 10

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 6, 10

[22] Dan Hendrycks and Kevin Gimpel. A baseline for detect-
ing misclassified and out-of-distribution examples in neural
networks. arXiv preprint arXiv:1610.02136, 2016. 11

[23] Jaedong Hwang, Seoung Wug Oh, Joon-Young Lee, and Bo-
hyung Han. Exemplar-based open-set panoptic segmentation
network. In CVPR, pages 1175–1184, 2021. 9

[24] Lalit P Jain, Walter J Scheirer, and Terrance E Boult. Multi-
class open set recognition using probability of inclusion. In
ECCV, pages 393–409. Springer, 2014. 2

[25] KJ Joseph, Salman Khan, Fahad Shahbaz Khan, and Vi-
neeth N Balasubramanian. Towards open world object de-
tection. In CVPR, pages 5830–5840, 2021. 2, 3, 5, 6, 9,
11

[26] Pedro R Mendes Júnior, Roberto M De Souza, Rafael de O
Werneck, Bernardo V Stein, Daniel V Pazinato, Waldir R
de Almeida, Otávio AB Penatti, Ricardo da S Torres, and
Anderson Rocha. Nearest neighbors distance ratio open-set
classifier. Machine Learning, 106(3):359–386, 2017. 2

[27] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna,
Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and
Dilip Krishnan. Supervised contrastive learning. arXiv
preprint arXiv:2004.11362, 2020. 3, 4, 10

[28] Shu Kong and Deva Ramanan. Opengan: Open-set
recognition via open data generation. arXiv preprint
arXiv:2104.02939, 2021. 2, 9

[29] Balaji Lakshminarayanan, Alexander Pritzel, and Charles
Blundell. Simple and scalable predictive uncertainty
estimation using deep ensembles. arXiv preprint
arXiv:1612.01474, 2016. 3, 6

[30] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In CVPR, pages 2117–2125,
2017. 6

[31] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In ICCV,
pages 2980–2988, 2017. 1, 3, 8

[32] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, pages 740–755. Springer, 2014. 2, 6

[33] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. Swin trans-
former: Hierarchical vision transformer using shifted win-
dows. arXiv preprint arXiv:2103.14030, 2021. 10

[34] Andrey Malinin and Mark Gales. Predictive uncertainty esti-

13



mation via prior networks. arXiv preprint arXiv:1802.10501,
2018. 6

[35] Dimity Miller, Feras Dayoub, Michael Milford, and Niko
Sünderhauf. Evaluating merging strategies for sampling-
based uncertainty techniques in object detection. In ICRA,
pages 2348–2354. IEEE, 2019. 1, 3

[36] Dimity Miller, Lachlan Nicholson, Feras Dayoub, and Niko
Sünderhauf. Dropout sampling for robust object detection
in open-set conditions. In ICRA, pages 3243–3249. IEEE,
2018. 1, 3, 5, 6, 9, 11

[37] Lawrence Neal, Matthew Olson, Xiaoli Fern, Weng-Keen
Wong, and Fuxin Li. Open set learning with counterfactual
images. In ECCV, pages 613–628, 2018. 2

[38] Poojan Oza and Vishal M Patel. C2ae: Class conditioned
auto-encoder for open-set recognition. In CVPR, pages
2307–2316, 2019. 2

[39] Shreyas Padhy, Zachary Nado, Jie Ren, Jeremiah Liu,
Jasper Snoek, and Balaji Lakshminarayanan. Revisiting
one-vs-all classifiers for predictive uncertainty and out-of-
distribution detection in neural networks. arXiv preprint
arXiv:2007.05134, 2020. 4

[40] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In CVPR, pages 779–788, 2016. 1, 3

[41] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell,
Kevin Swersky, Joshua B Tenenbaum, Hugo Larochelle, and
Richard S Zemel. Meta-learning for semi-supervised few-
shot classification. ICLR, 2018. 2

[42] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: Towards real-time object detection with re-
gion proposal networks. IEEE TPAMI, pages 1137–1149,
2017. 1, 3, 4, 5, 6, 9, 11

[43] Walter J Scheirer, Anderson de Rezende Rocha, Archana
Sapkota, and Terrance E Boult. Toward open set recogni-
tion. IEEE TPAMI, 35(7):1757–1772, 2012. 1, 9

[44] Walter J Scheirer, Lalit P Jain, and Terrance E Boult. Prob-
ability models for open set recognition. IEEE TPAMI,
36(11):2317–2324, 2014. 2

[45] Murat Sensoy, Lance Kaplan, and Melih Kandemir. Eviden-
tial deep learning to quantify classification uncertainty. arXiv
preprint arXiv:1806.01768, 2018. 3, 5

[46] Bo Sun, Banghuai Li, Shengcai Cai, Ye Yuan, and Chi
Zhang. Fsce: Few-shot object detection via contrastive pro-
posal encoding. In CVPR, pages 7352–7362, 2021. 3

[47] Xin Sun, Zhenning Yang, Chi Zhang, Keck-Voon Ling, and
Guohao Peng. Conditional gaussian distribution learning for
open set recognition. In CVPR, pages 13480–13489, 2020.
2, 9

[48] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos:
Fully convolutional one-stage object detection. In ICCV,
pages 9627–9636, 2019. 1

[49] Wouter Van Gansbeke, Simon Vandenhende, Stamatios
Georgoulis, and Luc Van Gool. Unsupervised semantic
segmentation by contrasting object mask proposals. arXiv
preprint arXiv:2102.06191, 2021. 3

[50] Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisser-
man. Open-set recognition: A good closed-set classifier is
all you need. arXiv preprint arXiv:2110.06207, 2021. 9

[51] Peng Wang, Kai Han, Xiu-Shen Wei, Lei Zhang, and Lei

Wang. Contrastive learning based hybrid networks for long-
tailed image classification. In CVPR, pages 943–952, 2021.
3

[52] Wenguan Wang, Tianfei Zhou, Fisher Yu, Jifeng Dai, En-
der Konukoglu, and Luc Van Gool. Exploring cross-image
pixel contrast for semantic segmentation. arXiv preprint
arXiv:2101.11939, 2021. 3

[53] Xin Wang, Thomas E Huang, Trevor Darrell, Joseph E Gon-
zalez, and Fisher Yu. Frustratingly simple few-shot object
detection. arXiv preprint arXiv:2003.06957, 2020. 4

[54] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen
Lo, and Ross Girshick. Detectron2. https://github.
com/facebookresearch/detectron2, 2019. 6

[55] Ryota Yoshihashi, Wen Shao, Rei Kawakami, Shaodi
You, Makoto Iida, and Takeshi Naemura. Classification-
reconstruction learning for open-set recognition. In CVPR,
pages 4016–4025, 2019. 1, 2

[56] He Zhang and Vishal M Patel. Sparse representation-based
open set recognition. IEEE TPAMI, 39(8):1690–1696, 2016.
2

[57] Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Learn-
ing placeholders for open-set recognition. In CVPR, pages
4401–4410, 2021. 1, 2, 5, 6, 9, 10

14

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

