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Abstract

Self-supervised models have been shown to produce
comparable or better visual representations than their su-
pervised counterparts when trained offline on unlabeled
data at scale. However, their efficacy is catastrophically
reduced in a Continual Learning (CL) scenario where data
is presented to the model sequentially. In this paper, we
show that self-supervised loss functions can be seamlessly
converted into distillation mechanisms for CL by adding a
predictor network that maps the current state of the repre-
sentations to their past state. This enables us to devise a
framework for Continual self-supervised visual representa-
tion Learning that (i) significantly improves the quality of
the learned representations, (ii) is compatible with several
state-of-the-art self-supervised objectives, and (iii) needs
little to no hyperparameter tuning. We demonstrate the ef-
fectiveness of our approach empirically by training six pop-
ular self-supervised models in various CL settings. Code:
github.com/DonkeyShot21/cassle.

1. Introduction

During the last few years, self-supervised learning (SSL)
has become the most popular paradigm for unsupervised vi-
sual representation learning [3, 7, 8, 13, 14, 26, 28, 58]. In-
deed, under certain assumptions (e.g., offline training with
large amounts of data and resources), SSL methods are able
to extract representations that match the quality of represen-
tations obtained with supervised learning, without requir-
ing annotations. However, these assumptions do not always
hold in real-world scenarios, e.g., when new unlabeled data
are made available progressively over time. In fact, in order
to integrate new knowledge into the model, training needs
to be repeated on the whole dataset, which is impractical,
expensive, and sometimes even impossible when old data is
not available. This issue is exacerbated by the fact that SSL
models are notoriously computationally expensive to train.
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Figure 1. Linear evaluation accuracy of representations learned
with different self-supervised methods on class-incremental CI-
FAR100 and ImageNet100. In blue the accuracy of SSL fine-
tuning, in green the improvement brought by CaSSLe. The red
dashed line is the accuracy attained by supervised fine-tuning.

Continual learning (CL) studies the ability of neural net-
works to learn tasks sequentially. Prior art in the field fo-
cuses on mitigating catastrophic forgetting [17, 23, 25, 40].
Common benchmarks in the CL literature evaluate the dis-
criminative performance of classifiers learned with super-
vision from non-stationary distributions. In this paper, we
tackle the same forgetting phenomenon in the context of
SSL. Unsupervised representation learning is indeed ap-
pealing for sequential learning since it does not require hu-
man annotations, which are particularly hard to obtain when
new data is generated on-the-fly. This setup, called Contin-
ual Self-Supervised Learning (CSSL), is surprisingly under-
investigated in the literature.

In this work, we propose CaSSLe, a simple and effec-
tive framework for CSSL of visual representations based on
the intuition that SSL models are intrinsically capable of
learning continually, and that SSL losses can be seamlessly
converted into distillation losses. Our key idea is to train the
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current model to predict past representations with a predic-
tion head, thus encouraging it to remember past knowledge.
CaSSLe has several favourable features: (i) it is compatible
with popular state-of-the-art SSL loss functions and archi-
tectures, (ii) it is simple to implement, and (iii) it does not
require any additional hyperparameter tuning with respect
to the original SSL method. Our experiments demonstrate
that SSL methods trained continually with CaSSLe signifi-
cantly outperform all the related methods (CSSL baselines
and several methods adapted from supervised CL).

We also perform a comprehensive analysis of the behav-
ior of six popular SSL methods in diverse CL settings (i.e.,
class, data, and domain incremental). We provide empiri-
cal results on small (CIFAR100), medium (ImageNet100),
and large (DomainNet) scale datasets. Our study sheds new
light on interesting properties of SSL methods that emerge
when learning continually. Among other findings, we dis-
cover that, in the class-incremental setting, SSL methods
typically approach or outperform supervised learning (see
Fig.1), while this is not generally true for other settings
(data-incremental and domain-incremental) where super-
vised learning still shows a sizeable advantage.

2. Related Work
Self-Supervised Learning. Recent SSL approaches have
shown performance comparable to their supervised learning
equivalents [3, 7, 8, 13, 14, 26, 28, 58]. In a nutshell, most of
these methods use image augmentation techniques to gen-
erate correlated views (positives) from a sample, and then
learn a model that is invariant to these augmentations by
enforcing the network to output similar representations for
the positives. Initially, contrastive learning, based on in-
stance discrimination [56] using noise-contrastive estima-
tion [27, 41], was a popular strategy [13, 28]. However,
this learning paradigm requires large batch sizes or mem-
ory banks. A few methods that use a negative-free cosine
similarity loss [15, 26] have addressed such issues.

Concurrently, clustering-based methods (SwAV [7],
DeepCluster v2 [6, 7] and DINO [8]) have also been pro-
posed. They do not operate on the features directly, and in-
stead compare positives through a cross-entropy loss using
cluster prototypes as a proxy. Redundancy reduction-based
methods have also been popular [3, 20, 58]. Among them,
BarlowTwins [58] considers an objective function measur-
ing the cross-correlation matrix between the features, and
VicReg [3] uses a mix of variance, invariance and covari-
ance regularizations. Methods such as [19] have explored
the use of nearest-neighbour retrieval and divide and con-
quer [53]. However, none of these works studied the ability
of SSL methods to learn continually and adaptively.

Continual Learning. A plethora of methods have been
developed to counteract catastrophic forgetting [2, 4, 9–12,
18, 22, 31, 34, 36, 38, 42, 44, 46–50, 55, 59]. Following [17],

these works can be organized into three macro-categories:
replay-based [4, 12, 38, 42, 46, 47], regularization-based [2,
9–11, 18, 22, 31, 34, 36, 50, 55, 59], and parameter isolation
methods [48,49]. All these works evaluate the effectiveness
of CL methods using a linear classifier learned sequentially
over time. However, this evaluation does not reflect an im-
portant aspect, i.e., the internal dynamics of the hidden rep-
resentations. Moreover, most CL methods tend to rely on
supervision in order to mitigate catastrophic forgetting. A
few of them can be adapted for the unsupervised setting, al-
though their effectiveness is greatly reduced (see discussion
in Sec. 5, Sec. 6 and the supplementary material).

Works such as [1, 45, 51] laid the foundations of unsu-
pervised CL, but their studies are severely limited to digit-
like datasets, e.g., MNIST and Omniglot, and the proposed
methods are unfit for large-scale scenarios. Recently, [5,24]
explored self-supervised pretraining for supervised contin-
ual learning with online and few-shot tasks, and [10] pre-
sented a supervised contrastive CL approach. Two concur-
rent works [37,39] have also attempted to address CSSL re-
cently. The former [37] extends [10] to the unsupervised
setting, but is specifically designed for contrastive SSL,
such as [13, 28], and lacks generalizability to other popu-
lar SSL paradigms. The latter [39] is also limited as it only
shows small-scale experiments in the class-incremental set-
ting and considers just two SSL methods. In contrast, we
present a general framework for CSSL with superior perfor-
mance, conduct large-scale experiments on three challeng-
ing settings, thereby presenting a deeper analysis of CSSL.

3. Preliminaries
Self-Supervised Learning. The training procedure of sev-
eral state-of-the-art SSL methods [3, 7, 8, 13, 19, 26, 28, 58]
can be summarized as follows. Given an image x in a batch
sampled from a distribution D, two correlated views xA

and xB are extracted by applying stochastic image augmen-
tations, such as random cropping, color jittering and hori-
zontal flipping. View xA is fed to an encoder fθ = fp ◦ fb,
which is parametrized by θ and has a backbone fb and
a projection head fp, that extracts feature representations
zA = fθ(x

A). Similarly, xB is forwarded into the same
networks, or possibly copies thereof, updated with expo-
nential moving average (EMA), to obtain the representa-
tion zB . A loss function LSSL is applied to these represen-
tations to learn the parameters θ as follows:

argmin
θ

Ex∼D
[
LSSL

(
zA, zB

)]
. (1)

More details on the implementation of LSSL are provided
in Sec. 5.1 and Tab. 1. This procedure turns out to be ex-
tremely powerful at extracting visual representations from
large unlabeled datasets. The intuition behind the success of
these models is that they learn to be invariant to augmenta-
tions. Importantly, augmentations are hand-crafted in a way
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that the two views xA and xB contain roughly the same
semantics as x, but their overall appearance (geometry, col-
ors, resolution, etc.) is different. This forces the model map
images with the same semantics to similar regions of the
feature space. Interestingly, these augmentations are much
stronger, i.e., they distort the image more, than augmenta-
tions commonly used to train supervised models.

Continual Learning. The CL problem focuses on training
models such as deep neural networks from non-stationary
data distributions. More formally, this involves a network
f ′
θ′ = f ′

c ◦ f ′
b with parameters θ′, backbone f ′

b and a classi-
fier f ′

c, that learns from an ordered set of tasks {1, . . . , T},
each exhibiting a different data distribution Dt. Usually, an
image x sampled i.i.d. from Dt is processed by f ′ that pre-
dicts a probability distribution p over the set of classes Yt.
The objective is to find parameters θ′ such as:

argmin
θ′

T∑
t=1

E(x,y)∼Dt
[LCL (p,y)] , (2)

where, in most cases, LCL is the cross-entropy loss. How-
ever, during task t, the previous data distribution Dt−1 is
not available and therefore Eq. (2) cannot be minimized di-
rectly. Current research focuses on approximating θ′ us-
ing indirect approaches. Some of them [18, 36] are based
on knowledge distillation [30], i.e., transferring knowledge
from one network to another by forcing them to produce the
same outputs. We will discuss the applicability of distilla-
tion methods in CSSL in Sec. 5.

4. Continual Self-Supervised Learning

In this paper, we tackle the problem of Continual Self-
Supervised Learning as an extension of both SSL and CL. In
practice, a CSSL experiment starts with the first task, where
the model is trained as per the specific self-supervised
method that it implements, with no difference from offline
training. Subsequent tasks are then presented to the model
sequentially, and the data from the previous tasks are dis-
carded. No labels are provided during this training phase.
For the sake of simplicity and since we are exploring a new,
challenging setting, we assume task boundaries to be pro-
vided to the model. More formally, the CSSL objective is
to learn a strong feature extractor that is invariant to aug-
mentations on all tasks. Following the notation introduced
in Sec. 3, we define:

argmin
θ

T∑
t=1

Ex∼Dt

[
LSSL

(
zA, zB

)]
. (3)

Note the absence of labels y when sampling from Dt, the
summation over the set of tasks inherited from Eq. (2) and
the SSL loss function in Eq. (1). The expectation is approx-
imated using stochastic gradient descent on minibatches.

Evaluation. After each task, it is possible (for evaluation
purposes) to train a linear classifier on top of the obtained
backbone fb. With this linear classifier we report accuracy
on the test set. This protocol is compatible with standard
CL metrics, as shown in Sec. 6.1. We explore three CSSL
settings in our work.
▶ Class-incremental: each task t is represented by a dataset
Dt ∼ Dt containing images that belong to a set of classes
Yt such that Yt ∩ Ys = ∅ for each other task s ̸= t. Note
that the class labels are only used for splitting the dataset
and they are unknown to the model. In practice, the set of
classes in the dataset are shuffled and then partitioned into
T tasks. Each task contains the same number of classes.
▶ Data-incremental: each task t contains a set of images
Dt such that Dt ∩ Ds = ∅ for each other task s ̸= t. No
additional constraints are imposed on the classes. In prac-
tice, the whole dataset is shuffled and then partitioned into
T tasks. Each task can potentially contain all the classes.
▶ Domain-incremental: each task t contains a set of im-
ages Dt drawn from a different domain. We assume that
the set of classes Yt in each dataset remains the same for all
tasks but the data distribution changes, as if the data were
collected from different sources.

5. The CaSSLe Framework

We now introduce “CaSSLe”, our framework for con-
tinual self-supervised learning of visual representations and
detail its compatibility with several SSL methods.

Distillation in CSSL. From a supervised CL perspective,
the concept of invariance is interesting. Here, we would
like to learn representations of previously-learned seman-
tic concepts that are invariant to the state of the model’s
parameters. Indeed, this idea was investigated in prior
works [18, 31] that leverage knowledge distillation for CL.
However, such approaches are only mildly effective in a
CSSL scenario, as we show in Sec. 6. We believe this is due
to CSSL being fundamentally different from supervised CL.
In CSSL, we aim to extract the best possible representations
that can be subsequently reused in a variety of tasks, and
maximize the linear separability of features at the end of the
CL phase. Thus, the linear classifier does not benefit much
from the stability of the representations. Also, forcing the
representations not to change may prevent the model from
learning new concepts. This is especially critical for SSL
methods for two reasons: (i) the performance of the mod-
els improve substantially with longer training, implying that
the representations continue to get refined, and (ii) they ex-
hibit different losses and feature normalizations that might
interfere with distillation and vice-versa (e.g., BarlowTwins
uses standardization while [18, 31] use l2-normalization).
Nonetheless, the features still need to be informative of pre-
vious tasks to maximize the separability of the old distribu-
tion but the current state might be too different from the pre-
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Figure 2. Overview of the CaSSLe framework.

vious one making comparing representations complicated.

Distillation through SSL losses. Our framework, shown
in Fig. 2, is based on the following ideas: (i) a predictor
network that maps the current state of the representations
to their past state, by leveraging a distillation through time
strategy that satisfies both stability and plasticity principles,
and (ii) a family of adaptable distillation losses inherited
from the SSL literature that solves the issue of having dif-
ferent objectives interfering with each other.

When a new task is received, we start by making a copy
of the current model. This copy does not require gradient
computation and will not be updated. We call this the frozen
encoder f t−1. As soon as an image x ∈ Dt is available
we apply our stochastic image augmentations and extract its
features z = f t(x). In addition, we also use the frozen en-
coder to extract another feature vector z̄ = f t−1(x). Now,
our goal is to ensure that z contains at least as much infor-
mation as (and ideally more than) z̄. Instead of enforcing
the two feature vectors to be similar, and hence discourag-
ing the new model from learning new concepts, we propose
to use a predictor network g to project the representations
from the new feature space to the old one. If the predictor
is able to perfectly map from one space to the other, then it
implies that z is at least as powerful as z̄.

We are now ready to perform distillation, but which is
the most appropriate distillation loss? Since we want the
representations produced by g to be invariant to the state
of the model, we propose to use the same SSL loss used
to simulate invariance to augmentations. Empirically, we
verify that this choice reduces interference and minimizes
the need for hyperparameter tuning. We can hence write a
generic distillation loss by reusing the definition of LSSL:

LD(z, z̄) = LSSL(g(z), z̄). (4)

Note that z̄ is always detached from the computational
graph, such that the frozen encoder does not receive any gra-
dient, and the gradient only flows through the predictor g,
as prescribed in [15]. On the one hand, if training converges
and LD is minimized, the features predicted by g will likely
be quasi-invariant to the state of the model, which satisfies
the stability principle. On the other hand, the current en-
coder is less bound to its previous state, hence representa-
tions z can be more plastic. The loss can be extended to
multiple views by applying it to both representations, i.e.,
LD(zA, z̄A)+LD(zB , z̄B), and also swapped distillation,
e.g., LD(zA, z̄B) and vice-versa (see ablation in Tab. 6).

The final loss of an SSL method trained continually with
the CaSSLe framework is given by:

L = LSSL(z
A, zB) + LD(zA, z̄A)

= LSSL(z
A, zB) + LSSL(g(z

A), z̄A).
(5)

This loss can be made symmetric by applying it to both the
views (swapping A and B in Eq. (5)) and it can also be eas-
ily adapted for multi-crop [7]. Note that we do not use any
hyperparameter to weight the importance of the distillation
loss with respect to the SSL loss.

5.1. Compatibility of SSL methods with CaSSLe

The main difference among SSL methods is the loss
function that they use. Following the notation defined in
Sec. 3, and the loss functions in Tab. 1, we now detail if
and how SSL losses can be used in our CaSSLe framework.
Full derivation of distillation losses is deferred to the sup-
plementary material.

InfoNCE-based methods [13, 28] perform instance dis-
crimination, where positive samples help to build invariance
to augmentations. The negatives prevent the model from
falling into degenerate solutions. The InfoNCE (a.k.a. con-
trastive) loss can be written as in Eq. (6), where subscript i
is the index of a generic sample in the batch, sim is the co-
sine similarity and η(i) is the set of negatives for sample i
in the current batch. Distilling knowledge with this loss is
equivalent to performing instance discrimination of current
task samples but in the feature space learnt in the past. Thus,
the predictor g learns to project samples from the present to
the past space to maximize the distance with the negative
samples, and the similarity with itself in the past.

MSE-based approaches [15,26] enforce consistency among
positive samples and ignore the negatives. BYOL [26]
uses a momentum encoder and SimSiam [15] performs
a stop gradient operation to avoid degenerate solutions.
Since the representations are l2-normalized, their loss
(Eq. 7) can be rewritten as the negative cosine similarity:
− sim(qA, zB) = − qA

||qA||2 ·
zB

||zB ||2 , where qA = h(zA) and
h is a prediction head. The gradient is backpropagated only
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Table 1. Overview of state-of-the-art SSL methods and losses. In
all tables, highlight colors are coded according to the type of loss.

Methods Loss Equation

SimCLR [13]
− log

exp(sim(zA
i ,zB

i )/τ)∑
zj∈η(i) exp(sim(zA

i ,zj)/τ)
(6)MoCo [28]

NNCLR [19]
InfoNCE

BYOL [26]
−||qA − zB ||22 (7)SimSiam [15]

VICReg [3]
MSE

SwAV [7]
−
∑

d a
B
d log

exp(sim(zA,cd)/τ)∑
k exp(sim(zA,ck)/τ)

(8)DCV2 [7]
DINO [8]

Cross-entropy

Barlow
Twins [58]

∑
u (1− Cuv)2 + λ

∑
u

∑
v ̸=u C2

uv (9)
VICReg [3]

Cross-correlation

through the representations of the first argumentation. A
special case of this family of methods is VICReg [3], which
uses a combination of multiple losses, where MSE acts as
invariance term. Features are not l2-normalized in VICReg
and its predictor is the identity function. In our framework,
this loss encourages the model to predict the past state of
representations without additional regularization.

Cross-entropy-based. Instead of simply enforcing invari-
ance of the representations to augmentations, cluster pro-
totypes C = {c1, . . . , cK} are used as a proxy in these
approaches, so that the model learns to predict invariant
cluster assignments. Slight variations of this idea result
in different methods: SwAV [7], DeepClusterV2 [7] and
DINO [8]. Once a probability distribution over the proto-
types is predicted, the cross-entropy loss (Eq. 8) is used to
compare the two views. Features and cluster prototypes c
are l2-normalized. The assignments aB can be calculated
in several ways, e.g., k-means in DeepCluster, Sinkhorn-
Knopp in SwAV and EMA in DINO. When employed as a
distillation loss, cross-entropy encourages g to predict the
assignments generated by the frozen encoder with a set of

frozen prototypes: aB =
exp(sim(z̄B ,ct−1

d )/τ)∑
k exp(sim(z̄B ,ct−1

k )/τ)
, where

Ct−1 =
{
ct−1
1 , . . . , ct−1

K

}
.

Cross-correlation-based. These methods use a different
approach based on decorrelating the components of the
feature space, e.g., Barlow Twins [58], VICReg [3] and
W-MSE [20]. For our analysis, we will mainly focus
on Barlow Twins’ implementation of this objective. Ex-
tensions to VICReg are left for future work. The cross-
correlation based objective function is shown in Eq. 9,
where λ is an hyperparameter to control the importance
of the first and the second terms of the loss, and Cuv =∑

i z
A
i,uz

B
i,v√∑

i(zA
i,u)

2
.
√∑

i(zB
i,v)

2
is the value of position (u, v) of the

cross-correlation matrix computed between the representa-
tions of the views along the batch dimension. Note that the
representations here are mean centered along the batch di-
mension, such that each unit has mean output zero over the
batch. Performing distillation with this loss has the addi-

tional effect of decorrelating the dimensions of the predicted
features g(zA).

6. Experiments
6.1. Experimental Protocol

Evaluation Metrics. Following previous work [38], we
propose the following metrics to evaluate the quality of the
representations extracted by our CSSL model:
▶ Linear Evaluation Accuracy: accuracy of a classifier
trained on top of the backbone fb on all tasks (or a sub-
set, e.g., 10% of the data) or a downstream task. For class-
incremental and data-incremental, we use the task-agnostic
setting, meaning that at evaluation time we do not assume
to know the task ID. For the domain-incremental setting, we
perform both task-aware and task-agnostic evaluations (the
latter is discussed in the supplementary material). To calcu-
late the average accuracy we compute A = 1

T

∑T
i=1 AT,i,

where Aj,k is the linear evaluation accuracy of the model
on task k after observing the last sample from task j.
▶ Forgetting: a common metric in the CL literature, it
quantifies how much information the model has forgot-
ten about previous tasks. It is formally defined as: F =

1
T−1

∑T−1
i=1 maxt∈{1,...,T} (At,i −AT,i).

▶ Forward Transfer: measures how much the represen-
tations that we learned so far are helpful in learning new
tasks, namely: FT = 1

T−1

∑T
i=2 Ai−1,i − Ri where Ri is

the linear evaluation accuracy of a random network on task
i.

Datasets. We perform experiments on 3 datasets: CI-
FAR100 [35] (class-incremental), a 100-class dataset with
60k 32x32 colour images; ImageNet100 [54] (class- and
data-incremental), 100-class subset of the ILSVRC2012
dataset with ≈130k images in high resolution (resized to
224x224); DomainNet [43] (domain-incremental), a 345-
class dataset containing roughly 600k high-resolution im-
ages (resized to 224x224) divided into 6 domains. We ex-
periment with 5 tasks for the class- and data-incremental
settings and with 6 tasks (one for each domain in Domain-
Net) in the case of domain-incremental. The supplementary
material presents additional results with different number
of tasks. For the domain-incremental setting, we order the
domains in decreasing number of images.

Implementation details. The SSL methods are adapted
from solo-learn [16], an established SSL library, which
is the main code base for all our experiments. The number
of epochs per task is as follows: 500 for CIFAR100, 400
for ImageNet100, 200 for DomainNet. The backbone fb is
a ResNet18 [29], with batch size 256. We use LARS [57]
for all our experiments. The offline version of each method,
that serves as an upper bound, is trained for the same num-
ber of epochs as the continual counterpart for a fair com-
parison. All the results for offline upper bounds are ob-
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Table 2. Comparison with state-of-the-art CL methods on CI-
FAR100 (5 tasks, class-incremental) using linear evaluation top-1
accuracy, forgetting and forward transfer.

Strategy
SimCLR Barlow Twins BYOL

A (↑) F (↓) T (↑) A (↑) F (↓) T (↑) A (↑) F (↓) T (↑)

Fine-tuning 48.9 1.0 33.5 54.3 0.4 39.2 52.7 0.1 35.9
EWC [34] 53.6 0.0 33.3 56.7 0.2 39.1 56.4 0.0 39.9
ER [47] 50.3 0.1 32.7 54.6 3.0 39.4 54.7 0.4 36.3
DER [4] 50.7 0.4 33.2 55.3 2.5 39.6 54.8 1.1 36.7
LUMP [39] 52.3 0.3 34.5 57.8 0.3 41.0 56.4 0.2 37.9
Less-Forget [31] 52.5 0.2 33.8 56.4 0.2 40.1 58.6 0.2 41.1
POD [18] 51.3 0.1 33.8 55.9 0.3 40.3 57.9 0.0 41.1
CaSSLe 58.3 0.2 36.4 60.4 0.4 42.2 62.2 0.0 43.6

Offline 65.8 - - 70.9 - - 70.5 - -

Table 3. Comparison with Lin et al. [37] on CIFAR100 (2 and 5
tasks, class-incremental setting). MoCoV2+ is an updated version
of MoCoV2 that uses a symmetric loss. The difference between
the two is ≈1% at convergence [15].

Strategy Method 2 Tasks 5 Tasks

Lin et al. [37] SimCLR 55.7 -
MoCoV2 56.1 53.8

SimCLR 61.8 58.3CaSSLe MoCoV2+ 63.3 59.5

tained using the checkpoints provided in [16]. For some
SSL methods, it was necessary to slightly increase the learn-
ing rate over the values provided by [16] in order for the
methods to fully convergence in the CSSL setting. Al-
though tuning the hyperparameters might be beneficial in
some settings, we do not perform any hyperparameter tun-
ing for CaSSLe. We also neither change the parameters of
the SSL methods, nor use a weight for the distillation loss
(as per Eq. (5)).

Baselines. Most of the CL methods require labels which
makes them unsuitable for CSSL. However, a few works
can be adapted for our setting with minimal changes.
We choose baselines from three categories [17]: prior-
focused regularization (EWC [34]), data-focused regular-
ization (POD [18], Less-Forget [31]), and rehearsal-based
replay (ER [47], DER [4]) methods. We also compare with
two concurrent works that propose approaches for CSSL
(LUMP [39], Lin et al. [37]). Finally, we do not consider
methods based on VAEs [1,45], since they have been shown
to yield poor performance on large scale. Details on how
the baselines are selected, implemented and tuned for CSSL
can be found in the supplementary material.

6.2. Results
Comparison with the state of the art. In Tab. 2 we re-
port comparison with CL baselines and fine-tuning in com-
position with three SSL methods: SimCLR, Barlow Twins
and BYOL. We select these three methods for the following
reasons: (i) they feature different losses (InfoNCE, Cross-
correlation and MSE), (ii) they exhibit different feature nor-
malizations (l2, standardization and mean centering), and
(iii) they use different techniques to avoid collapse (neg-
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Figure 3. Evolution of top-1 linear evaluation accuracy over tasks
on CIFAR100 (5 tasks, class-incremental).

atives, redundancy reduction, momentum encoder). The
comparison is performed on class-incremental CIFAR100
with 5 tasks. Offline learning results are reported as upper
bound.

First, we notice that CaSSLe produces better represen-
tations than all the other strategies, outperforming them by
large margins with all SSL methods in terms of top-1 accu-
racy. Moreover, our framework also shows better forward
transfer, meaning that its features are easier to generalize
to other tasks (also evident in Tab. 8). CaSSLe appears to
reduce catastrophic forgetting with respect to fine-tuning,
and is comparable to other methods. In general, SSL meth-
ods already have low forgetting with respect to supervised
learning on CIFAR100 (see Tab. 4) and therefore there is lit-
tle margin for improvement. However, on higher resolution
images (ImageNet100) CaSSLe actually achieves remark-
able results in the mitigation of catastrophic forgetting.

Replay-based methods (ER, DER) clearly do not help
against forgetting in CSSL. We found two reasons for this
failure. First, in supervised CL, replay-based methods ben-
efit from storing labels, which contain a lot of information
about previous tasks and enable the retraining of the lin-
ear classifier on old classes. This is not the case in CSSL,
where labels are unavailable. Second, SSL models need
more training epochs to converge, which means that sam-
ples in the buffer are also replayed many more times. This
causes severe overfitting on these exemplars, defeating the
purpose of the replay buffer. LUMP mitigates this effect
by augmenting the buffer using mixup but does not reach
too far, surpassing other baselines only with Barlow Twins.
EWC holds up surprisingly well, outperforming more re-
cent methods, meaning that the importance of the weights
can be calculated accurately with the self-supervised loss.
Distillation methods (POD, Less-Forget) show good per-
formance. However, they use l2-normalization in their
loss, causing loss of information when coupled with Bar-
low Twins, which decreases accuracy.

Fig. 3 shows the evolution of top-1 linear evalua-
tion accuracy over the whole training trajectory on class-
incremental CIFAR100 with 5 tasks. CaSSLe outperforms
the other methods, and keeps improving throughout the se-
quence. We found BYOL to be unstable when simply fine-
tuning the model. CaSSLe, EWC and Less-Forget mitigate
this instability completely. On the other hand, LUMP first
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Table 4. Linear evaluation top-1 accuracy on class-incremental
CIFAR100 and ImageNet100 with 5 tasks. CaSSLe is compared
to fine-tuning, offline and supervised learning.

Method Strategy
CIFAR100 ImageNet100

A (↑) F (↓) T (↑) A (↑) F (↓) T (↑)

Barlow
Twins

Fine-tuning 54.3 0.4 39.2 63.1 10.7 44.4
CaSSLe 60.4 0.4 42.2 68.2 1.3 47.9

Offline 70.9 - - 80.4 - -

SwAV
Fine-tuning 55.5 0.0 32.8 64.4 4.3 42.8

CaSSLe 57.8 0.0 34.5 66.0 0.2 43.6

Offline 64.9 - - 74.3 - -

BYOL
Fine-tuning 52.7 0.1 35.9 66.0 2.9 43.2

CaSSLe 62.2 0.0 42.2 66.4 1.1 46.6

Offline 70.5 - - 80.3 - -

VICReg
Fine-tuning 51.5 0.9 36.4 61.3 7.9 42.0

CaSSLe 53.6 0.2 41.1 64.8 4.3 45.3

Offline 68.5 - - 79.4 - -

MoCoV2+
Fine-tuning 47.3 0.2 33.4 62.0 8.4 41.6

CaSSLe 59.5 0.0 39.6 68.8 1.5 46.8

Offline 69.9 - - 79.3 - -

SimCLR
Fine-tuning 48.9 1.0 33.5 61.5 8.1 40.3

CaSSLe 58.3 0.2 36.4 68.0 2.2 45.8

Offline 65.8 - - 77.5 - -

Supervised
Fine-tuning 54.1 6.8 36.5 63.1 5.6 42.5

Offline 75.6 - - 81.9 - -

drops slightly and then recovers. We believe this is due to
some instability introduced by the mixup regularization, to
which the model takes time to adapt.

In Tab. 3 we also compare with Lin et al. [37] on class-
incremental CIFAR100. Although our method is not specif-
ically designed for contrastive learning, it substantially out-
performs Lin et al. with 2 and 5 tasks. It is worth nothing
that MoCoV2+ is slightly better than MoCoV2 (≈1% dif-
ference), whereas our gains are much larger (≈7%).

Ablation study. We ablate the most critical design choices
we adopt in CaSSLe: (i) distillation without swapped views,
and (ii) the presence of a prediction head g. These results
are reported in Tab. 6. Our full framework clearly outper-
forms its variants with swapped views and without predic-
tor. This validates our hypothesis that a predictor to map
new features to the old feature space is crucial. The result
that swapping views does not help is likely due to the frozen
encoder not being invariant to the current task.

Class-incremental. In Tab. 4 we report a study of
CSSL with 6 SSL methods in composition with the
CaSSLe framework on class-incremental CIFAR100 and
ImageNet100. Fine-tuning and Offline SSL results are re-
ported as lower and upper bounds. The accuracy of super-
vised learning is also reported. CaSSLe always improves
with respect to fine-tuning. In particular, our framework
produces higher forward transfer and lower forgetting, espe-
cially on ImageNet100, where methods tend to forget more.
Notably, CaSSLe outperforms supervised fine-tuning, ex-

Table 5. Training 5 times longer on 1/5 of the data vs. training
continually w/ and w/o CaSSLe on ImageNet100 (5 tasks, class-
and data-incremental). Bold is best, underlined is second best.

Setting Method Fine-tune Offline 1/5 CaSSLe

Class-inc.
SimCLR 61.5 63.1 68.0

Barlow Twins 63.1 63.5 68.2
BYOL 66.0 60.6 66.4

Data-inc.
SimCLR 68.9 67.2 72.1

Barlow Twins 71.3 70.2 74.9
BYOL 74.0 66.7 73.3

Table 6. Ablation study of design choices in CaSSLe.

Strategy Method Swap No pred. Ours

CaSSLe
SimCLR 49.3 52.6 58.3

Barlow Twins 57.4 57.3 60.4
BYOL 52.0 58.6 62.2

cept when coupled with VICReg on CIFAR100. On av-
erage, SSL methods trained continually with CaSSLe im-
prove by 6.8% on CIFAR100 and 4% on ImageNet100.

Data-incremental. Tab. 7 presents results for linear evalua-
tion top-1 accuracy on ImageNet100 with 5 tasks in a data-
incremental scenario. While no SSL method is better than
supervised fine-tuning, Barlow Twins coupled with CaSSLe
is competitive. CaSSLe improves performance in all cases
by 2% on average, except for BYOL. This is likely due to
the fact that in the data-incremental scenario remembering
past knowledge is less important than in other scenarios,
and BYOL already has a momentum encoder that provides
some information about the past. This hypothesis is val-
idated by the fact that MoCoV2+ (that uses a momentum
encoder) improves less than SimCLR when coupled with
CaSSLe. We believe that, by tuning the EMA schedule, im-
provement could also be achieved for BYOL. In addition,
BYOL already shows impressive performance with fine-
tuning, outperforming all the other methods by more than
2%. Interestingly, SwAV comes closest to its offline upper
bound, with only a 3% decrease in performance when cou-
pled with CaSSLe.

Domain-incremental. We also examine the capability of
CaSSLe to learn continually when the domain from which
the data is drawn changes. Tab. 7 shows the average top-1
accuracy of a linear classifier trained on top of the frozen
feature extractor on all domains separately (domain-aware).
Domain-agnostic evaluation and results for each domain are
presented in the supplementary material. Again, CaSSLe
improves every method by 4.4% on average, showing that
our distillation strategy is robust to domain shift, and al-
though the data distribution is really different, information
transfer is still performed. Interestingly, most of the meth-
ods, when trained with CaSSLe get very close to their of-
fline accuracy.

Long training vs continual training. We also analyze
the following question: is it worth training continually or
is it better to train for longer on a small dataset? This
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Table 7. Linear evaluation accuracy on ImageNet100 (5 tasks,
data-incremental) and DomainNet (6 tasks, domain-incremental).

Method Strategy ImageNet100
(Data-inc.)

DomainNet
(Domain-inc.)

Barlow
Twins

Fine-tuning 71.3 50.3
CaSSLe 74.9 55.5

Offline 80.4 57.2

SwAV

Fine-tuning 70.8 49.6
Knowledge 71.3 54.3

Offline 74.3 54.6

BYOL

Fine-tuning 74.0 50.6
CaSSLe 73.3 55.1

Offline 80.3 56.6

VICReg

Fine-tuning 70.2 49.3
CaSSLe 72.3 52.9

Offline 79.4 56.7

MoCoV2+

Fine-tuning 69.5 43.2
CaSSLe 71.9 46.7

Offline 78.2 53.7

SimCLR

Fine-tuning 68.9 45.1
CaSSLe 72.1 50.0

Offline 77.5 52.6

Supervised
Fine-tuning 75.9 55.9

Offline 81.9 66.4

depends on two factors: (i) the SSL method, and (ii) the
CSSL setting. For SimCLR and Barlow Twins in the class-
incremental setting it seems to be better to train offline on
1/5 of the classes instead of training continually with 5
tasks. In this setting, offline BYOL seems to suffer from
instability, ending up lower than fine-tuning. On the other
hand, on the data-incremental setting, fine-tuning outper-
forms longer training, especially for BYOL, which also out-
performs CaSSLe (as explained previously). Apart from
this exception, CaSSLe always produces better representa-
tions than other strategies, making it the go-to option.

Downstream and semi-supervised. In Tab. 8, we present
the downstream performance of CaSSLe compared with
fine-tuning when trained on ImageNet100 and evaluated on
DomainNet (Real). Barlow Twins, SwAV and BYOL show
higher performance than the supervised model, even when
considering a fine-tuning strategy. This is probably due to
the fact that SSL methods tend to learn more general fea-
tures than their supervised counterparts. CaSSLe improves
performance on all the SSL methods, making them surpass
the supervised baseline. Lastly, when compared with fine-
tuning, CaSSLe improves the performance of SSL meth-
ods by 3.4% on average. Tab. 9 contains the top-1 ac-
curacy on ImageNet100 when training a linear classifier
on a frozen backbone with limited amount of labels (10%
and 1%). First, we can observe that no SSL method with
fine-tune surpasses the performance of supervised learning.
When using CaSSLe, MoCoV2+ outperforms supervised
with 10% labels and, in general, Barlow Twins and Mo-
CoV2+ work best in both semi-supervised settings. CaSSLe

Table 8. Downstream performance with different SSL methods
trained on Imagenet-100 and evaluated on DomainNet (Real).

Strategy Barlow
Twins SwAV BYOL VICReg MoCoV2+ SimCLR Supervised

Fine-tune 56.2 55.9 55.0 54.0 52.4 51.6 54.3CaSSLe 60.3 56.9 56.9 56.3 58.7 56.5

Table 9. Top-1 linear accuracy on Imagenet-100 with different
SSL methods, semi-supervised setting with 10% and 1% of labels.

Percentage Strategy Barlow
Twins SwAV BYOL VICReg MoCoV2+ SimCLR Supervised

10% Fine-tune 56.6 57.6 55.7 53.6 54.9 52.5 60.8CaSSLe 60.3 58.2 56.5 56.5 61.7 58.9

1% Fine-tune 42.6 42.5 42.3 40.4 40.9 39.7 48.1CaSSLe 47.0 43.1 43.4 43.2 47.8 46.8

improves all SSL methods when compared with fine-tuning.

7. Conclusion
In this work, we study Continual Self-Supervised Learn-

ing (CSSL), the problem of learning a set of tasks without
labels continually. We make two important contributions
for the SSL and CL communities: (i) we present CaSSLe,
a simple and effective framework for CSSL that shows how
SSL methods and losses can be seamlessly reused to learn
continually, and (ii) we perform a comprehensive analysis
of CSSL, leading to the emergence of interesting properties
of SSL methods.

Limitations. Although CaSSLe shows exciting perfor-
mance, it has some limitations. First, it is applicable in
settings where task boundaries are provided. Second, our
framework increases the amount of computational resources
needed for training by roughly 30%, both in terms of mem-
ory and time. Finally, CaSSLe does not perform clustering,
meaning that it is unable to directly learn a mapping from
data to latent classes, and thus needs either a linear classifier
trained with supervision, or some clustering algorithm.

Broader impact. The capabilities of supervised CL agents
are bounded by the need for human-produced annotations.
CSSL models can potentially improve without the need for
human supervision. This facilitates the creation of powerful
AIs that may be used for malicious purposes such as dis-
crimination and surveillance. Also, since in CSSL the data
is supposed to come from a non-curated stream, the model
may be affected by biases in the data. This is problematic
because biases are then be transferred to downstream tasks.
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Appendix

A. PyTorch-like pseudo-code

We provide a PyTorch-like pseudo-code of our method. As you
can see, CaSSLe is simple to implement and does not add much
complexity to the base SSL method. In this snippet, the losses
are made symmetric by summing the two contributions. In some
cases, the two losses are averaged instead. In CaSSLe, we sym-
metrize in the same way as the base SSL method we are consider-
ing.

Algorithm 1 PyTorch-like pseudo-code for CaSSLe.

# aug: stochastic image augmentation
# f: backbone and projector
# frozen_f: frozen backbone and projector
# g: CaSSLe’s predictor
# loss_fn: any SSL loss in Tab. 1 (main paper)

# PyTorchLightning handles loading and optimization
def training_step(x):

# correlated views
x1, x2 = aug(x), aug(x)

# forward backbone and projector
z1, z2 = f(x1), f(x2)

# optionally forward predictor...

# compute SSL loss (symmetric)
ssl_loss = loss_fn(z1, z2) \\

+ loss_fn(z2, z1)

# forward frozen backbone and projector
z1_bar, z2_bar = frozen_f(x1), frozen_f(x2)

# compute distillation loss (symmetric)
distill_loss = loss_fn(g(z1), z1_bar) \\

+ loss_fn(g(z2), z2_bar)

# no hyperparameter for loss weighting
return ssl_loss + distill_loss

B. Derivation of distillation losses

In this section, we derive distillation losses from the SSL losses
in Tab. 1 of the main paper, starting from the definition of our
distillation loss:

LD(z, z̄) = LSSL(g(z), z̄), (10)

where z and z̄ are the representations of the current and frozen
encoder, and g is CaSSLe’s predictor network implemented as a
two layer MLP with 2048 hidden neurons and ReLU activation.

Contrastive based. Our distillation loss based on contrastive
learning is implemented as follows:

L(zi, z̄i) = − log
exp (sim (zi, z̄i) /τ)∑

zj∈η̄(i) exp (sim (zi,zj) /τ)
, (11)

where η̄(i) is the set of negatives for the sample with index i in the
batch. Note that the negatives are drawn both from the predicted
and frozen features.

MSE based. This distillation loss is simply the MSE between
the predicted features and the frozen features:

L(z, z̄) = −||g(z)− z̄||22. (12)

It can be implemented with the cosine similarity as stated in the
main manuscript.

Cross-entropy based. The cross-entropy loss, when used for
distillation in an unsupervised setting, makes sure that the current
encoder is able to assign samples to the frozen centroids (or proto-
types) consistently with the frozen encoder:

L(z, z̄) = −
∑
d

ād log
exp

(
sim

(
g(z), ct−1

d

)
/τ

)∑
k exp

(
sim

(
g(z), ct−1

k

)
/τ

) (13)

where:

ā =
exp

(
sim

(
z̄, ct−1

d

)
/τ

)∑
k exp

(
sim

(
z̄, ct−1

k

)
/τ

) , (14)

and the set of frozen prototypes is denoted as follows: Ct−1 ={
ct−1
1 , . . . , ct−1

K

}
.

Cross-correlation based. We consider Barlow Twins’ [58]
implementation of this objective. For VICReg [3] we only con-
sider the invariance term. As a distillation loss, the cross-
correlation matrix is computed with the predicted and frozen fea-
tures:

L(z, z̄) =
∑
u

(
1− C̄uv

)2
+ λ

∑
u

∑
v ̸=u

C̄2
uv, (15)

where:

C̄uv =

∑
i g(zi,u)z̄i,v√∑

i g (zi,u)
2.
√∑

i (z̄i,v)
2
. (16)

C. Further discussion and implementation de-
tails of the baselines

Selection. When evaluating our framework, we try to compare
with as many existing related methods as possible. However, given
that SSL models are computationally intensive, it was not possible
to run all baselines and methods in all the CL settings we consid-
ered. As mentioned in the main manuscript, we choose eight base-
lines (seven related methods + fine-tuning) belonging to three CL
macro-categories, and test them on CIFAR100 (class-incremental)
in combination with three SSL methods. The selection was based
on the ease of adaptation to CSSL and the similarity to our frame-
work.

The most similar to CaSSLe are data-focused regularization
methods. Among them, a large majority leverage knowledge dis-
tillation using the outputs of a classifier learned with supervi-
sion e.g. [9, 22, 36], while a few works employ feature distilla-
tion [18, 31] which is viable even without supervision. [32] is also
related to CaSSLe, but it focuses on memory efficiency which is
less interesting in our setting. Also, [32] explicitly uses the clas-
sifier after feature adaptation, hence it is unclear how to adapt it
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Table A. Linear evaluation top-1 accuracy on DomainNet (6 tasks, domain-incremental setting) w/ and w/o CaSSLe. The sequence of
tasks is Real→Quickdraw→Painting→Sketch→Infograph→Clipart. “Aw.” stands for task-aware, “Ag,” for task-agnostic.

Method Strategy
Real Quickdraw Painting Sketch Infograph Clipart Avg.

Aw. Ag. Aw. Ag. Aw. Ag. Aw. Ag. Aw. Ag. Aw. Ag. Aw. Ag.

Barlow Twins

Finetuning 56.3 50.9 54.1 45.8 42.7 35.9 49.0 41.9 22.0 17.4 59.0 52.5 50.3 43.7
CaSSLe 62.7 57.1 59.1 50.6 49.2 42.1 53.8 47.7 25.5 20.6 61.9 55.6 55.5 48.9

Offline 67.1 63.0 60.3 53.9 52.4 46.3 51.9 46.9 25.9 21.0 58.8 52.6 57.2 51.8

SwAV

Finetuning 57.7 52.3 53.2 43.5 43.0 35.9 46.1 39.0 21.6 16.5 53.4 46.6 49.6 42.5
CaSSLe 62.8 57.8 59.5 50.2 47.5 41.2 49.5 42.5 22.5 17.9 56.5 49.6 54.3 47.5

Offline 64.1 59.5 60.6 53.6 47.6 42.9 47.7 42.1 23.3 18.9 53.6 47.3 54.6 49.1

BYOL

Finetuning 58.7 53.2 51.7 41.6 44.0 37.4 49.6 43.9 23.5 19.0 58.6 53.5 50.6 43.8
CaSSLe 63.7 60.5 59.3 50.9 48.6 44.1 50.4 45.2 24.1 19.4 59.0 54.4 55.1 49.7

Offline 67.2 64.0 60.2 53.3 51.5 47.3 50.4 46.2 24.5 20.8 57.0 51.5 56.6 51.9

VICReg

Finetuning 54.7 49.6 53.0 44.9 42.1 34.7 49.0 41.9 21.1 16.4 58.5 52.6 49.3 42.8
CaSSLe 59.0 53.2 56.4 47.8 46.0 38.9 52.3 45.6 23.9 18.5 60.9 55.3 52.9 46.1

Offline 66.4 62.7 59.2 53.5 52.4 47.2 53.2 48.1 25.3 20.7 58.3 53.2 56.7 51.9

SimCLR

Finetuning 52.5 47.6 48.2 38.1 37.5 31.7 42.8 35.7 18.8 14.4 50.9 46.8 45.1 38.4
CaSSLe 58.4 43.4 54.2 44.7 43.9 37.7 47.6 41.9 22.0 17.8 54.9 50.5 50.0 44.2

Offline 62.1 59.5 58.3 52.9 46.1 42.5 45.6 41.3 22.1 18.8 51.0 45.9 52.6 48.6

MoCoV2+

Finetuning 50.9 45.5 45.8 37.5 36.0 29.3 39.5 32.1 17.9 13.5 50.3 44.5 43.2 36.7
CaSSLe 56.0 50.3 48.7 40.0 40.4 33.6 42.0 35.0 19.9 15.2 51.7 44.5 46.7 38.8

Offline 65.2 61.3 57.9 51.3 48.7 43.1 44.7 39.1 23.4 19.0 51.3 44.8 53.7 48.4

Supervised
Contrastive

Finetuning 57.7 52.6 55.3 45.5 44.9 38.0 51.7 45.0 22.6 18.3 64.0 60.0 52.1 45.4
CaSSLe 63.4 58.8 59.7 51.3 50.1 44.7 55.9 50.3 26.9 22.4 65.0 61.3 56.7 50.9

Offline 67.4 65.3 65.8 63.0 53.6 50.9 56.0 53.1 28.0 25.7 62.8 59.6 60.0 57.4

Supervised
Finetuning 63.0 58.2 56.9 47.6 49.1 44.0 55.7 50.3 27.7 23.3 68.6 63.5 55.9 49.8

Offline 74.7 73.2 68.5 67.8 62.0 59.3 65.7 63.7 33.7 34.5 72.3 69.3 66.4 65.0

for CSSL, especially since in SSL positives are generated using
image augmentations, which are not applicable to a memory bank
of features. On the contrary, augmentations can be used in replay
methods, among which we select the most common (ER [47]) and
one of the most recent (DER [4]). Regarding prior-focused reg-
ularization methods, we choose EWC [34] over others (SI [59],
MAS [2], etc.) as it is considered the most influential and it works
best with task boundaries. We also consider two CSSL baselines:
LUMP [39] and Lin et al. [37]. Finally, we do not consider meth-
ods based on VAEs [1, 45], since they have been shown to yield
poor performance in the large and medium scale. For instance, as
found by [21], a VAE trained offline on CIFAR10 reaches an accu-
racy of 57.2%, which is lower than any method (except VICReg)
trained continually on CIFAR100 with CaSSLe.

Implementation. For EWC, we use the SSL loss instead of
the supervised loss to estimate importance weights. For POD and
Less-Forget, we only re-implement the feature distillation without
considering the parts of their methods that explicitly use the clas-
sifier. For DER, we replace the logits of the classifier with the pro-
jected features in the buffer. We re-implement all these baselines
by adapting them from the official implementation (POD), or from
the Mammoth framework provided with [4] (DER, ER, EWC), or
from the paper (Less-Forget). We also compare with two concur-
rent works that propose approaches for CSSL (LUMP [39], Lin
et al. [37]). LUMP uses k-NN evaluation, therefore we adapt the
code provided by the authors to run in our code base. For Lin et

al., we compare directly with their published results, since they use
the same evaluation protocol. We perform hyperparameter tuning
for all baselines, searching over 5 values for the distillation loss
weights of POD and Less-Forget, 3 values for the weight of the
regularization in EWC and 3 replay batch sizes for replay meth-
ods. The size of the replay buffer is 500 samples for all replay
based methods.

D. Additional results

Continual supervised contrastive with CaSSLe. After
the popularization of contrastive learning [13,28] for unsupervised
learning of representations, [33] proposed a supervised version of
the contrastive loss. Here, we show that CaSSLe is easily extend-
able to support supervised contrastive learning. The implementa-
tion is basically the same as for our vanilla contrastive-based dis-
tillation loss. In Tab. B, we show the improvement that CaSSLe
brings with respect to fine-tuning, which is sizeable in the class-
incremental setting. We also report the same comparison on Do-
mainNet in Tab. A, showing interesting results in both task-aware
and task-incremental evaluation.

Task-agnostic evaluation and domain-wise accuracy on
DomainNet. In the main manuscript, we showed that CaSSLe
significantly improved performance in the domain-incremental
setting using task-aware evaluation. Here, “task-aware” refers to
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Table B. Linear evaluation top-1 accuracy on ImageNet100 (5
tasks, class- and data-incremental).

Method Strategy
ImageNet100

Class-inc. Data-inc.

Supervised
Contrastive

Fine-tuning 61.6 74.3
CaSSLe 69.6 76.9

Table C. k-NN evaluation on ImageNet100 (5 tasks, class-
incremental) performed on backbone and projected features.

Method Strategy
k-NN accuracy (↑)

Backbone (fb) Projector (fp)

Barlow
Twins

Fine-tuning 59.1 34.4
CaSSLe 63.4 53.2

SwAV Fine-tuning 60.0 53.9
CaSSLe 59.7 61.3

BYOL Fine-tuning 57.1 33.0
CaSSLe 61.2 60.8

VICReg Fine-tuning 56.7 35.3
CaSSLe 59.5 43.4

MoCoV2+ Fine-tuning 54.5 39.0
CaSSLe 61.5 53.1

SimCLR Fine-tuning 54.8 40.1
CaSSLe 61.7 53.2

the fact that linear evaluation is performed on each domain sepa-
rately, i.e. a different linear classifier is learned for each domain.
However, it might also be interesting to check the performance of
the model when the domain is unknown at test time. For this rea-
son, we report the performance of our model when evaluated in a
task-agnostic fashion. In addition, we also show the accuracy on
each task (i.e. domain). All this information is presented in Tab. A.
CaSSLe always outperforms fine-tuning with both evaluation pro-
tocols. The accuracy of CaSSLe on “Clipart” is also higher than
offline. This is probably due to a combination of factors: (i) Cli-
part is the last task, therefore it probably benefits in forward trans-
fer and (ii) a similar effect to the one found in [53], where dividing
data in subgroups tends to enable the learning of better representa-
tions. Also, we notice that task-agnostic accuracy is lower than the
task-aware counterpart. This is expected and means that the class
conditional distributions are not perfectly aligned in different do-
mains. As in the main paper, the colors are related to the type of
SSL loss.

Additional results with k-NN evaluation. For complete-
ness, in this supplementary material, we also show that CaSSLe
yields superior performance when evaluated with a k-NN classi-
fier instead of linear evaluation. We use weighted k-NN with l2-
normalization (cosine similarity) and temperature scaling as in [8].
Since since k-NN is much faster than linear evaluation we could
also assess the quality of the projected representations, instead of
just using the backbone. The results can be inspected in Tab. C.
Three interesting phenomena arise: (i) CaSSLe always improves
with respect to fine-tuning, (ii) the features of the backbone fb are
usually better than the features of the projector fp and (iii) CaSSLe
causes information retention in the projector, which significantly
increases the performance of the projected features. An excep-

Table D. Linear evaluation top-1 accuracy on CIFAR100 (10 tasks,
class-incremental).

Method Strategy A (↑)

SimCLR Fine-tuning 39.3
CaSSLe 52.7

Barlow Twins Fine-tuning 49.9
CaSSLe 53.7

Table E. Linear evaluation top-1 accuracy on ImageNet100 (5
tasks, class- and data-incremental) with ResNet50 [29].

Method Strategy
A (↑)

Class-inc. Data-inc.

SimCLR Fine-tuning 70.7 75.6
CaSSLe 74.0 77.2

Barlow Twins Fine-tuning 71.2 75.8
CaSSLe 74.8 78.1

tion is represented by SwAV [7], that seems to behave differently
to other methods. First, the accuracy of the projected features in
SwAV is much higher than other methods. This might be due to the
fact that it uses prototypes, which bring the representations 1 layer
away from the loss, making them less specialized in the SSL task.
Second, it seems that CaSSLe only improves the projected features
when coupled with SwAV. However, this is probably an artifact of
the evaluation procedure, as the l2-normalization probably causes
loss of information. Indeed, although the overall performance is
lower, SwAV + CaSSLe outperforms SwAV + fine-tuning (58.7%
vs 56.9%) if the euclidean distance is used in place of the cosine
similarity for the backbone features. We leave a deeper investiga-
tion of this phenomenon for future work.

Different number of tasks. The analysis of CSSL settings
that we show in the main manuscript is limited to the 5 task sce-
nario. However, it is interesting to run the same benchmarks with
a longer task sequence. Nonetheless, one should also remember
that SSL methods are data hungry, hence the less data is available
per task, the higher the instability of the SSL models. In Tab. D,
we present additional results with 10 tasks on CIFAR100 (class-
incremental). Barlow Twins seems to hold up surprisingly well,
finishing up at roughly 50% accuracy, while SimCLR suffers in the
low data regime. Nonetheless, CaSSLe outperforms fine-tuning
with Barlow Twins, and to a very large extent with SimCLR.

Deeper architectures. The experiments we propose in the
main manuscript feature a ResNet18 network. This is a com-
mon choice in CL. However, in SSL, it is more common to use
ResNet50. For this reason, in Tab. E we show that the same behav-
ior observed with smaller networks is also obtained with deeper
architectures. More specifically, CaSSLe outperforms fine-tuning
in both class- and data-incremental settings by large margins.

The role of the predictor. In the main manuscript, we pro-
vided an intuitive explanation of the role of the predictor network
that maps the current feature space to the frozen feature space.
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Table F. Combinations of SSL methods and distillation losses on
CIFAR100 (class-incremental, 2 tasks).

Distillation Loss SimCLR Barlow Twins BYOL

InfoNCE 61.8 64.5 64.8
Cross-correlation 60.1 67.2 65.8
MSE 61.3 64.6 66.7

This intuition is corroborated by extensive experimentation and
ablation studies. However, one more thing that is worth men-
tioning is that the success of the predictor network might also be
related to the findings in SimSiam [15], BYOL [26] and Direct-
Pred [52]. Moreover, we perform additional ablations on the de-
sign of CaSSLe’s predictor for SimCLR on CIFAR100 (5 tasks):
adding BatchNorm after the hidden layer does not make any dif-
ference in terms of performance, and removing the non-linearity
only causes a 0.3% drop in accuracy.

Combinations of SSL methods and distillation losses.
For computational reasons, it was not feasible to perform exper-
iments combing all SSL methods with all possible distillation
losses. However, in Tab. F we provide a subset of the possible
combinations to validate our strategy that uses the same SSL loss
for distillation.
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Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. ICCV,
2021. 1, 2, 5, 11

[9] Francisco M Castro, Manuel J Marin-Jimenez, Nicolas Guil,
Cordelia Schmid, and Karteek Alahari. End-to-end incre-
mental learning. In ECCV, 2018. 2, 9

[10] Hyuntak Cha, Jaeho Lee, and Jinwoo Shin. Co2l: Con-
trastive continual learning. In CVPR, pages 9516–9525,
2021. 2

[11] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajan-
than, and Philip HS Torr. Riemannian walk for incremen-
tal learning: Understanding forgetting and intransigence. In
ECCV, 2018. 2

[12] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach,
and Mohamed Elhoseiny. Efficient lifelong learning with a-
gem. In ICLR, 2019. 2

[13] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In ICML, 2020. 1, 2, 4, 5, 10

[14] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.
Improved baselines with momentum contrastive learning.
arXiv preprint arXiv:2003.04297, 2020. 1, 2

[15] Xinlei Chen and Kaiming He. Exploring simple siamese rep-
resentation learning. In ICCV, 2021. 2, 4, 5, 6, 12

[16] Victor Guilherme Turrisi da Costa, Enrico Fini, Moin Nabi,
Nicu Sebe, and Elisa Ricci. solo-learn: A library of self-
supervised methods for visual representation learning. Jour-
nal of Machine Learning Research, 23(56):1–6, 2022. 5, 6

[17] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah
Parisot, Xu Jia, Ales Leonardis, Gregory Slabaugh, and
Tinne Tuytelaars. Continual learning: A comparative study
on how to defy forgetting in classification tasks. IEEE
TPAMI, 2(6), 2019. 1, 2, 6

[18] Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas
Robert, and Eduardo Valle. Podnet: Pooled outputs distilla-
tion for small-tasks incremental learning. In ECCV, 2020. 2,
3, 6, 9

[19] Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre
Sermanet, and Andrew Zisserman. With a little help from
my friends: Nearest-neighbor contrastive learning of visual
representations. ICCV, 2021. 2, 5

[20] Aleksandr Ermolov, Aliaksandr Siarohin, Enver Sangineto,
and Nicu Sebe. Whitening for self-supervised representation
learning. In ICML, 2021. 2, 5

[21] William Falcon, Ananya Harsh Jha, Teddy Koker, and
Kyunghyun Cho. Aavae: Augmentation-augmented varia-
tional autoencoders. arXiv preprint arXiv:2107.12329, 2021.
10
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