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Abstract

Inferring programs which generate 2D and 3D shapes is
important for reverse engineering, editing, and more. Train-
ing models to perform this task is complicated because
paired (shape, program) data is not readily available for
many domains, making exact supervised learning infeasible.
However, it is possible to get paired data by compromising
the accuracy of either the assigned program labels or the
shape distribution. Wake-sleep methods use samples from a
generative model of shape programs to approximate the dis-
tribution of real shapes. In self-training, shapes are passed
through a recognition model, which predicts programs that
are treated as ‘pseudo-labels’ for those shapes. Related to
these approaches, we introduce a novel self-training variant
unique to program inference, where program pseudo-labels
are paired with their executed output shapes, avoiding label
mismatch at the cost of an approximate shape distribution.
We propose to group these regimes under a single concep-
tual framework, where training is performed with maximum
likelihood updates sourced from either Pseudo-Labels or
an Approximate Distribution (PLAD). We evaluate these
techniques on multiple 2D and 3D shape program infer-
ence domains. Compared with policy gradient reinforcement
learning, we show that PLAD techniques infer more accurate
shape programs and converge significantly faster. Finally,
we propose to combine updates from different PLAD meth-
ods within the training of a single model, and find that this
approach outperforms any individual technique.

1. Introduction

Having access to a procedure which generates a visual
datum reveals its underlying structure, facilitating high-level
manipulation and editing by a person or autonomous agent.
Thus, inferring such programs from visual data is an im-
portant problem. In R2, inferring shape programs has ap-
plications in the design of diagrams, icons, and other 2D
graphics. In R3, it has applications in reverse engineering of

CAD models, procedural modeling for 3D games, and 3D
structure understanding for autonomous agents.

We formally define shape program inference as obtaining
a latent program z which generates a given observed shape
x. We model p(z|x) with deep neural networks that train
over a distribution of real shapes in order to amortize the
cost of shape program inference on unseen shapes (e.g. a
test set). This is a challenging problem: it is a structured
prediction problem whose output is high-dimensional and
can feature both discrete and continuous components (i.e.
program control flow vs. program parameters). Nevertheless,
learning p(z|x) becomes tractable provided that one has
access to paired (X,Z) data (i.e. a dataset of shapes and the
programs which generate them) [34]. Unfortunately, while
shape data is increasingly available in large quantities [2],
these shapes do not typically come with their generating
program.

To circumvent this data problem, researchers have typ-
ically synthesized paired data by generating synthetic pro-
grams and pairing them with the shapes they output [25, 31].
However, as there is typically significant distributional mis-
match between these synthetic shapes and “real” shapes from
the distribution of interest, S∗, various techniques must be
employed to fine-tune p(z|x) models towards S∗.

A number of these fine-tuning strategies attempt to di-
rectly propagate gradients from geometric similarity mea-
sures back to p(z|x). When the program executor is not a
black-box, it may be possible to do this by implementing
a differentiable relaxation of its behavior [16], but this re-
quires knowledge of its functional form. One can also try
learning a differentiable proxy of the executor’s behavior
[31], but this approximation introduces errors. Moreover,
as shape programs typically involve many discrete struc-
tural decisions, training such a model end-to-end is usually
infeasible in many domains. Thus, many prior works of-
ten resort to general-purpose policy gradient reinforcement
learning [8,25], which treats the program executor as a (non-
differentiable) black-box. The downside of this strategy is
that RL is notoriously unstable and slow to converge.

In this paper, we study a collection of methods that create
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(shape, program) data pairs used to train p(z|x) models
with maximum likelihood estimation (MLE) updates while
treating the program executor as a black-box. As discussed,
ground-truth (shape, program) pairs are often unavailable,
so these techniques must make compromises in how they
formulate paired data. In wake-sleep, a generative model
p(z) is trained to convergence on alternating cycles with
respect to p(z|x). When training p(z|x), paired data can
be created by sampling from p(z). Each program label z
is valid with respect to its associated x shape, but there is
often a distributional mismatch between the generated set of
shapes, X, and shapes from the target distribution, S∗. In
self-training, one uses p(z|x) to infer latent z’s for unlabeled
input x’s; these z’s then become “pseudo-labels” which
are treated as ground truth for another round of supervised
training. In this paradigm, there is no distributional shift
between X and S∗, but each z is only an approximately
correctly label with respect to its paired x.

We observe that shape program inference has a unique
property that makes it especially well-suited for self-training:
the distribution p(x|z) is known a priori—this is a delta
distribution defined by the program executor. When using
a model p(z|x) to infer a program z from some shape x∗

of interest, one can use this executor to produce a shape x
that is consistent with the program z: in the terminology of
self-training, z is guaranteed to be the “correct label” for
x. However, similar to wake-sleep, formulating X as shape
executions produced by model inferred programs can cause
a distributional shift between X and S∗. Since this variant of
self-training involves executing the inferred latent program z,
we call this procedure latent execution self-training (LEST).

As all of the aforementioned fine-tuning regimes use ei-
ther Pseudo-Labels or Approximate Distributions to formu-
late (shape, program) pairs, we group them under a single
conceptual framework: PLAD. We evaluate PLAD meth-
ods experimentally, using them to fine-tune shape program
inference models in multiple shape domains: 2D and 3D
constructive solid geometry (CSG), and assembly-based
modeling with ShapeAssembly, a domain-specific language
for structures of manufactured 3D objects [14]. We find
that PLAD training regimes offer substantial advantages
over the de-facto approach of policy gradient reinforcement
learning, achieving better shape reconstruction performance
while requiring significantly less computation time. Further,
we explore combining training updates from a mixture of
PLAD methods, and find that this approach leads to better
performance compared with any individual method. Code
for our method and experiments can be found at found at
https://github.com/rkjones4/PLAD .

In summary, our contributions are:
1. Proposing the PLAD conceptual framework to group

a family of related self-supervised learning techniques
for shape program inference.

2. Introducing latent execution self-training, a PLAD
method, to take advantage of the unique properties of
the shape program inference problem.

3. Experiments across multiple 2D and 3D shape program
inference domains, demonstrating that (i) fine-tuning
under PLAD regimes outperforms policy gradient rein-
forcement learning and (ii) combining PLAD methods
is better than any individual technique.

2. Related Work
Program synthesis is a broad field that has employed

many techniques throughout its history. A program syn-
thesizer takes as input a domain-specific language (DSL)
and a specification; it outputs a program in the DSL that
meets the specification. Machine learning has been used
to improve performance on program synthesis tasks by e.g.
performing a neurally-guided search over all possible pro-
grams or letting a recurrent network predict program text
directly [1, 5, 7, 23, 30, 35].

In this work, we are interested in the sub-problem of
shape program inference, which is a type of visual program
induction problem [4]. In our case, the specification is a vi-
sual representation of an object which the inferred program’s
output must geometrically match. Here, we discuss prior
work that has attacked this problem, organized by method-
ology used to learn p(z|x); see Table 1 for an overview.
As discussed, a common practice in this prior work is to
start with a model that has been pretrained on synthetically
generated (shape, program) pairs with supervised learning,
and then perform fine-tuning towards a distribution of inter-
est [8, 9, 20, 25, 31].

Policy Gradient Reinforcement Learning The most
general method for fine-tuning a pretrained p(z|x) is rein-
forcement learning: treating p(z|x) as a policy network and
using policy gradient methods [33]. The geometric similarity
of the inferred program’s output to its input is the reward
function; the program executor p(x|z) can be treated as a
(non-differentiable) black-box. CSG-Net uses RL for fine-
tuning [25, 26], as does other recent work on inferring CSG
programs from input geometry [8]. While CSG-Net has been
improved to allow it to converge without supervised pretrain-
ing [38], not starting from the supervised model results in
worse performance. The main problem with policy gradient
RL is its instability due to high variance gradients, leading
to slow convergence. Like RL, PLAD methods treat the
program executor as a black-box, but as we show experimen-
tally, they converge faster and achieve better reconstruction
performance.

Differentiable Executor If the functional form of the
program executor p(x|z) is known and differentiable, then
the gradient of the reward with respect to the parameters of
p(z|x) can be computed, making policy gradient unneces-
sary. Shape programs are typically not fully differentiable, as
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Method Models Black-Box p(x|z)? X = S∗
Low variance,

unbiased
gradients

Policy gradient RL p(z|x) ✓ ✓ X
Differentiable executor p(z|x) X ✓ ✓
Variational Bayes p(z|x), p(z) X ✓ ✓
Wake-sleep, EM p(z|x), p(z) ✓ X ✓
Self-training p(z|x) ✓ ✓ X
LEST p(z|x) ✓ X ✓

Table 1. Comparison of different methods for fine-tuning p(z|x), in terms of the models that must be trained, if they treat the program
executor as black-box, if their distribution of training shapes matches the distribution real shapes (X = S∗), and if their loss gradients are
unbiased with low-variance. The last three rows describe methods that fall under the PLAD framework.

they often involve discrete choices (e.g. which type of primi-
tives to create). UCSGNet uses a differentiable relaxation to
circumvent this issue [16]. Other work trains a differentiable
network to approximate the behavior of the program execu-
tor [31], which introduces errors. PLAD regimes do not
require the program executor to be differentiable, yet they
perform better than other approaches (e.g. policy gradient
RL) that share this desirable property.

Generative Model Learning Shape program inference
has also been explored in the context of learning a generative
model p(x, z) of programs and the shapes they produce. The
most popular approach for training such models is variational
Bayes, in particular the variational autoencoder [18]. This
method simultaneously trains a generative model p(x, z) and
a recognition model p(z|x) by optimizing a lower bound
on the marginal likelihood p(x). When the z’s are shape
programs, the program executor is p(x|z), so learning the
generative model reduces to learning a prior over programs
p(z). Training such models with gradient descent requires
that the executor p(x|z) be differentiable. When this is not
possible, the wake-sleep algorithm is a viable alternative [13].
This approach alternates training steps of the generative and
recognition models, training one on samples produced by the
other. Recent work has used wake-sleep for visual program
induction [10,12]. If one trains the generative model and the
inference model to convergence before switching to training
the other, this is equivalent to expectation maximization
(viewed as alternating maximization [22]).

Self-Training Traditionally, self-training has been em-
ployed in weakly-supervised learning paradigms to increase
the predictive accuracy of simple classification models
[21, 24, 36]. Recently, renewed interest in self-training-
inspired data augmentation approaches have demonstrated
empirical performance improvements for neural models in
domains such as large-scale image classification, machine
translation, and speech recognition [11, 15, 39]. But while
self-training has been shown to yield practical gains for
some domains, for others it can actually lead to worse perfor-

mance, as training on too many incorrect pseudo-labels can
cause learning to degrade [3, 28]. For self-training within
the PLAD framework, the assigned pseudo-label for each
example changes during fine-tuning whenever the inference
model discovers a program that better explains the input
shape; similar techniques have been proposed for learning
programs that perform semantic parsing under the view of
iterative maximum likelihood [19]. To our knowledge, self-
training has not been applied for fine-tuning visual program
inference models, likely because it is somewhat unintuitive
to view a program as a “label" for a visual datum.

3. Method
In this section, we describe the PLAD framework: a con-

ceptual grouping of fine-tuning methods for shape program
inference models. Our formulation assumes three inputs:
a training dataset of shapes from the distribution of inter-
est, S∗, a program inference model, p(z|x), and a program
executor that converts programs into shapes, E. Through-
out this paper, we assume that the p(z|x) passed as input
has undergone supervised pretraining on a distribution of
synthetically generated shapes. Methods within the PLAD
framework return a fine-tuned p(z|x) specialized to the dis-
tribution of interest from which S∗ was sampled.

We depict the PLAD procedure both algorithimcally and
pictorially in Figure 1. To fine-tune p(z|x) towards S∗,
PLAD methods iterate through the following steps: (1) use
p(z|x) to find visually similar programs to S∗, (2) construct a
dataset of shape and program pairs (X,Z) using the inferred
programs, and (3) fine-tune p(z|x) with maximum likelihood
estimation updates on batches from (X,Z). Through succes-
sive iterations, these steps bootstrap one another, forming a
virtuous cycle: improvements to p(z|x) create (X,Z) pairs
that more closely match the statistics of S∗, and training on
better (X,Z) pairs specializes p(z|x) to S∗.

Methods that fall within the PLAD framework differ in
how the paired (X,Z) data is created within each round. We
detail this process for wake-sleep (Section 3.1) , self-training
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Input: (S∗, p(z|x), E)
Output: p(z|x) fine-tuned on S∗

PBEST ← {}
for Number of Rounds do

// Update Best Programs
PBEST ← inferProgs(p(z|x), S∗, PBEST)
// Create Training Data
if Self-Train then
Z← PBEST

X← S∗

else if LEST then
Z← PBEST

X← {E(z) | z ∈ Z}
else if Wake-Sleep then
p(z)← trainGenerative(PBEST)
Z← sample(p(z), |S∗|)
X← {E(z) | z ∈ Z}

end if
// Train inference model
p(z|x)← trainMLE(X,Z)

end for

𝑝 𝐳 𝐱)

P	BESTReal Shape 𝑺∗

𝑝(𝒛)

LEST: (X, Z)

ST: (X, Z)

WS: (X, Z)

Infer 
Programs Execute

Train Generative

SampleExecute

Train on 
(X,	Z)

PLAD

… … …

……

Figure 1. (Left) Pseudocode for fine-tuning shape program inference models, p(z|x), towards a shape distribution of interest, S∗, with
Pseudo-Labels and Approximate Distributions (PLAD). PLAD methods iterate through three steps: infer programs for S∗ with p(z|x),
create a dataset of (X,Z) shape-program pairs, and train p(z|x) on batches from (X,Z). Self-training, latent execution self-training, and
wake-sleep differ in how (X,Z) is constructed. (Right) A visual illustration of the algorithm’s dataflow.

(Section 3.2), and latent execution self-training (Section 3.3).
In Section 3.4 we explain our program inference procedure
(inferProgs, Fig 1). Finally, in Section 3.5 we discuss how a
single p(z|x) can be fine-tuned by multiple PLAD methods.

3.1. Wake-Sleep (X,Z) Construction

Wake-sleep uses a generative model, p(z) to construct
(X,Z). In our implementation, we choose to model p(z) as
a variational auto-encoder (VAE) [18], where the encoder
consumes visual data and the decoder outputs a program.
To create data for p(z), we take the current best programs
discovered for S∗, PBEST, and execute each program to form
a set of shapes XG. p(z) is then trained on pairs from
(XG, PBEST) in the typical VAE framework. Note that the
design space for p(z) is quite flexible, for instance, p(z) can
trained without access to XG if implemented with a program
encoder.

Once p(z) has converged, we use it to sample |S∗| pro-
grams by decoding normally distributed random vectors.
This set of programs becomes Z, and X is formed by exe-
cuting each program in Z. In this set of (X,Z) programs, Z
is always the correct label for X, so the gradient estimates
during p(z|x) training will be low-variance and unbiased.
However, X is not guaranteed to be close to S∗, it is only

an approximate distribution. Note though, that as PBEST

better approximates S∗, the distributional mismatch should
become smaller, as long as the generative model has enough
capacity to properly model p(z).

3.2. Self-Training (X,Z) Construction

Self-training constructs (X,Z) by assigning labels from
the current best program set, PBEST, to shape instances from
S∗. Formally, X ← S∗ and Z ← PBEST. This framing
maintains the nice property that X = S∗, so there will never
be distributional mismatch between these two sets. The
downside is that unless programs from PBEST exactly recre-
ate their paired shapes from S∗ when executed, we know
that the pseudo-labels from PBEST are ‘incorrect’. From this
perspective, we can consider gradient estimates that come
from such (X,Z) pairs to be biased. However, as we will
show experimentally, when X forms a good approximation
to S∗, sourcing gradient estimates from these pseudo-labels
leads to strong reconstruction performance.

3.3. LEST (X,Z) Construction

A unique property of shape program inference is that the
distribution p(x|z) is readily available in the form of the
program executor E. We leverage this property to propose
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LEST, a variant of self-training that does not create mismatch
between pseudo-labels and their associated visual data. Sim-
ilar to the self-training paradigm, LEST first constructs Z as
the current best program set, PBEST. Then, differing from
self-training, LEST constructs X as the executed version of
each program in Z. By construction, the labels in Z will
now be correct for their paired shapes in X. The downside
is that, like wake-sleep, LEST may introduce a distributional
mismatch between X and S∗. But once again, as PBEST

better approximates S∗, the mismatch between the two dis-
tributions will decrease.

3.4. Inferring Programs with p(z|x)

During each round of fine-tuning, PLAD methods rely on
p(z|x) to infer programs that approximate S∗. We propose
to train PLAD methods such that the best matching inferred
programs for S∗ are maintained across rounds. Specifically,
we construct a data structure PBEST that maintains a program
for each training shape in S∗. In this way, as more iterations
are run, PBEST always forms a closer approximation to S∗.
There is an alternative framing, where PBEST is reset each
epoch, but we show experimental results in the supplemental
material that this can lead to worse generalization.

To update PBEST each round, we employ an inner-loop
search procedure. For each shape in S∗, p(z|x) suggests
high-likelihood programs, and the PBEST entry is updated
to keep the program whose execution obtains the highest
similarity to the input shape; the specific similarity metric
varies by domain. While there are many ways to structure
this inner-loop search, we choose beam-search, as we find
it offers a good trade-off between speed and performance.
Experimentally, we demonstrate that PLAD methods are
capable of performing well even as the time spent on inner-
loop search is varied (Section 4.4).

3.5. Training p(z|x) with multiple PLAD methods

As detailed in the preceding sections, the main difference
between PLAD approaches is in how they construct the
(X,Z) dataset used for fine-tuning p(z|x). However, there is
no strict requirement that these different (X,Z) distributions
be kept separate. We explore how p(z|x) behaves under fine-
tuning from multiple PLAD methods, such as combining
LEST and self-training. We implement these mixtures on a
per-batch basis. Before p(z|x) training, we construct distinct
(X,Z) distributions for each method in the combination.
Then, during training, each batch is randomly sampled from
one of the (X,Z) distributions. We experimentally validate
the effectiveness of this approach in the next section.

4. Results
We evaluate a series of methods on their ability to fine-

tune shape program inference models across multiple do-
mains. We describe the different domains in Section 4.1 and

details of our experimental design in Section 4.2. In Section
4.3, we compare the reconstruction accuracy of each method,
and study how they are affected by varying the time spent on
inner-loop search (Section 4.4) and the size of the training
set (Section 4.5). Finally, we explore the convergence speed
of each method in Section 4.6.

4.1. Shape Program Domains

We run experiments across three shape program domains:
2D Constructive Solid Geometry (CSG), 3D CSG, and Sha-
peAssembly. Details can be found in the supplemental.

In CSG, shapes are created by declaring parametric prim-
itives (e.g. circles, boxes) and combining them with Boolean
operations (union, intersection, difference). CSG inference
is non-trivial: as CSG uses non-additive operations (intersec-
tion, difference), inferring a CSG program does not simply
reduce to primitive detection. For 2D CSG, we follow the
grammar defined by CSGNet [25], using 400 shape tokens
that correspond to randomly placed circles, triangles and rect-
angles on a 64 x 64 grid. For 3D CSG, we use a grammar that
has individual tokens for defining primitives (ellipsoids and
cuboids), setting primitive attributes (position and scales),
and the three Boolean operators. Attributes are discretized
into 32 bins.

ShapeAssembly is designed for specifying the part struc-
ture of manufactured 3D objects. It creates objects by declar-
ing cuboid part geometries and assembling those parts to-
gether via attachment and symmetry operators. Our grammar
contains tokens for each command type and parameter value;
to handle continuous values, we discretize them into 32 bins.

4.2. Experimental Design

Fine-Tuning Methods We compare the ability of the
following training schemes to fine-tune a model on a specific
domain of interest:

• SP: p(z|x) with supervised pretraining.
• RL: Fine-tuning with REINFORCE.
• WS: Fine-tuning with wake-sleep.
• ST: Fine-tuning with self-training.
• LEST: Fine-tuning with latent execution self-training.
• LEST+ST: combining LEST and ST.
• LEST+ST+WS: combining LEST, ST and WS.

Shape Datasets Fine-tuning methods learn to special-
ize p(z|x) against a distribution of real shapes S∗. For each
domain, we construct a dataset of shapes S∗, and split it into
train, validation, and test sets. We perform early-stopping
with respect to the validation set. For 2DCSG, we use the
CAD dataset from CSGNet [25], which consists of front and
side views of chairs, desks, and lamps from the Trimble 3D
warehouse. We split the dataset into 10K shapes for training,
3K shapes for validation, and 3K shapes for testing. For
3D CSG and ShapeAssembly, we use CAD shapes from the
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Method 2D CSG CD ⇓ 3D CSG IoU ⇑ ShapeAssembly IoU ⇑

Supervised Pretraining (SP) 1.580 41.0 37.6

REINFORCE (RL) 1.097 53.4 50.8
Wake-Sleep (WS) 1.118 67.4 57.2
Self-Training (ST) 0.841 67.3 61.3
LEST 0.976 69.8 56.5

LEST+ST 0.829 70.8 66.0
LEST+ST+WS 0.811 74.3 66.4

Table 2. Test-set reconstruction performance across multiple shape program inference domains. The top row contains results for the
pretrained p(z|x) model fine-tuned by the other methods. For 2D CSG the metric is Chamfer distance (CD, lower is better). For 3D CSG
and ShapeAssembly the metric is intersection over union (IoU, higher is better). Individual PLAD methods outperform RL, and combining
PLAD methods achieves the best performance across all domains (LEST+ST+WS).

chair, table, couches, and benches categories of ShapeNet;
voxelizations are provided by [6]. We split the dataset into
10K shapes for training, 1K shapes for validation, and 1K
shapes for testing.

Model Architectures For all experiments, we model
p(z|x) in an encoder-decoder framework, although the par-
ticular architectures vary by domain. In all cases, the encoder
is a CNN that converts visual data into a latent variable, and
the decoder is an auto-regressive model that decodes the
latent variables into a sequence of tokens. For 2D CSG,
we use the same p(z|x) architecture as CSGNet. A CNN
consumes 64× 64 binary mask shape images to produce a
latent code that initializes a GRU-based recurrent decoder.
For 3D CSG and ShapeAssembly, we use a 3D CNN that
consumes 32×32×32 occupancy voxels. This CNN outputs
a latent code that is attended to by a Transformer decoder
network [32]; this network also attends over token sequences
in a typical auto-regressive fashion.

Supervised Pretraining Before fine-tuning, p(z|x) un-
dergoes supervised pretraining on synthetically generated
programs until it has converged on that set. For 2D CSG, we
follow CSGNet’s approach. For 3D CSG, we construct valid
programs by (i) sampling a set of primitives within the allot-
ted grid (ii) identifying potential overlaps (iii) constructing a
binary tree of boolean operations using these overlaps. For
ShapeAssembly, we propose programs by sampling random
grammar expansions according to the language’s typing sys-
tem. We then employ a validation step where a program is
rejected if any of its part are not the sole occupying part of
at least 8 voxels (to discourage excessive part overlaps). For
3D CSG and ShapeAssembly we sample 2 million synthetic
programs and train until convergence on a validation set of
1000 programs. Full details provided in the supplemental.

4.3. Reconstruction Accuracy

We evaluate the performance of each fine-tuning method
according to reconstruction accuracy: how closely the output
of a shape program matches the input shape from which it

was inferred, on a held out set of test shapes. The specific
metric varies by domain. For 2D CSG, we follow CSGNet
and use Chamfer Distance (CD), where lower distances indi-
cate more similar shapes. For 3D CSG and ShapeAssembly,
we use volumetric intersection over union (IoU).

For each domain, we run each fine-tuning method to
convergence, starting with the same p(z|x) model that has
undergone supervised pretraining. The reward for RL mod-
els follows the similarity metric in each domain: CD for
2D CSG; IoU for 3D CSG and ShapeAssembly. For PLAD
fine-tuning methods, the similiarity metric in each domain
determines which program is kept during updates to PBEST.
At inference time, when evaluating the reconstruction perfor-
mance of each p(z|x), we employ a beam search procedure,
decoding multiple programs in parallel, and choosing the
program that achieves the highest similarity to the target
shape. We use a beam size of 10, unless otherwise stated.

We present quantitative results in Table 2. Looking at
the middle four rows, the two self-training variants (ST and
LEST) outperform RL as a fine-tuning method in all the
domains we studied. The wake-sleep variant (WS) also out-
performs RL for both 3D CSG and ShapeAssembly. These
are more challenging domains with larger token spaces, pos-
ing difficulties for policy gradient fine-tuning. As demon-
strated by the last two rows, further improvement can be
had by combining multiple methods: for each domain, the
best performance is achieved by LEST+ST+WS. In fact,
for 2DCSG, the test-set reconstruction accuracy achieved by
LEST+ST+WS (0.811) outperforms previous state-of-the-art
results, CSGNet (1.14) [25] and CSGNetStack (1.02) [26],
for paradigms where the executor is treated as a black-box.

Mixing updates from multiple PLAD methods is benefi-
cial because, in this joint paradigm, each method can cover
the other’s weaknesses. For instance, employing ST ensures
that some samples of X are sourced from S∗, and employing
LEST ensures that some samples of X have paired Z pro-
grams which are exact labels. We present qualitative results
in Figure 3. The reconstructions from the PLAD combina-
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Figure 3. Qualitative comparisons of shape programs inferred for test-set shapes made by different fine-tuning methods for 2D CSG (Top),
3D CSG (Middle), and ShapeAssembly (Bottom). We provide additional qualitative results in the supplemental.

7



tion methods better reflect the input shapes, reinforcing the
quantitative trends.

4.4. Inner-loop Search Time

PLAD methods make use of PBEST to generate (X,Z)
datasets that train p(z|x). To study how time spent on inner-
loop search affects each technique, we ran an experiment
using different beam sizes to update PBEST. We present
results in Figure 2, left. On the X-axis we plot beam size;
on the Y-axis we plot test-set reconstruction Chamfer dis-
tance. Unsurprisingly, spending more time on the inner-loop
search leads to better performance; finding better programs
for training shapes improves test time generalization. That
said, across all beam sizes, we find that it is always best to
train under a combination of PLAD methods; the LEST+ST
and the LEST+ST+WS variants always outperform any in-
dividual fine-tuning scheme. Note, RL is not included in
this experiment because REINFORCE, as defined, has no
inner-loop search mechanism. In this way, PLAD provides
an additional control lever, where time spent on inner-loop
search modulates a trade-off between convergence speed and
test-set reconstruction performance.

4.5. Number of Training Shapes from S∗

All the fine-tuning methods make use of a training dis-
tribution of shapes that are sampled from S∗. For some
domains, the size of available samples from S∗ may be lim-
ited. We run an experiment on 2D CSG to see how different
fine-tuning methods are affected by training data size. We
present the results of this experiment in Figure 2, middle. We
plot the number of training shapes on the X-axis and test set
reconstruction accuracy on the Y-axis. All fine-tuning meth-
ods improve as the training size of S∗ increases, but once
again, combining multiple PLAD methods leads to the best
performance in all regimes. This study also demonstrates the
sample efficiency of PLAD combinations: LEST+ST and
LEST+ST+WS trained on 1,000 shapes achieve better test
set generalization than RL trained on 10,000 shapes.

4.6. Convergence Speed

Beyond reconstruction accuracy, we are also interested in
the convergence properties of a fine-tuning method. Policy
gradient RL is notoriously unstable and slow to converge,
which is undesirable. For 2D CSG, we record the conver-
gence speed of each method and present these results in
Figure 2, right. We plot reconstruction accuracy (Y-axis)
as a function of training wall-clock time (X-axis); all tim-
ing information was collected on a machine with a GeForce
RTX 2080 Ti GPU and an Intel i9-9900K CPU. All PLAD
techniques converge faster than policy gradient RL. For in-
stance, RL took 36 hours to reach its converged test-set CD
of 1.097, while LEST matched this performance at 1.1 hours

(32x faster) and LEST+ST matched this performance at 0.85
hours (42x faster).

5. Conclusion
We presented the PLAD framework to group a family of

techniques for fine-tuning shape program inference models
with Pseudo-Labels and Approximate Distributions. Within
this framework, we proposed LEST: a self-training vari-
ant that creates a shape distribution X approximating the
real distribution S∗ by executing inferred latent programs.
Experiments on 2D CSG, 3D CSG, and ShapeAssembly
demonstrate that PLAD methods achieve better reconstruc-
tion accuracy and converge faster than policy gradient RL,
the current standard approach for black-box fine-tuning. Fi-
nally, we found that combining updates from multiple PLAD
methods outperforms any individual technique.

While fine-tuning p(z|x), PLAD methods construct
(X,Z) sets approximating the statistics of S∗, specializing
p(z|x) towards S∗. As a consequence, p(z|x) may not gen-
eralize as well to shapes outside of S∗; we explore this phe-
nomenon in the supplemental material. Training a general-
purpose inference model for all shapes expressible under the
grammar is an interesting line of future work.

While our work focuses on reconstruction quality, pro-
ducing programs with ‘good’ structure matters just as much,
if the program is to be used for editing tasks. Currently, the
synthetic pretraining data is the only place where knowledge
about what constitutes “good program structure” can be in-
jected. Such knowledge must be expressed in procedural
form, which may be harder to elicit from domain experts
than declarative knowledge (i.e. “a good program has these
properties” vs. “this is how you write a good program”).
Finding efficient ways to elicit and inject such knowledge is
an important future direction.

Finally, we believe that ideas from the PLAD framework
are applicable to a broader class of program inference prob-
lems than those we evaluated in this paper. In principle,
these approaches can be used to train an approximate infer-
ence model p(z|x) for any domain in which (1) an executor
p(x|z) is available and (2) the executed output x takes the
form of some concrete artifact which can be encoded via neu-
ral network (image, audio, text, etc.). For example, one could
imagine using PLAD techniques to infer graphics shader pro-
grams which produce certain textures or audio synthesizers
which sound like certain real-world instruments.
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A. Details of Domain Grammars

2D CSG We follow the grammar from CSGNet [25]. This
grammar contains 3 Boolean operations (intersect, union,
subtract), 3 primitive types (square, circle, triangle), and pa-
rameters to initialize each primitive (L and R tuples). Please
refer to the CSGNet paper for details.

S → E;

E → EET | P (L,R);

T → intersect | union | subtract;
P → square | circle | triangle;

L→
[
8 : 8 : 56

]2
; R→

[
8 : 4 : 32

]
.

3D CSG We design our own grammar for 3D CSG similar
in spirit to the grammar of CSGNet. While CSGNet does
contain a 3D CSG grammar, we find that it overly discretizes
the possible spacing and positioning of primitives. Therefore
in our grammar, we allow each primitive to be parameterized
at the same granularity as the voxel grid (32 bins). In this
way, each primitive takes in 6 parameters (instead of 2 pa-
rameter tuples), where the 6 parameters control the position
and scaling of the primitive.

S → E;

E → EET | P (F, F, F, F, F, F );

T → intersect | union | subtract;
P → cuboid | ellipsoid;
F →

[
1 : 32

]

ShapeAssembly ShapeAssembly is a domain-specific lan-
guage for creating structures of 3D Shapes [14]. It creates
structures by instantiating parts (Cuboid command), and
then attaching parts to one another (attach command). It
further includes macro operators that capture higher-order
spatial patterns (squeeze, reflect, translate commands). To
remain consistent with our CSG experiments, we further
modify the grammar such that all continuous parameters are
discretized.
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S −→ BBoxBlock;ShapeBlock;

BBoxBlock −→ bbox = Cuboid(1.0, x, 1.0)

ShapeBlock −→ PBlock;ShapeBlock | None

PBlock −→ cn = Cuboid(x, x, x);ABlock;SBlock

ABlock −→ Attach | Attach;Attach | Squeeze
SBlock −→ Reflect | Translate | None

Attach −→ attach(cuben, f, uv, uv)

Squeeze −→ squeeze(cuben, cuben, face, uv)

Reflect −→ reflect(axis)
Translate −→ translate(axis,m, x)

f −→ right | left | top | bot | front | back
axis −→ X | Y | Z
x ∈ [1, 32]/32.

uv ∈ [1, 10]2/10.

n ∈ [0, 10]

m ∈ [1, 4]

B. Details of Synthetic Pretraining

2DCSG We follow the synthetic pretraining steps from
CSGNet and directly use their released pretrained model
weights. Please refer to their paper and code for further
details.

3DCSG We generate synthetic programs for 3D CSG with
the following procedure. First, we sample K primitives,
where K is randomly chosen between 2 and 12. To sample
a primitive, we sample a center position within the voxel
space, and then we sample a scale, such that the scale is con-
strained so that the primitive will not extend past the borders
of the voxel grid. We then find if the bounding boxes of
any two primitives overlap in space (using the position and
scale of each primitive). We then construct a binary tree of
Boolean operations by randomly merging the K primitives
together, until only one group remains. Each Boolean op-
eration merges two primitive groups into a single primitive
group. The type of semantically valid Boolean operation de-
pends on the overlaps between primitives of the two groups.
When a group of primitives A and a group of primitives B
is merging: union is always a valid operation, difference
is a valid operation if each primitive in group B shares an
overlap with some primitive in group A, and intersection
is a valid operation if each primitive in group A shares an
overlap with some primitive in group B and each primitive
in group B shares an overlap with some primitive in group
A. We can then unroll this binary tree of boolean operations

into a sequence of tokens from the CSG grammar, form-
ing a synthetic program. We sample 2,000,000 synthetic
programs according to this procedure, that are used during
supervised pretraining, and we sample another 1000 syn-
thetic programs that we use a validation set. We pretrain
our model for 40 epochs, where each epoch takes around
1.5 hours to complete. At this check-point, the model had
converged to a reconstruction IoU of 90 on both train and
validation synthetic data.

ShapeAssembly We generate synthetic programs for Sha-
peAssembly with the following procedure. We first sample
the number of primitive blocks K (PBlock), where K is ran-
domly chosen between 2 and 8; note that the number of
cuboids created can be greater then K, when symmetry op-
erations are applied. Each PBlock is filled in with random
samples according to the grammar syntax. First a cuboid
is created, then an attach block is applied, then a symme-
try block is applied. An attach block can contain either
one attach operation, one squeeze operation, or two attach
operations. A symmetry block can contain either a reflect
operation, a translation operation, or no operation. Com-
mand parameters are randomly sampled according to simple
heuristics (e.g. reflections are more common than trans-
lations) and in order to maintain language semantics (e.g.
attaches can only be made to previously instantiated cuboid
indices). A final validation step occurs after a complete set
of program tokens has been synthetically generated; we exe-
cute the synthetic program, and check how many voxels are
uniquely occupied by each cuboid in the executed output. If
any cuboid uniquely occupies less than 8 voxels, the entire
synthetic sample is rejected. We sample 2,000,000 synthetic
programs according to this procedure, that are used during
supervised pretraining, and we sample another 1000 syn-
thetic programs that we use as a validation set. We pretrain
our model for 26 epochs, where each epoch takes around
40 minutes to complete. At this check-point the model had
converged to reconstruction IoU of 70 on both train and
validation synthetic data.

C. Experiment Hyperparameters

3D Experiments For 3D CSG and ShapeAssembly, we
use the following model hyper-parameters.

The encoder for both cases is a 3D CNN that consumes
a 32 x 32 x 32 voxel grid. It has four layers of convolution,
ReLU, max-pooling, and dropout. Each convolution layer
uses kernel size of 4, stride of 1, padding of 2, with channels
(32, 64, 128, 256). The output of the CNN is a (2x2x2x256)
dimensional vector, which we transform into a (8 x 256)
vector. This vector is then sent through a 3-layer MLP with
ReLU and dropout to produce a final (8 x 256) vector that
acts as an 8-token embedding of the voxel grid.
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The decoder for both cases is a Transformer Decoder
module [32]. It uses 8 layers and 16 heads, with a hidden di-
mension size of 256. It attends over the 8-token CNN voxel
encoding and up to 100 additional sequence tokens, with
an auto-regressive attention mask. We use a learned posi-
tional embedding for each sequence position. An embedding
layer lifts each token into an embedding space, consumed
by the transformer, and a 2-layer MLP converts Transformer
outputs into a probability distribution over tokens.

In all cases we set dropout to 0.1 . We use a learning
rate of 0.0005 with the Adam optimizer [17] for all train-
ing modes, except for RL, where following CSGNet we use
SGD with a learning rate of 0.01 . During supervised pre-
training we use a batch size of 400. During PLAD method
fine-tuning we use batch size of 100. During RL fine-tuning
we use a batch size of 4, due to memory limitations (a batch
size of 4 takes up 10GB of GPU memory). Early stopping
on the validation set is performed to determine when to end
each round and when to stop introducing additional rounds.
For deciding when to stop introducing additional rounds, we
use a patience of 100 epochs. For deciding when to stop
each round, we use a patience of 10 epochs. In both cases
we employ a patience threshold of 0.001 IoU improvement
(e.g. we must see at least this much improvement to reset
the patience). Within each round of PLAD training, we
check validation set reconstruction performance with a beam
size of 3; between rounds of PLAD training we check vali-
dation set reconstruction performance with a beam size of
5; final reconstruction performance of converged models is
computed with a beam size of 10.

For RL runs, we make a gradient update after every 10
batches, following CSGNet. For runs that involve VAE
training (all Wake-Sleep runs), we add an additional module
in-between the encoder and the decoder. This module uses an
MLP to convert the output of the encoder into a 128 x 2 latent
vector (representing 128 means and standard deviations).
This module then samples an 128 dimensional vector from
a normal distribution described by the means and standard
deviations, and further lifts this encoding into the dimension
that the decoder expects with a sequence of linear layers. For
each round of VAE training, we allow the VAE to update
for no more than 100 epochs. We perform early-stopping
for VAE training with respect to its loss, where the loss
is a combination of reconstruction (cross-entropy on token
predictions) and KL divergence, both weighed equally.

2D Experiments For 2DCSG, we follow the network ar-
chitecture and hyper-parameters of CSGNet. All training
regimes use a dropout of 0.2 and a batch size of 100. PLAD
methods use the Adam optimizer with a learning rate of
0.001. For deciding when to stop introducing additional
rounds, we use a patience of 1000 epochs. For deciding
when to stop each round, we use a patience of 10 epochs.

PBEST mode ST LEST LEST+ST LEST+ST+WS
Per round 0.881 1.011 0.853 0.845
All-time 0.841 0.976 0.829 0.811

Table 3. Different ways to update PBEST data structure. In the
"Per round" row, the data structure is cleared in between rounds. In
the "All-time" row, the data structure maintains the best program
for each input shape across multiple rounds.

In both cases we employ a patience threshold of 0.005 CD
improvement. The parameters for the RL runs and VAE
training are the same as in the 3D Experiments.

D. P Best Update mode

During updates to PBEST , we choose to update each
entry in PBEST according to which inferred program has
achieved the best reconstruction similarity with respect to the
input shape. The entries of this data structure are maintained
across rounds. There is another framing where the entries
of this data structure are reset each round, so that the best
program for each shape is reset each epoch. This is similar
to traditional self-training framing.

We run experiments on 2D CSG with this variant of
PBEST update and present results in Table 3. When the
best program is maintained across rounds (All-time, bottom
row) each fine-tuning strategy reaches a better converged re-
construction accuracy compared with when the best program
is reset after each round (Per round, top row).

E. Failure to generalize beyond S∗

As demonstrated by our experiments, PLAD fine-tuning
methods are able to successfully specialize p(z|x) towards a
distribution of interest S∗. Unfortunately, this specialization
comes at a cost; the fine-tuned p(z|x) may actually general-
ize worse to out of distribution samples. To demonstrate this,
we collected a small dataset of 2D icons from the The Noun
Project1. We tested the shape program inference abilities of
the initial p(z|x) trained under supervised pretraining (SP)
and of the fine-tuned p(z|x) trained under PLAD regimes
(LEST+ST+WS) and specialized to CAD shapes. We show
qualitative examples of this experiment in Figure 4. While
both methods fail to accurately represent the 2D icons, fine-
tuning p(z|x) on CAD shapes lowers the reconstruction
accuracy significantly; the SP variant achieves an average
CD of 1.9 while the LEST+ST+WS variant achieves a CD
of 4.1 Developing p(z|x) models capable of out-of-domain
generalization is an important area of future research.

1https://thenounproject.com
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SP LEST+ST+WS Target

Figure 4. Qualitative examples of inferring 2D CSG programs for
2D icons. Both SP and LEST+ST+WS fail to infer representative
programs, but the reconstructions from LEST+ST+WS are even
less accurate than those from SP.

F. Potential Societal Impacts
Fine-tuning our deep neural networks p(z|x) requires a

relatively large amount of electricity, which can have a signif-
icant environmental impact [29]. Reducing the energy con-
sumption of deep learning is an active research area [27, 37].
Notably, PLAD techniques place no restrictions on the in-
ference model, making it easy to adopt more efficient deep
learning techniques. Moreover, shape program inference
procedures may also allow the reverse engineering of pro-
tected intellectual property. Thus, improvements in shape
program inference may impact the content and enforcement
of copyright law.

G. Additional Qualitative Results
We present additional qualitative results comparing vari-

ous fine-tuning methods in Figure 5 (2D CSG), Figure 6 (3D
CSG) and Figure 7 (ShapeAssembly).
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SP WS RL ST LEST LEST+ST LEST+ST+WS Target

Figure 5. 2DCSG qualitative examples.
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SP WS RL ST LEST LEST+ST LEST+ST+WS Target

Figure 6. 3DCSG qualitative examples.
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SP WS RL ST LEST LEST+ST LEST+ST+WS Target

Figure 7. ShapeAssembly qualitative examples.
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