
Federated Learning with Position-Aware Neurons

Xin-Chun Li1, Yi-Chu Xu1, Shaoming Song2, Bingshuai Li2, Yinchuan Li2,
Yunfeng Shao2, De-Chuan Zhan1

1State Key Laboratory for Novel Software Technology, Nanjing University
2Huawei Noah’s Ark Lab

{lixc, xuyc}@lamda.nju.edu.cn, zhandc@nju.edu.cn

{shaoming.song, libingshuai, liyinchuan, shaoyunfeng}@huawei.com

Abstract

Federated Learning (FL) fuses collaborative models
from local nodes without centralizing users’ data. The per-
mutation invariance property of neural networks and the
non-i.i.d. data across clients make the locally updated
parameters imprecisely aligned, disabling the coordinate-
based parameter averaging. Traditional neurons do not ex-
plicitly consider position information. Hence, we propose
Position-Aware Neurons (PANs) as an alternative, fusing
position-related values (i.e., position encodings) into neu-
ron outputs. PANs couple themselves to their positions and
minimize the possibility of dislocation, even updating on
heterogeneous data. We turn on/off PANs to disable/enable
the permutation invariance property of neural networks.
PANs are tightly coupled with positions when applied to
FL, making parameters across clients pre-aligned and fa-
cilitating coordinate-based parameter averaging. PANs are
algorithm-agnostic and could universally improve existing
FL algorithms. Furthermore, “FL with PANs” is simple to
implement and computationally friendly.

1. Introduction

Federated Learning (FL) [18, 47] generates a global
model via collaborating with isolated clients for privacy
protection and efficient distributed training, generally fol-
lowing the parameter server architecture [8, 26]. Clients
update models on their devices using private data, and the
server periodically averages these models for multiple com-
munication rounds [32]. The whole process does not trans-
mit users’ data and meets the basic privacy requirements.

Represented by FedAvg [32], many FL algorithms ag-
gregate local parameters via a simple coordinate-based av-
eraging [27–30] These algorithms have two kinds of draw-
backs. First, as traditional neurons are unaware of their
positions, neural networks have the permutation invariance

ONON

OFFOFF

Shuffle

Not Changed

1 2 3 4 5

Server

1 2 3 4 5

Private Data

Download

Upload

Turn off PANs

Turn on PANs

Applying PANs to FL

5 2 1 4

Output

Input

32 3 4 5

Output

Input

1

Shuffle

Changed

5 2 1 4

Output

Input

32 3 4 5

Output

Input

1
Client 1

Client 2
Client K

2 3 4 51 Neurons
5 2 1 43 Shuffled Neurons

PANs with equal
position encodings

2 3 4 51 PANs with varied
position encodings

2 3 4 51

Figure 1. Left: Position-Aware Neurons (PANs). We fuse
equal/varied position encodings to neurons’ outputs, PANs are
turned off/on, and the shuffled networks make the same/different
predictions, i.e., the permutation invariance property is en-
abled/disabled. Right: applying PANs to FL. Neurons are coupled
with their positions for pre-alignment.

property, implying that hidden neurons could be dislocated
during training without affecting the local performances.
Second, the samples across clients are non-independent and
identically distributed (non-i.i.d.) [15], which could exacer-
bate the permutation of neural networks during local train-
ing, making local models misaligned and leading to weight
divergence [52]. These reasons degrade the performance of
coordinate-based parameter averaging.

Recently, a series of works utilize various matching tech-
niques to align neurons, such as Bayesian nonparametric
learning [43, 49, 50] and optimal transport [2, 38]. First,
these methods are too complex to implement. Second, they
solve the misalignment problem after finishing local up-
dates and hence belong to post-processing strategies that
need additional computation budgets. Fed2 [48] pioneers
a novel aspect via designing feature-oriented model struc-
tures following a pre-aligned manner. However, it has to
carefully customize the network architecture and only stays

ar
X

iv
:2

20
3.

14
66

6v
2

 [
cs

.C
V

]
 2

 A
pr

 2
02

2

at the group level of pre-alignment. By contrast, we explore
a more straightforward and general technique to pre-align
neurons during local training procedures.

Our work mainly focuses on solving the non-i.i.d. chal-
lenge in FL, more specifically, seeking solutions via limit-
ing the permutation invariance property of neural networks.
We first summarize the above analysis: the permutation in-
variance property of neural networks leads to neuron mis-
alignment across local models. The more heterogeneous the
data, the more serious the misalignment is. Hence, our mo-
tivation is intuitive: could we design a switch to control the
permutation invariance property of neuron networks? We
propose Position-Aware Neurons (PANs) as the solution,
which couple neurons with their positions. Specifically, for
each neuron (channel for ConvNet [14, 22, 37]), we add or
multiply a position-related value (i.e., position encoding) to
its output. We introduce a hyper-parameter to turn on/off the
PANs, and correspondingly, to disable/enable the permu-
tation invariance property of neural networks. PANs bind
neurons in their positions, implicitly pre-aligning neurons
across clients even faced with non-i.i.d. data. From another
aspect, PANs could keep some consistent ingredients in
the forward and backward pass across local models, which
could reduce the weight divergence. Overall, appropriate
PANs facilitate the coordinate-based parameter averaging
in FL. Replacing traditional neurons with PANs is simple to
implement and computationally friendly, which is universal
to various FL algorithms. Contributions can be briefed as:
(1) proposing PANs to disable/enable the permutation in-
variance property of deep networks; (2) applying PANs to
FL, which binds neurons in positions and pre-aligns param-
eters for better coordinate-wise parameter averaging.

2. Related Works
FL with Non-I.I.D. Data: Existing works solve the non-
i.i.d. data problem in FL from various aspects. [52] points
out the weight divergence phenomenon in FL and use
shared data to decrease the divergence. FedProx [28] takes
a proximal term during local training as regularization. Fe-
dOpt [35] considers updating the global model via momen-
tum or adaptive optimizers (e.g., Adam [20], Yogi [51]) in-
stead of simple parameter averaging. Scaffold [19] intro-
duces control variates to rectify the local update directions
and mitigates the influences of client drift. MOON [27] uti-
lizes model contrastive learning to reduce the distance be-
tween local and global models. Some other works utilize
similar techniques including dynamic regularization [1], en-
semble distillation [3, 31], etc. We take several representa-
tive FL algorithms and use PANs to improve them.
FL with Permutation Invariance Property: The permu-
tation invariance of neuron networks could lead to neuron
misalignment. PFNM [50] matches local nodes’ parame-
ters via Beta-Bernoulli process [40] and Indian Buffet Pro-

cess [12], formulating an optimal assignment problem and
solving it via Hungarian algorithm [23]. SPAHM [49] ap-
plies the same procedure to aggregate Gaussian topic mod-
els, hidden Markov models, and so on. FedMA [43] points
out PFNM does not apply to large-scale networks and pro-
poses a layer-wise matching method. [38] utilizes optimal
transport [2] to fuse models with different initializations.
These methods are all post-processing ones that need ad-
ditional computation costs. Fed2 is recently proposed to
align features during local training via separating features
into different groups. However, it needs to carefully design
the architectures. Differently, we take a more fine-grained
alignment of neurons rather than network groups, and we
will show our method is more general.
Position Encoding: Position encoding is popular in se-
quence learning architectures, e.g., ConvS2S [11] and trans-
former [41], etc. These architectures take position encod-
ings to consider the order information. Relative position
encoding [36] is more applicable to sequences with various
lengths. Some other studies are devoted to interpreting what
position encodings learn [42, 44]. Another interesting work
is applying position encodings instead of zero-padding to
GAN [46] as spatial inductive bias. Differently, we resort to
position encodings to bind neurons in their positions in FL.
Furthermore, these works only consider position encodings
at the input layer, while we couple them with neurons.

3. Position-Aware Neurons
In this section, we investigate the permutation invariance

of neural networks and introduce PANs to control it.

3.1. Permutation Invariance Property

Assume an MLP network has L + 1 layers (containing
input and output layer), and each layer contains Jl neurons,
where l ∈ {0, 1, · · · , L} is the layer index. J0 and JL are
input and output dimensions. We denote the parameters of
each layer as the weight matrixWl ∈ RJl×Jl−1 and the bias
vector bl ∈ RJl , l ∈ {1, 2, · · · , L}. The input layer does
not have parameters. We use hl ∈ RJl as the activations of
the lth layer. We have hl = fl(Wlhl−1 + bl), where fl(·)
is the element-wise activation function, e.g., ReLU [33].
fL(x) = x denotes no activation function in the output
layer. Sometimes, we use y = vT f(Wx+ b) to represent a
network with only one hidden layer and the output dimen-
sion is one (called as MLP0), where x ∈ RJ0 ,W ∈ RJ×J0 ,
b ∈ RJ , v ∈ RJ . We use Π ∈ {0, 1}J×J as a permutation
matrix that satisfies

∑
j Π·,j = 1 and

∑
j Πj,· = 1. Easily,

we have some properties: ΠTΠ = I , Πa+ Πb = Π(a+ b),
Πa � Πb = Π(a � b), where I is the identity matrix and
� denotes Hadamard product. If f(·) is an element-wise
function, f(Πx) = Πf(x).

For MLP0, we have y = (Πv)T f(ΠWx + Πb) =
vT f(Wx+ b), implying that if we permute the parameters

properly, the output of a certain neural network does not
change, i.e., the permutation invariance property. Ex-
tending it to MLP, the layer-wise permutation process is

hl = fl(ΠlWlΠ
T
l−1hl−1 + Πlbl), (1)

where Π0 = I and ΠL = I , meaning that the input and out-
put layers are not shuffled. For ConvNet [22, 37], we take
convolution kernels as basic units. The convolution parame-
ters could be denoted as Wl ∈ RCl×wl×hl×Cl−1 , where the
four dimensions denote the number of output/input chan-
nels (Cl, Cl−1) and the kernel size (wl, hl). The per-
mutation could be similarly applied as ΠlWlΠ

T
l−1. For

ResNet [14], we use hl = fl(ΠlWlΠ
T
l−1hl) + ΠlMlΠ

T
l−1hl

to permute all parameters in a basic block including the
shortcut (if shortcut is not used, Ml = I).

3.2. Position-Aware Neurons

The essential reason for the permutation invariance of
neural networks is that neurons have nothing to do with
their positions. Hence, an intuitive improvement is fusing
position-related values (position encodings) to neurons. We
propose Position-Aware Neurons (PANs), adding or mul-
tiplying position encodings to neurons’ outputs, i.e.,

PAN+ : hl = fl(Wlhl−1 + bl + el), (2)
PAN◦ : hl = fl((Wlhl−1 + bl)� el), (3)

where el denotes position encodings that are only related to
positions and not learnable. We use “PAN+” and “PAN◦”
to represent additive and multiplicative PANs, respectively.
We use sinusoidal functions to generate el as commonly
used in previous position encoding works [41], i.e.,

PAN+ : el,j = A sin (2πTj/J) ∈ [−A,A], (4)
PAN◦ : el,j = 1 +A sin (2πTj/J) ∈ [1−A, 1 +A],

(5)

where T and A respectively denotes the period and ampli-
tude of position encodings, and j ∈ {0, 1, · · · , J−1} is the
position index of a neuron. For ConvNet, we assign posi-
tion encodings for each channel, and j is the channel index.
Notably, if we take T → 0 or A = 0, PANs degenerate
into normal neurons. In practice, we only apply PANs to
the hidden layers, while the input and output layers remain
unchanged, i.e., l ∈ {1, 2, · · · , L − 1} for el. With PANs,
the permutation process in Eq. 1 could be reformulated as

PAN+ : hl,sf = fl(ΠlWlΠ
T
l−1hl−1,sf + Πlbl + el), (6)

PAN◦ : hl,sf = fl((ΠlWlΠ
T
l−1hl−1,sf + Πlbl)� el), (7)

where the subscript “sf” denotes “shuffled” (or permuted).
To measure the output change after shuffling, we define the
shuffle error as:

Err(A, T, {Πl}Ll=0) = ‖hL,sf − hL‖/JL, (8)

and this error on MLP0 without considering bias (i.e., y =
vT f(Wx+ e)) is

PAN+ : Err(A, T,Π)

= |ysf − y|
= |(Πv)T f(ΠWx+ e)− vT f(Wx+ e)|
= |(Πv)T f(ΠWx+ e)− (Πv)T f(ΠWx+ Πe)|

≈ |(Πe− e)T ∂ysf

∂e
|, (9)

where we take ysf = (Πv)T f(ΠWx+e) as the function of e
and take Taylor expansion as an approximation. Obviously,
shuffle error is closely related to the strength of permuta-
tion, i.e., Π− I . For example, if Π = I , the network is not
shuffled and the outputs are kept unchanged. Then, if we
take equal values as position encodings, i.e., ej = ei,∀i, j,
the output also does not change because Πe = e. This
can be obtained via taking α = 0 or T → 0. If we take
a larger T (e.g., 1) and larger α (e.g., 0.05), Err is gener-
ally non-zero because Πe 6= e. The error of multiplicative
PANs is similar. We abstract PANs as a switch: if we take
equal/varied position encodings, PANs are turned off/on,
and hence the network keeps/loses the permutation invari-
ance property (i.e., the same/different outputs after permu-
tation). As illustrated at the left of Fig. 1, the five neurons
of a certain hidden layer are shuffled while the position en-
codings they are going to add/multiply are not shuffled, and
the outputs will change with PANs turned on.

Furthermore, are there any essential differences between
additive and multiplicative PANs, and how much influence
do they have on the shuffle error? In Eq. 9, the shuffle error
is partially determined by ∂ysf/∂e, and we extent this gradi-
ent to MLP with multiple layers. We assume all layers have
the same number of neurons (i.e., Jl = J, ∀l) and take the
same position encodings (i.e., el = e ∈ RJ ,∀l). We denote
sl,sf = ΠlWlΠ

T
l−1hl−1,sf + Πlbl and obtain the recursive

gradient expressions:

PAN+ :
∂hl,sf

∂e
= D(f ′l)

(
∂sl,sf

∂hl−1,sf

∂hl−1,sf

∂e
+ I

)
, (10)

PAN◦ :
∂hl,sf

∂e
= D(f ′l)

(
∂sl,sf

∂hl−1,sf

∂hl−1,sf

∂e
� [e]J

+ D(sl,sf)

)
, (11)

where D(·) transforms a vector to a diagonal matrix and [·]J
repeats a vector J times to obtain a matrix. f ′l denotes the
gradient of activation functions, whose element is 0 or 1 in
ReLU. If we expand Eq. 10 and Eq. 11 correspondingly, we
will find that the gradient ∂hL,sf

∂e of additive PANs does not
explicitly rely on e. However, for the multiplicative one,
∂hl,sf
∂e is relevant to ∂hl−1,sf

∂e and [e]J , which could lead to

a polynomial term AL−1 (resulted from [e]J � · · · � [e]J ,
informally). Hence, we conclude: taking PANs as a switch
could control the permutation invariance property of neural
networks. The designed multiplicative PANs will make this
switch more sensitive.

4. FL with PANs
In this section, we briefly introduce FedAvg [32] and an-

alyze the effects of PANs when applied to FL.

4.1. FedAvg

Suppose we have a server and K clients with various
data distributions. FedAvg first initializes a global model θ0
on the server. Then, a small fraction (i.e. R ∈ [0, 1]) of
clients St download the global model and update it on their
local data for E epochs, and then upload the updated model
θ
(k)
0 to the server. Then, the server takes a coordinate-based

parameter averaging, i.e., θ1 ← 1
|St|

∑
k∈St

θ
(k)
0 . Next, θ1

will be sent down for a new communication round. This
will be repeated for H communication rounds. Because the
parameters could be misaligned during local training, some
works [43, 49, 50] are devoted to finding the correspon-
dences between clients’ uploaded neurons for better aggre-
gation. For example, the parameters W (1)

l and W (2)
l may

be misaligned, and we should search for proper matrices
to match them, i.e., 1

2 (W
(1)
l + MlW

(2)
l MT

l−1), rather than
1
2 (W

(1)
l + W

(2)
l) [38]. However, searching for appropriate

M{l,l−1} is challenging. Generally, these works require ad-
ditional data to search for proper alignment. In addition, the
matching process has typically to solve complex optimiza-
tion problems, such as optimal transport or optimal assign-
ment, leading to additional computational overhead. An in-
tuitive question is: could we pre-align the neurons during
local training instead of post-matching?

4.2. Applying PANs to FL

Replacing traditional neurons with PANs in FL is
straightforward to implement. Why does such a subtle im-
provement help? We heuristically expect PANs in FL could
bring such effects: PANs could limit the dislocation of neu-
rons since the disturbance of them will bring significant
changes to the outputs of the neural network and lead to
higher training errors and fluctuations. Theoretically, the
forward pass on the kth client with PANs is as follows:

PAN+ : h
(k)
l = f

(k)
l (W

(k)
l h

(k)
l−1 + b

(k)
l + el), (12)

PAN◦ : h
(k)
l = f

(k)
l ((W

(k)
l h

(k)
l−1 + b

(k)
l)� el). (13)

Notably, the position encodings are commonly utilized
across clients, i.e., the forward pass across local clients
share some consistent information. Then, the parameters’

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Psf

0.0

0.2

0.4

0.6

0.8

1.0

R
k
ep
t

Psf = 0.1

Figure 2. Left: how much neurons are not shuffled with various
Psf. Right: a permutation matrix demo with Psf = 0.1.

gradient of Eq. 12 and Eq. 13 can be calculated by:

PAN+ : ∂h
(k)
l /∂b

(k)
l = D(f

(k)
l

′
), (14)

PAN◦ : ∂h
(k)
l /∂b

(k)
l = D(f

(k)
l

′
)D(el), (15)

where we only give the gradient of bias for simplification.
The gradients of multiplicative PANs directly contain the
same position information across clients (e.g., el) in spite of
various data distributions (e.g., h(k)l−1). For the additive ones,

the impact of el is implicit because f (k)l

′
is related to el, but

nevertheless, the effect is not significant as multiplicative
ones. Overall, el could regularize and rectify local gradi-
ent directions, keeping some ingredients consistent during
backward propagation. As an extreme case, if A in el is
very large, the gradients in Eq. 14 and Eq. 15 will tend to
be the same, mitigating the weight divergence completely.
However, setting el too large will make the neural network
difficult to train and the data information is completely cov-
ered, so the strength of el (i.e., A) is a tradeoff.

5. Experiments
We study how much influence the proposed PANs

have on both centralized training and decentralized train-
ing (i.e., FL). The datasets used are Mnist [25], FeM-
nist [4], SVHN [34], GTSRB [39], Cifar10/100 [21], and
Cinic10 [7]. FeMnist is recommended by LEAF [4]
and FedScale [24]. We use MLP for Mnist/FeMnist,
VGG [37] for SVHN/GTSRB/Cifar10, ResNet20 [14] for
Cifar100/Cinic10 by default if without more declarations.
We sometimes take VGG9 used in previous FL works [31,
43, 48]. For centralized training, we use the provided train-
ing and test set correspondingly. For FL, we split the train-
ing set according to Dirichlet distributions, where Dir(α)
controls the non-i.i.d. level. Smaller α leads to more non-
i.i.d. cases. For each FL scene, we report several key hyper-
parameters: number of clients K, client participation ratio
R, number of local training epochs E, Dirichlet alpha α,
number of communication rounds H . For PANs, we report
T and A. With A = 0.0, we turn off PANs, i.e., using tradi-
tional neurons or the baselines; with A > 0.0, we turn on

0.0 0.05 0.1 0.25 0.5 0.75

A

1

2

4

8

16

T

Shuffle Error

0.0

0.1

0.2

0.3

0.4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

A

0

1

2

3

S
hu

ffl
e

E
rr

or

PAN+

0

1000

2000

3000

4000

PAN◦

Figure 3. Left: shuffle error (Eq. 8) with various T andA (PAN◦).
Right: the difference between PAN+ and PAN◦ (T=1). (VGG13 is

used, more networks are in Supp.)

PANs. We leave PANs turned on by default if with no men-
tion of the state on/off or the value of A. Details of datasets,
networks and training are presented in Supp.

5.1. Centralized Training

Shuffle Test: We first propose a procedure to measure the
degree of permutation invariance of a certain neural net-
work, that is, how large the shuffle error in Eq. 8 is after
shuffling the neurons. We name this procedure shuffle test.
Given a neural network and a batch of data, we first obtain
the outputs. Then, we shuffle the neurons of hidden layers.
The shuffle process is shown in Supp, where Psf controls
the disorder level of the constructed permutation matrices.
Then we could get the outputs after shuffling and then cal-
culate the shuffle error. We vary Psf in [0, 1] and plot the ra-
tio of permutation matrices’ diagonal ones (i.e., how much
neurons are not shuffled). We denote this ratio as Rkept and
plot them in Fig. 2 (average of 10 experiments), where we
also show a generated permutation matrix with Psf = 0.1.

Shuffle Error with Random Data: With different hyper-
parameters of T and A in Eq. 4/Eq. 5, we use random data
generated from Gaussian distributions (i.e., xi,· ∼ N (0, 1))
to calculate the shuffle error. The results based on VGG13
are shown in Fig. 3. The error is more related to A while
less sensitive to T . This is intuitive because T controls lo-
cal volatility while neuron permutation could happen glob-
ally, e.g., the first neuron could swap positions with the last
neuron. A larger A leads to a larger shuffle error, i.e., the
more serious the network loses the permutation invariance
property. In addition, the shuffle error based on the additive
PANs increases linearly, while that based on the multiplica-
tive PANs increases quickly. This verifies the theoretical
analysis in Sect. 3.2. However, in practice, a larger A may
cause training failure and we only set A ∈ [0.0, 0.25] for
additive PANs and A ∈ [0.0, 0.75] for multiplicative PANs
(the bold part on the right side of Fig. 3).

Influence on Inference: We study the influence of PANs
on test accuracies. We use MLP on Mnist, VGG13 on

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Mnist MLP Psf

0.93

0.94

0.95

0.96

0.97

0.98

A=0.0

PAN+ T=1 A=0.01

PAN+ T=1 A=0.25

PAN◦ T=1 A=0.05

PAN◦ T=1 A=0.75

PAN◦ T=8 A=0.75

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SVHN VGG13 Psf

0.75

0.80

0.85

0.90

0.95

T
es

t
A

cc
ur

ac
y

A=0.0

PAN+ T=1 A=0.01

PAN+ T=1 A=0.25

PAN◦ T=1 A=0.05

PAN◦ T=1 A=0.75

PAN◦ T=8 A=0.75

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Cifar10 ResNet20 Psf

0.2

0.4

0.6

0.8

A=0.0

PAN+ T=1 A=0.01

PAN+ T=1 A=0.25

PAN◦ T=1 A=0.05

PAN◦ T=1 A=0.75

PAN◦ T=8 A=0.75

A=0.0

PAN+
T=1 A=0.01

PAN+
T=1 A=0.25

PAN◦ T=1 A=0.05

PAN◦ T=1 A=0.75

PAN◦ T=8 A=0.75

0.93

0.94

0.95

0.96

0.97

0.98

T
es

t
A

cc
ur

ac
y

Mnist MLP

SVHN VGG13

Cifar10 ResNet20

Figure 4. The first: test accuracy of models trained with differ-
ent PANs. The other three: test accuracy change after manual
permutation with various Psf.

SVHN, and ResNet20 on Cifar10. We first train models
with various PANs until convergence, and the model per-
formances are shown in the first figure of Fig. 4. The hori-
zontal dotted lines show the accuracies of normal networks,
and the solid segments show the results of networks with
various PANs. We find that introducing PANs to neural net-
works does not improve performances, but brings a slight
degradation. That is, PANs could make the network some-
what harder to train. More studies of how PANs influence
the network predictions could be found in Supp. Then, we
investigate the shuffle error reflected by the change of test
accuracies. Specifically, we shuffle the trained network to
make predictions on the test set. We vary several groups of
T and A for PANs. We show the results in the last three
figures of Fig. 4. With larger Psf, i.e., more neurons are
shuffled, the test accuracy of the network withA = 0.0 does
not change (the permutation invariance property). However,
larger A leads to more significant performance degradation
(A = 0.25 vs. A = 0.01 for PAN+;A = 0.75 vs. A = 0.05
for PAN◦). PAN◦ makes the network more sensitive to shuf-
fling than PAN+ (curves with “◦” degrades significantly).
With different T ∈ {1, 8}, the performance degradation is
nearly the same, again showing that PANs are robust to T .
These verify the conclusions in Sect. 3.2. Overall, PANs
work as a tradeoff between model performances and con-
trol of permutation invariance.

5.2. Decentralized Training

Then we study the effects of introducing PANs to FL.
We first present some empirical studies to verify the pre-
alignment effects of PANs, and then show performances.

How many neurons are misaligned in FL? Although
some previous works [43,48,50] declare that neurons could

0.0 0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 3.0 4.0 5.0

Nsf

0.4

0.6

0.8

1.0

R
k
ep
t

1.0 0.982 0.962
0.925

0.891 0.881
0.842

0.772
0.711

0.59

0.499

0.417

0.
0

0.
1

0.
2

0.
4

0.
6

0.
8

1.
0

1.
5

2.
0

3.
0

4.
0

5.
0

Mnist MLP Nsf

0.7

0.8

0.9

T
es

t
A

cc
ur

ac
y

α=10.0

α=1.0

α=0.1

Shuffle α=10.0

0.
0

0.
1

0.
2

0.
4

0.
6

0.
8

1.
0

1.
5

2.
0

3.
0

4.
0

5.
0

SVHN VGG11 Nsf

0.2

0.4

0.6

0.8

α=10.0

α=1.0

α=0.1

Shuffle α=10.0

0.
0

0.
1

0.
2

0.
4

0.
6

0.
8

1.
0

1.
5

2.
0

3.
0

4.
0

5.
0

Cifar10 ResNet20 Nsf

0.4

0.5

0.6

0.7

0.8

0.9

α=10.0

α=1.0

α=0.1

Shuffle α=10.0

Figure 5. Top: how much neurons are not shuffled with various
Nsf. Bottom: test accuracies of FL with various α (dotted lines)
and accuracies after manual shufflling on i.i.d. data (α = 10.0)
(red scatters).

be dislocated when faced with non-i.i.d. data, they do not
show this in evidence and do not show the degree of mis-
alignment. We present a heuristic method: we manually
shuffle the neurons during local training with i.i.d. data
and study how much misalignment could cause the perfor-
mance to drop to the same as training with non-i.i.d. data.
Specifically, during each client’s training step (each batch as
a step), we shuffle the neurons with a probability Nsf

E×Nk/B
,

where B,E,Nk are respectively the batch size, the number
of local epochs, and the number of local data samples. In
each shuffle process, we keep Psf = 0.1. Nsf determines
how many times the network could be shuffled during local
training. Larger Nsf means more neurons are shuffled upon
finishing training, e.g.,Nsf = 1.0 keeps approximately 84%
neurons not shuffled as shown in Fig. 5. The calculation of
Rkept in Fig. 5 is presented in Supp. Then, we show the
test accuracies of FedAvg [32] under various levels of non-
i.i.d. data, i.e., α ∈ {10.0, 1.0, 0.1}. The results corre-
spond to the three horizontal lines in the bottom three fig-
ures of Fig. 5. The scatters in red show the performances
of shuffling neurons with various Nsf. Obviously, even with
i.i.d. data, the larger the Nsf, the worse the performance.
This implies that neuron misalignment could actually lead
to performance degradation. Compared with non-i.i.d. per-
formances, taking Cifar10 as an example, setting Nsf = 0.2
could make the i.i.d. (α=10.0) performance degrade to the
same as non-i.i.d. (α=0.1), that is, approximately 3.8% neu-
rons are misaligned on each client. This may provide some
enlightenment for the quantitative measure of how many
neurons are misaligned in FL with non-i.i.d. data.

Do PANs indeed reduce the possibility of neuron mis-
alignment? We propose several strategies from aspects of
parameters, activations, and preference vectors to compare
the neuron correspondences in FL with PANs off/on. For

FC1.W
FC1.b

FC2.W
FC2.b

FC3.W
FC3.b

FC4.W
FC4.b

0.0

0.5

1.0

1.5

W
ei

gh
t

D
iv

er
ge

nc
e

Mnist MLP α=1.0

OFF (A=0.0)

ON (PAN◦ A=0.1)

FC1.W
FC1.b

FC2.W
FC2.b

FC3.W
FC3.b

FC4.W
FC4.b

0

2

4

6

8

Mnist MLP α=0.1

OFF (A=0.0)

ON (PAN◦ A=0.1)

Figure 6. Weight divergence with PANs off/on. (E = 5, MLP on

Mnist, more datasets’ results are in Supp.)

OFF (A=0.0) [0.195] ON (PAN◦ A=0.1) [0.414]

Figure 7. Optimal assignment matrix with PANs off/on, left vs.
right. (α = 1.0,E = 20, VGG9 Conv5 on Cifar10, more results are in Supp.)

G
lo

b
al

M
o

d
el

OFF (A=0.0) [0.551]

0

5

Neuron/Channel Index

L
o

ca
l

M
o

d
el

0

5

ON (PAN◦ A=0.1) [0.617]

0

5

C
la

ss
In

de
x

Neuron/Channel Index
0

5

C
la

ss
In

de
x

Figure 8. Preference vectors with PANs off/on, left vs. right. (α =

1.0, VGG9 Conv6 on Cifar10, more results are shown in Supp.)

PANs turned on, we use multiplicative PANs with T = 1.0
and A = 0.1 by default.
I. Weight Divergence: Weight divergence [52] measures
the variances of local parameters. Specifically, we calcu-
late 1

|St|
∑
k∈St
‖W (k)

l − Wl‖2 for each layer l. Wl =

1
|St|

∑
k∈St

W
(k)
l denotes the averaged parameters. The

weight divergences of MLP on Mnist with α ∈ {1.0, 0.1}
are in Fig. 6, where PANs could reduce the divergences a
lot (the red bars). This corresponds to the explanation in
Sect. 4.2 that clients’ parameters are partially updated to-
wards the same direction.
II. Matching via Optimal Assignment: We feed 500 test
samples into the network and obtain the activations of each
neuron as its representation. Neurons’ representations of
global and local model are denoted as hl ∈ RJl×m and
h
(k)
l ∈ RJl×m, where m = 500. Then we search for the

0.30

0.35

0.40

0.45

T
es

t
A

cc
ur

ac
y

FedAvg

PANs OFF

PANs ON

0.30

0.35

0.40

0.45

FedOpt

PANs OFF

PANs ON

0.30

0.35

0.40

0.45

0.50

Scaffold

PANs OFF

PANs ON

0.30

0.35

0.40

0.45

FedProx

PANs OFF

PANs ON

0.30

0.35

0.40

0.45

MOON

PANs OFF

PANs ON F
eM

ni
st

M
L

P

0.60

0.65

0.70

0.75

0.80

T
es

t
A

cc
ur

ac
y

PANs OFF

PANs ON

0.60

0.65

0.70

0.75

0.80

PANs OFF

PANs ON

0.6

0.7

0.8

PANs OFF

PANs ON

0.60

0.65

0.70

0.75

0.80

PANs OFF

PANs ON

0.60

0.65

0.70

0.75

0.80

PANs OFF

PANs ON C
if

ar
10

V
G

G
11

0.50

0.55

0.60

0.65

T
es

t
A

cc
ur

ac
y

PANs OFF

PANs ON

0.50

0.55

0.60

PANs OFF

PANs ON

0.50

0.55

0.60

0.65

0.70

PANs OFF

PANs ON

0.50

0.55

0.60

0.65

PANs OFF

PANs ON

0.50

0.55

0.60

0.65

PANs OFF

PANs ON

C
if

ar
10

0
R

es
N

et
20

5
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

Communication Round

0.50

0.55

0.60

0.65

T
es

t
A

cc
ur

ac
y PANs OFF

PANs ON

5
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

Communication Round

0.50

0.55

0.60

0.65

0.70

PANs OFF

PANs ON

5
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

Communication Round

0.50

0.55

0.60

0.65

0.70

PANs OFF

PANs ON

5
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

Communication Round

0.50

0.55

0.60

0.65

PANs OFF

PANs ON

5
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

Communication Round

0.50

0.55

0.60

0.65

0.70

PANs OFF

PANs ON

C
in

ic
10

R
es

N
et

20

Figure 9. Comparison results on non-i.i.d. data (α=0.1). Rows
show datasets and columns show FL algorithms. PANs could uni-
versally improve these algorithms. (More datasets are shown in Supp.)

optimal assignment matrix Q ∈ {0, 1}Jl×Jl that minimizes∑Jl
i=1

∑Jl
j=1Qij‖hl,i − h

(k)
l,j ‖2 and satisfies

∑
iQi,· = 1,∑

j Q·,j = 1. In fact, Q is a permutation matrix that
could approximately reflect the disturbance of neurons, and
it could match neurons with similar outputs. We plot the
solved matching matrix in Fig. 7, where the number in “[]”
shows the ratio of the diagonal ones. Using PANs could
make the diagonal denser, implying that neurons at the same
coordinates output similarly.
III. Visualizing Neurons via Preference Vectors: Then,
we correspond neurons to classes via calculating prefer-
ence vectors as done in [48]. Specifically, we calcu-
late pc =

∑B
b=1 Acti(xc,b) ∂Zc

∂Acti(xc,b)
for each class c,

and then concatenate all classes as the preference vec-
tor [p1, p2, · · · , pC]. Acti(·) denotes the activation value
and Zc is the prediction score of the cth class. Then,
arg maxc pc implies which class the neuron contributes to
more. The results are shown in Fig. 8, where each verti-
cal line represents a neuron/channel. The number in “[]”
shows how much neurons/channels correspond to the same
class between global and local models. With PANs, the co-
ordinate matching results are better. These empirical results
verify the pre-alignment effects brought by PANs.

Do PANs bring performance improvement in FL? We
then compare the performances of FL with PANs off/on.
I. Universal Application of PANs: We first apply PANs
to some popular FL algorithms as introduced in Sect. 2,
including FedAvg [32], FedProx [28], FedOpt [35], Scaf-
fold [19], MOON [27]. These methods solve the non-i.i.d.
problem from different aspects. Training details of these al-
gorithms are provided in Supp. We add PANs to them and
investigate the performance improvements on FeMnist, Ci-
far10, Cifar100, and Cinic10, where α = 0.1, K = 100,
R = 10%, E = 5, H = 1000. We use A = 0.0 as the
baseline. Hyper-parameters are searched from three groups:
PAN+ with A = 0.05, PAN◦ with A = 0.05, PAN◦ with

FedAvg
FedOpt

Scaffold
FedProx

MOON

0.74

0.76

0.78

0.80

0.82

0.84

0.86

T
es

t
A

cc
ur

ac
y

+0.37

+0.46

+0.15

+0.23 +0.02

Cinic10 α=10.0

OFF

ON

FedAvg
FedOpt

Scaffold
FedProx

MOON

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

+1.93

+0.16

+0.76

+0.51
+0.60

Cinic10 α=1.0

OFF

ON

FedAvg
FedOpt

Scaffold
FedProx

MOON

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

+3.68

+0.56

+2.23

+1.77
+2.13

Cinic10 α=0.5

OFF

ON

Figure 10. Comparisons under various levels of non-i.i.d. data on
Cinic10. Smaller α implies more non-i.i.d. data. (More datasets are

shown in Supp.)

K=100, E=5

K=100, E=10

K=100, E=20

K=500, E=25

K=500, E=50

K=500, E=100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
es

t
A

cc
ur

ac
y +1.79

+0.97 +0.85

+1.27 +0.88

+4.24

Cifar10 VGG11 FedAvg

OFF

ON

K=100, E=5

K=100, E=10

K=100, E=20

K=500, E=25

K=500, E=50

K=500, E=100

0.45

0.50

0.55

0.60

0.65

0.70

+1.35
+1.14 +2.41

+1.03
+1.03

+0.33

Cifar100 ResNet20 FedAvg

OFF

ON

Figure 11. Comparisons under different FL scenes (K, E) based
on FedAvg. (Scaffold results are shown in Supp.)

A = 0.1, and the best result is reported in Fig. 9. PANs
indeed improve these algorithms. With various non-i.i.d.
levels of decentralized data, i.e., α ∈ {10.0, 1.0, 0.5}. We
report the averaged accuracy of the last five communica-
tion rounds in Fig. 10 (H = 200 communication rounds
with other hyper-parameters the same). Obviously, more
non-i.i.d. scenes (smaller α) experience more significant
improvements. This is related to the regularization effect as
analyzed in Sect. 4.2. We also investigate the results with
various numbers of clients and local training epochs, i.e., K
and E. The results of FedAvg on Cifar10 and Cifar100 are
shown in Fig. 11, where we take α = 0.1 and H = 400.
On average, introducing PANs could lead to about 1% to
2% improvement on various scenes. These studies verify
that PANs could be universally and effectively applied to
FL algorithms under various settings.
II. Hyper-parameter Analysis: We first varyA on Cifar10
and plot the results on the left of Fig. 12. We set T = 1.0
and only report the results of multiplicative PANs. Setting
A around 0.1 could improve the performance a lot, while
using larger A experiences degradation, which is because
neural networks become harder to train. This again shows
that A is a tradeoff between neuron pre-alignment and net-
work performance. The proportions of the optimal hyper-
parameters from the results of the above experiments are
shown on the right of Fig. 12. Using A = 0.1 in multi-
plicative PANs is a good choice. A = 0.0 means turning off
PANs, and its ratio is only about 13%, which means turning

Settings (K,R, α,E) FedAvg FedProx FedMA Fed2 FedDF FedAvg? FedAvg?+PANs

(16, 1.0, 0.5, 20) 86.29 85.32 84.0 (87.53, E = 150) 88.29 - 86.83 88.49±0.07
(20, 0.4, 1.0, 40) 78.34 78.60 65.0 - 80.36 79.76 81.94±0.09

Table 1. Comparison results with other popular FL algorithms on Cifar10 with VGG9. The left shows settings. The middle shows the cited
results from FedMA [43], Fed2 [48], and FedDF [31]. The last two columns show the results we implement.

(K,R, α,E) FedMA? Fed2? FedAvg?+PANs

(16, 1.0, 0.1, 20) 83.91 82.26 85.82 ±0.16
(16, 0.4, 0.5, 20) 48.25 81.23 82.87 ±0.21

Table 2. Comparison results with SOTA on more scenes. The
results are all implemented by our reproduced code.

on PANs is useful in most cases.
III. Comparing with SOTA: FedMA [43] and Fed2 [48]
are representative works that solve the parameter alignment
problems in FL. We collect the reported settings and results
in FedMA, Fed2, and FedDF [31], and compare the per-
formances under the same settings. We list the results on
Cifar10 with VGG9 in Tab. 1, where the last three columns
show our results. Although our reproduced FedAvg per-
forms slightly better than the cited results, the performance
gain via introducing PANs is remarkable. We then vary the
settings of (16, 1.0, 0.5, 20) from two aspects: (1) decreas-
ing the non-i.i.d. α from 0.5 to 0.1, i.e., a more non-i.i.d.
scene; (2) decreasing the client selection ratio from 1.0 to
0.4, i.e., partial client participation. Aside from the above
changes, other hyper-parameters are kept the same. We run
the code provided by FedMA1 and reproduce Fed2 via our
implementations. The results are listed in Tab. 2. FedMA
performs especially worse under partial client participation.
Fed2 also performs not so well. Our method surpasses the
compared methods obviously in these cases. Furthermore,
our method is more efficient, e.g., with four 10-core Intel(R)
Xeon(R) Silver 4210R CPUs @ 2.40GHz and one NVIDIA
GeForce RTX 3090 GPU card, FedMA needs about 4 hours
for a single communication round while ours only requires
several minutes.
IV. More Studies: We study using optimal transport to fuse
neural networks with PANs as done in [38]. We also investi-
gate the BatchNorm [17] and GroupNorm [45] used in VGG
or ResNet, where PANs are more applicable to BatchNorm.
We finally investigate some varieties of PANs for better per-
sonalization in FL [10]. These are provided in Supp.
V. Disadvantages: Fusing different values makes the mag-
nitudes of neuron activations/gradients varied, which re-
quires a customized neuron-aware optimizer. In supp, we
try applying the adaptive optimizer Adam [20] to PANs, but

1https://github.com/IBM/FedMA

0.0 0.05 0.1 0.2 0.25 0.5 0.75
Cifar10 α=0.1 VGG11 A

0.785

0.790

0.795

T
es

t
A

cc
ur

ac
y

A=0.0
12.66

PAN+ A=0.05

13.92

PAN◦ A=0.05

17.72

PAN◦ A=0.1

55.70

Figure 12. Left: performance comparisons under various A.
Right: the distributions of optimal hyper-parameters.

we do not find too much improvement. Hence, advanced
optimizers should be explored in future work.

6. Conclusions
We propose position-aware neurons (PANs) to dis-

able/enable the permutation invariance property of neural
networks. PANs bind themselves in their positions, making
parameters pre-aligned in FL even faced with non-i.i.d. data
and facilitating the coordinate-based parameter averaging.
PANs keep the same position encodings across clients, mak-
ing local training contains consistent ingredients. Abundant
experimental studies verify the role of PANs in parameter
alignment. Future works are to find an optimization method
specifically suitable for PANs, and extend PANs to large-
scale FL benchmarks or more scenarios that require param-
eter alignment.

Acknowledgements
This work is partially supported by National Natural Sci-

ence Foundation of China (Grant No. 41901270), NSFC-
NRF Joint Research Project under Grant 61861146001,
and Natural Science Foundation of Jiangsu Province (Grant
No. BK20190296). Thanks to Huawei Noah’s Ark Lab
NetMIND Research Team and CAAI-Huawei MindSpore
Open Fund (CAAIXSJLJJ-2021-014B). Thanks for Profes-
sor Yang Yang’s suggestions. Professor De-Chuan Zhan is
the corresponding author.

https://github.com/IBM/FedMA

References
[1] Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro,

Matthew Mattina, Paul N. Whatmough, and Venkatesh
Saligrama. Federated learning based on dynamic regular-
ization. In ICLR, 2021. 2

[2] Martial Agueh and Guillaume Carlier. Barycenters in the
wasserstein space. SIMA, 43(2):904–924, 2011. 1, 2, 16

[3] Rohan Anil, Gabriel Pereyra, Alexandre Passos, Róbert
Ormándi, George E. Dahl, and Geoffrey E. Hinton. Large
scale distributed neural network training through online dis-
tillation. In ICLR, 2018. 2

[4] Sebastian Caldas, Peter Wu, Tian Li, Jakub Konecný,
H. Brendan McMahan, Virginia Smith, and Ameet Tal-
walkar. LEAF: A benchmark for federated settings. CoRR,
abs/1812.01097, 2018. 4, 11

[5] Giulia Fanti Charlie Hou, Kiran Thekumparampil and Se-
woong Oh. Multistage stepsize schedule in federated learn-
ing: Bridging theory and practice. In ICML Workshop, 2021.
12

[6] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André
van Schaik. EMNIST: an extension of MNIST to handwrit-
ten letters. CoRR, abs/1702.05373, 2017. 11

[7] Luke Nicholas Darlow, Elliot J. Crowley, Antreas Antoniou,
and Amos J. Storkey. CINIC-10 is not imagenet or CIFAR-
10. CoRR, abs/1810.03505, 2018. 4, 11

[8] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Quoc V. Le, Mark Z. Mao, Marc’Aurelio
Ranzato, Andrew W. Senior, Paul A. Tucker, Ke Yang, and
Andrew Y. Ng. Large scale distributed deep networks. In
NeurIPS, pages 1232–1240, 2012. 1

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, pages 248–255, 2009. 11

[10] Alireza Fallah, Aryan Mokhtari, and Asuman E. Ozdaglar.
Personalized federated learning with theoretical guarantees:
A model-agnostic meta-learning approach. In NeurIPS,
2020. 8

[11] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats,
and Yann N. Dauphin. Convolutional sequence to sequence
learning. In ICML, pages 1243–1252, 2017. 2

[12] Thomas L. Griffiths and Zoubin Ghahramani. The indian
buffet process: An introduction and review. JMLR, 12:1185–
1224, 2011. 2

[13] Chaoyang He, Songze Li, Jinhyun So, Mi Zhang, Hongyi
Wang, Xiaoyang Wang, Praneeth Vepakomma, Abhishek
Singh, Hang Qiu, Li Shen, Peilin Zhao, Yan Kang, Yang
Liu, Ramesh Raskar, Qiang Yang, Murali Annavaram,
and Salman Avestimehr. Fedml: A research library
and benchmark for federated machine learning. CoRR,
abs/2007.13518, 2020. 11

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 2, 3, 4, 11, 12

[15] Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip B.
Gibbons. The non-iid data quagmire of decentralized ma-
chine learning. In ICML, pages 4387–4398, 2020. 1, 11,
17

[16] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Mea-
suring the effects of non-identical data distribution for feder-
ated visual classification. CoRR, abs/1909.06335, 2019. 12

[17] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In ICML, pages 448–456, 2015. 8, 12

[18] Peter Kairouz, H. Brendan McMahan, and et al. Ad-
vances and open problems in federated learning. CoRR,
abs/1912.04977, 2019. 1

[19] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri,
Sashank J. Reddi, Sebastian U. Stich, and Ananda Theertha
Suresh. SCAFFOLD: stochastic controlled averaging for
federated learning. In ICML, pages 5132–5143, 2020. 2,
7, 12

[20] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 2, 8

[21] Alex Krizhevsky. Learning multiple layers of features from
tiny images. 2012. 4, 11

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
Imagenet classification with deep convolutional neural net-
works. In NeurIPS, pages 1106–1114, 2012. 2, 3

[23] H. W. Kuhn. The hungarian method for the assignment
problem. Naval Research Logistics Quarterly, 2(1-2):83–97,
1955. 2

[24] Fan Lai, Yinwei Dai, Xiangfeng Zhu, Harsha V. Mad-
hyastha, and Mosharaf Chowdhury. Fedscale: Benchmark-
ing model and system performance of federated learning. In
ResilientFL Workshop, pages 1–3, 2021. 4

[25] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998. 4, 11

[26] Mu Li, Li Zhou, Zichao Yang, Aaron Li, Fei Xia, David G
Andersen, and Alexander Smola. Parameter server for dis-
tributed machine learning. In NeurIPS, volume 6, page 2,
2013. 1

[27] Qinbin Li, Bingsheng He, and Dawn Song. Model-
contrastive federated learning. In CVPR, pages 10713–
10722, 2021. 1, 2, 7, 12

[28] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi,
Ameet Talwalkar, and Virginia Smith. Federated optimiza-
tion in heterogeneous networks. In MLSys, 2020. 1, 2, 7,
12

[29] Xin-Chun Li and De-Chuan Zhan. Fedrs: Federated learning
with restricted softmax for label distribution non-iid data. In
KDD, pages 995–1005, 2021. 1

[30] Xin-Chun Li, De-Chuan Zhan, Yunfeng Shao, Bingshuai Li,
and Shaoming Song. Fedphp: Federated personalization
with inherited private models. In ECML/PKDD, pages 587–
602, 2021. 1

[31] Tao Lin, Lingjing Kong, Sebastian U. Stich, and Martin
Jaggi. Ensemble distillation for robust model fusion in fed-
erated learning. In NeurIPS, 2020. 2, 4, 8, 11, 12

[32] Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Agüera y Arcas. Communication-
efficient learning of deep networks from decentralized data.
In AISTATS, pages 1273–1282, 2017. 1, 4, 6, 7, 12

[33] Vinod Nair and Geoffrey E. Hinton. Rectified linear units im-
prove restricted boltzmann machines. In ICML, pages 807–
814, 2010. 2

[34] Yuval Netzer, Tiejie Wang, Adam Coates, A. Bissacco, Bo
Wu, and A. Ng. Reading digits in natural images with unsu-
pervised feature learning. 2011. 4, 11

[35] Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary
Garrett, Keith Rush, Jakub Konečný, Sanjiv Kumar, and
Hugh Brendan McMahan. Adaptive federated optimization.
In ICLR, 2021. 2, 7, 12

[36] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-
attention with relative position representations. In NAACL-
HLT, pages 464–468, 2018. 2

[37] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In ICLR,
2015. 2, 3, 4, 11, 12

[38] Sidak Pal Singh and Martin Jaggi. Model fusion via optimal
transport. In NeurIPS, 2020. 1, 2, 4, 8, 16

[39] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and
Christian Igel. The german traffic sign recognition bench-
mark: A multi-class classification competition. In IJCNN,
pages 1453–1460, 2011. 4, 11

[40] Romain Thibaux and Michael I. Jordan. Hierarchical beta
processes and the indian buffet process. In AIS, pages 564–
571, 2007. 2

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, pages
5998–6008, 2017. 2, 3

[42] Benyou Wang, Lifeng Shang, Christina Lioma, Xin Jiang,
Hao Yang, Qun Liu, and Jakob Grue Simonsen. On position
embeddings in BERT. In ICLR, 2021. 2

[43] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris S.
Papailiopoulos, and Yasaman Khazaeni. Federated learning
with matched averaging. In ICLR, 2020. 1, 2, 4, 5, 8, 11, 12

[44] Yu-An Wang and Yun-Nung Chen. What do position em-
beddings learn? an empirical study of pre-trained language
model positional encoding. In EMNLP, pages 6840–6849,
2020. 2

[45] Yuxin Wu and Kaiming He. Group normalization. IJCV,
128(3):742–755, 2020. 8

[46] Rui Xu, Xintao Wang, Kai Chen, Bolei Zhou, and
Chen Change Loy. Positional encoding as spatial inductive
bias in gans. In CVPR, pages 13569–13578, 2021. 2

[47] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong.
Federated machine learning: Concept and applications. ACM
TIST, 10(2):12:1–12:19, 2019. 1

[48] Fuxun Yu, Weishan Zhang, Zhuwei Qin, Zirui Xu, Di Wang,
Chenchen Liu, Zhi Tian, and Xiang Chen. Fed2: Feature-
aligned federated learning. In KDD, pages 2066–2074, 2021.
1, 4, 5, 7, 8

[49] Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh,
Kristjan H. Greenewald, and Trong Nghia Hoang. Statisti-
cal model aggregation via parameter matching. In NeurIPS,
pages 10954–10964, 2019. 1, 2, 4

[50] Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh,
Kristjan H. Greenewald, Trong Nghia Hoang, and Yasaman

Khazaeni. Bayesian nonparametric federated learning of
neural networks. In ICML, pages 7252–7261, 2019. 1, 2,
4, 5

[51] Manzil Zaheer, Sashank J. Reddi, Devendra Singh Sachan,
Satyen Kale, and Sanjiv Kumar. Adaptive methods for non-
convex optimization. In ICLR, pages 9815–9825, 2018. 2

[52] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon
Civin, and Vikas Chandra. Federated learning with non-iid
data. CoRR, abs/1806.00582, 2018. 1, 2, 6

A. Dataset Details

The utilized datasets include Mnist [25], FeM-
nist [4], SVHN [34], GTSRB [39], Cifar10/100 [21], and
Cinic10 [7]. We detail these datasets as follows.

• Mnist [25] is a digit recognition dataset that contains
10 digits to classify. The raw set contains 60,000 sam-
ples for training and 10,000 samples for evaluation.
The image size is 28× 28.

• SVHN [34] is the Street View House Number dataset
which contains 10 numbers to classify. The raw set
contains 73,257 samples for training and 26,032 sam-
ples for evaluation. The image size is 32× 32.

• GTSRB [39] is the German Traffic Recognition
Benchmark with 43 traffic signs. The raw set con-
tains 39,209 samples for training and 12,630 samples
for evaluation. We resize the images to 32× 32.

• Cifar10 and Cifar100 [21] are subsets of the Tiny Im-
ages dataset and respectively have 10/100 classes to
classify. They consist of 50,000 training images and
10,000 test images. The image size is 32× 32.

• Cinic10 [7] is a combination of Cifar10 and Ima-
geNet [9], which contains 10 classes. It contains
90,000 samples for training, validation, and test, re-
spectively. We do not use the validation set. The image
size is 32× 32.

• FeMnist [4] is built by partitioning the data in
Extended MNIST [6] based on the writer of the
digit/character. There are 62 digits and characters in
all. The total number of training samples is 805,263.
There are 3,550 users, and each user owns 226.8 sam-
ples on average. We only use 10% users (i.e., 355
users). For each user, we take 20% of the samples to
construct the global test set. We resize the images to
28× 28.

For centralized training, we correspondingly use the
training set and test set for the first six datasets. For FeM-
nist, we centralize users’ training samples as the training
set. For decentralized training (i.e., FL), we split the train-
ing set of the first six datasets according to Dirichlet distri-
butions as done in previous FL works [15, 31, 43]. Specif-
ically, we split the training set onto K clients and each
client’s label distribution is generated from Dirichlet(α).
While for FeMnist, we directly take the 355 users as clients.
Some of these datasets are utilized in previous FL works.
For example, Cifar10/Cifar100/Cinic10 are recommended
by FedML [13], and FeMnist is recommended by LEAF [4].

FC (𝑊𝑊, 𝑏𝑏)

PE (𝑒𝑒)

ReLU

Input

Output

𝑊𝑊 ∈ 𝑅𝑅𝑑𝑑′×𝑑𝑑 , 𝑏𝑏 ∈ 𝑅𝑅𝑑𝑑′ , 𝑒𝑒 ∈ 𝑅𝑅𝑑𝑑′
𝑊𝑊 ∈ 𝑅𝑅𝐶𝐶′×𝐶𝐶×𝑘𝑘𝑤𝑤×𝑘𝑘ℎ ,
𝑏𝑏 ∈ 𝑅𝑅𝐶𝐶′ , 𝑒𝑒 ∈ 𝑅𝑅𝐶𝐶′

𝑊𝑊 ∈ 𝑅𝑅𝐶𝐶′×𝐶𝐶×𝑘𝑘𝑤𝑤×𝑘𝑘ℎ , 𝑏𝑏 ∈ 𝑅𝑅𝐶𝐶′ , 𝑒𝑒 ∈ 𝑅𝑅𝐶𝐶′

𝑊𝑊𝑠𝑠𝑠𝑠 ∈ 𝑅𝑅𝐶𝐶
′×𝐶𝐶×1×1, 𝑏𝑏 ∈ 𝑅𝑅𝐶𝐶′ , 𝑒𝑒 ∈ 𝑅𝑅𝐶𝐶′

ReLU(𝑊𝑊𝑊𝑊 + 𝑏𝑏 + 𝑒𝑒) ReLU(Conv(𝑊𝑊;𝑊𝑊, 𝑏𝑏) + 𝑒𝑒) ReLU(Conv(𝑊𝑊;𝑊𝑊, 𝑏𝑏) + 𝑒𝑒 +
Conv(𝑊𝑊;𝑊𝑊𝑠𝑠𝑠𝑠 , 𝑏𝑏𝑠𝑠𝑠𝑠) + 𝑒𝑒𝑠𝑠𝑠𝑠)

ReLU((𝑊𝑊𝑊𝑊 + 𝑏𝑏) ∘ 𝑒𝑒) ReLU(Conv(𝑊𝑊;𝑊𝑊, 𝑏𝑏) ∘ 𝑒𝑒) ReLU(Conv(𝑊𝑊;𝑊𝑊, 𝑏𝑏) ∘ 𝑒𝑒 +
Conv(𝑊𝑊;𝑊𝑊𝑠𝑠𝑠𝑠 , 𝑏𝑏𝑠𝑠𝑠𝑠) ∘ 𝑒𝑒𝑠𝑠𝑠𝑠)

Conv (𝑊𝑊, 𝑏𝑏)

PE (𝑒𝑒)

ReLU

Input

Output

Conv (𝑊𝑊, 𝑏𝑏)

PE (𝑒𝑒)

ReLU

Input

Output

ConvSC (𝑊𝑊𝑠𝑠𝑠𝑠,𝑏𝑏𝑠𝑠𝑠𝑠)

PE (𝑒𝑒𝑠𝑠𝑠𝑠)

𝑃𝑃𝑃𝑃𝑁𝑁+

𝑃𝑃𝑃𝑃𝑁𝑁∘

MLP VGG ResNet

Figure 13. Network architectures with PANs. “PE” denotes posi-
tion encoding; “SC” denotes shortcut. For ResNet, we only show
one convolution layer in the basic block and omit the BatchNorm
layers for simplification.

Algorithm 1 Shuffle Process

1: Input: parameters {Wl, bl}Ll=1; shuffle probability Psf
2: Generate-Permutation-Matrix: {Πl}L−1l=1 , Π{0,L} = I
3: for each layer l = 1, 2, . . . , L do
4: Wl ← ΠlWlΠ

T
l−1, bl ← Πlbl

5: end for
Generate-Permutation-Matrix

1: Input: number of neurons J ; shuffle probability Psf
2: Initialize: Π = IJ×J

3: for j = 1, 2, . . . , J do
4: sample i from Range(j + 1, J)
5: if p ∼ Uniform(0, 1) ≤ Psf then Swap(Πj ,Πi)
6: end for

Algorithm 2 Shuffle Process in FL

1: Input: shuffle probability Psf; expected shuffle times
Nsf; number of local epochs E; batch size B; number
of local samples {Nk}Kk=1

2: for each client k ∈ St do
3: Calculate the number of local update steps: rk =

E ∗Nk/B
4: for each local step in [rk] do
5: if p ∼ Uniform(0, 1) ≤ Nsf/rk run the Shuf-

fleProcess with shuffle probability Psf
6: end for
7: end for

B. Network Details
We utilize MLP, VGG [37], ResNet [14] in this paper.

We detail their architectures as follows:

• MLP denotes a multiple layer perceptron with four
layers containing input and output layers. For Mnist
and FeMnist, the input size is 28×28 = 784. MLP has
the architecture: FC1(784, 1024), ReLU(), FC2(1024,

0.0 0.05 0.1 0.25 0.5 0.75

A

1

2

4

8

16

T

Shuffle Error

0.00

0.05

0.10

0.15

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

A

0

10

20

30

S
hu

ffl
e

E
rr

or

PAN+

0

2

4

6

8

PAN◦

Figure 14. Left: shuffle error with various T and A (PAN◦).
Right: the difference between PAN+ and PAN◦ (T=1). (MLP)

1024), ReLU(), FC3(1024, 1024), ReLU(), FC4(1024,
C). C denotes the number of classes.

• VGG contains a series of networks with various lay-
ers. The paper of VGG [37] presents VGG11, VGG13,
VGG16, and VGG19. We follow their architectures
and report the configuration of VGG11 as an example:
64, M, 128, M, 256, 256, M, 512, 512, M, 512, 512, M.
“M” denotes the max-pooling layer. VGG11 contains
8 convolution blocks and three fully-connected layers
in [37]. However, we only use one fully-connected
layer for classification in this paper. VGG9 is com-
monly utilized in previous FL works [31, 43], whose
configuration is: 32, 64, M, 128, 128, M, 256, 256,
M. We keep all the fully-connected layers in VGG9
for a fair comparison with other works. The three
fully-connected layers in VGG9 are: FC(4096, 512),
ReLU(), FC(512, 512), ReLU(), FC(512, C). We
name the ith convolution layer in VGG as “Convi”.
We do not use BatchNorm [17] in VGG by default.

• ResNet introduces residual connections to plain neu-
ral networks. We take the Cifar versions used in the
paper [14], i.e., ResNet20 with the basic block. We
set the initial channel as 64 (i.e., the output channel of
the first convolution layer), and take nine continual ba-
sic blocks with 64, 64, 64, 128, 128, 128, 256, 256,
256 channels, respectively. We add a fully-connected
layer for classification. We use BatchNorm [17] in
ResNet20 and add it before ReLU activation.

For these networks with PANs, we plot the demos in
Fig. 13. We add PE before the ReLU activation layer and
after the BatchNorm layer. We show the formulations of ad-
ditive PANs and multiplicative PANs in the table of Fig. 13.

C. Hyper-parameter Details
For both centralized training and decentralized training

(i.e., FL), we take a constant learning rate without schedul-
ing, although some works have pointed out decaying the
learning rate will help in FL [5]. We take SGD with mo-
mentum 0.9 as the optimizer by default if without more dec-

0.0 0.05 0.1 0.25 0.5 0.75

A

1

2

4

8

16

T

Shuffle Error

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

A

0.0

0.5

1.0

S
hu

ffl
e

E
rr

or

PAN+

0

2

4

6

×107

PAN◦

Figure 15. Left: shuffle error with various T and A (PAN◦).
Right: the difference between PAN+ and PAN◦ (T=1). (ResNet20)

FC1.W
FC1.b

FC2.W
FC2.b

FC3.W
FC3.b

FC4.W
FC4.b

0.00

0.05

0.10

0.15

0.20

0.25

W
ei

gh
t

D
iv

er
ge

nc
e

Mnist MLP α=1.0

OFF (A=0.0)

ON (PAN◦ A=0.1)

FC1.W
FC1.b

FC2.W
FC2.b

FC3.W
FC3.b

FC4.W
FC4.b

0.0

0.1

0.2

0.3

Mnist MLP α=0.1

OFF (A=0.0)

ON (PAN◦ A=0.1)

Figure 16. Weight divergence with PANs off/on. (E = 20, MLP on

Mnist.)

Conv1.W

Conv1.b

Conv2.W

Conv2.b

Conv3.W

Conv3.b

Conv4.W

Conv4.b

Conv5.W

Conv5.b

Conv6.W

Conv6.b

0.0

0.2

0.4

0.6

0.8

W
ei

gh
t

D
iv

er
ge

nc
e

Cifar10 VGG9 α=1.0

OFF (A=0.0)

ON (PAN◦ A=0.1)

Conv1.W

Conv1.b

Conv2.W

Conv2.b

Conv3.W

Conv3.b

Conv4.W

Conv4.b

Conv5.W

Conv5.b

Conv6.W

Conv6.b

0.0

0.5

1.0

1.5

Cifar10 VGG9 α=0.1

OFF (A=0.0)

ON (PAN◦ A=0.1)

Figure 17. Weight divergence with PANs off/on. (E = 5, VGG9 on

Cifar10.)

laration. For MLP and VGG networks, we set the learning
rate as 0.05; for ResNet, we use 0.1. We respectively use a
warm start with 100 training steps and 10 training steps for
centralized training and decentralized training (during local
training). We use batch size 10 for FeMnist and 64 for other
datasets.

We use FedAvg [32], FedProx [28], FedOpt [35], Scaf-
fold [19], and MOON [27] as base FL algorithms. For all
of these algorithms, we take H communication rounds, and
select R ∗ 100.0% clients during each round. Each client
updates the global model on their private data for E epochs.
For FedProx, the regularization coefficient of the proximal
term is tuned in {1e − 4, 1e − 3} and the best one is re-
ported. For FedOpt, we take SGD with momentum 0.9 as
the global optimizer, and tune the global learning rate in
{0.1, 0.5, 0.9}, which is similar to FedAvgM [16]. We also
try using Adam as the global optimizer and find the perfor-
mances are not stable. For Scaffold, we use the implemen-

OFF (A=0.0) [0.062] ON (PAN◦ A=0.1) [0.312]

Figure 18. Optimal assignment matrix with PANs off/on, left vs.
right. (α = 1.0,E = 20, VGG9 Conv6 on Cifar10.)

OFF (A=0.0) [0.219] ON (PAN◦ A=0.1) [0.766]

Figure 19. Optimal assignment matrix with PANs off/on, left vs.
right. (α = 1.0,E = 20, MLP FC3 on Mnist.)

G
lo

b
al

M
o

d
el

OFF (A=0.0) [0.277]

0

5

Neuron/Channel Index

L
o

ca
l

M
o

d
el

0

5

ON (PAN◦ A=0.1) [0.383]

0

5

C
la

ss
In

de
x

Neuron/Channel Index
0

5

C
la

ss
In

de
x

Figure 20. Preference vectors with PANs off/on, left vs. right.
(α = 1.0, VGG9 Conv5 on Cifar10.)

tation from the online page 2. For MOON, we set the coef-
ficient of the contrastive loss as 1.0, which is recommended
by the authors. We then replace the normal neurons with
the proposed PANs to improve these algorithms. We keep
T = 1 by default and tune hyper-parameters from: PAN+

with A = 0.05, PAN◦ with A = 0.05, PAN◦ with A = 0.1.

D. Experimental Details
D.1. Shuffle Test and Shuffle Test in FL

We propose a procedure to measure the degree of per-
mutation invariance of a certain neural network, that is,

2https : / / github . com / ramshi236 / Accelerated -
Federated - Learning - Over - MAC - in - Heterogeneous -
Networks

G
lo

b
al

M
o

d
el

OFF (A=0.0) [0.258]

0

5

Neuron/Channel Index

L
o

ca
l

M
o

d
el

0

5

ON (PAN◦ A=0.1) [0.293]

0

5

C
la

ss
In

de
x

Neuron/Channel Index
0

5

C
la

ss
In

de
x

Figure 21. Preference vectors with PANs off/on, left vs. right.
(α = 1.0, VGG9 Conv4 on Cifar10.)

G
lo

b
al

M
o

d
el

OFF (A=0.0) [0.500]

0

5

Neuron/Channel Index

L
o

ca
l

M
o

d
el

0

5

ON (PAN◦ A=0.1) [0.500]

0

5

C
la

ss
In

de
x

Neuron/Channel Index
0

5

C
la

ss
In

de
x

Figure 22. Preference vectors with PANs off/on, left vs. right.
(α = 1.0, MLP FC4 on Mnist.)

G
lo

b
al

M
o

d
el

OFF (A=0.0) [0.555]

0

5

Neuron/Channel Index

L
o

ca
l

M
o

d
el

0

5

ON (PAN◦ A=0.1) [0.570]

0

5

C
la

ss
In

de
x

Neuron/Channel Index
0

5

C
la

ss
In

de
x

Figure 23. Preference vectors with PANs off/on, left vs. right.
(α = 1.0, MLP FC3 on Mnist.)

0.2

0.4

0.6

0.8

T
es

t
A

cc
ur

ac
y

FedAvg

PANs OFF

PANs ON 0.2

0.4

0.6

0.8

FedOpt

PANs OFF

PANs ON
0.4

0.6

0.8

Scaffold

PANs OFF

PANs ON 0.4

0.6

0.8

FedProx

PANs OFF

PANs ON 0.3

0.4

0.5

0.6

MOON

PANs OFF

PANs ON G
T

S
R

B
V

G
G

9

5
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

Communication Round

0.80

0.85

0.90

0.95

T
es

t
A

cc
ur

ac
y

PANs OFF

PANs ON

5
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

Communication Round

0.80

0.85

0.90

PANs OFF

PANs ON

5
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

Communication Round

0.80

0.85

0.90

PANs OFF

PANs ON

5
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

Communication Round

0.80

0.85

0.90

0.95

PANs OFF

PANs ON

5
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

Communication Round

0.800

0.825

0.850

0.875

0.900
PANs OFF

PANs ON

S
V

H
N

V
G

G
9

Figure 24. Comparison results on non-i.i.d. data (α=0.1). Rows
show datasets and columns show FL algorithms. PANs could uni-
versally improve these algorithms.

how large the shuffle error is after shuffling the neurons.
The shuffle process is shown in Alg. 1, where Psf controls
the disorder level of the constructed permutation matrices.
Some additional descriptions are: (1) the permutation ma-
trix (PM) should be randomly generated and we don’t need
to solve it; (2) PMs are introduced just to verify the property
of PANs that they can disable the permutation invariance of

https://github.com/ramshi236/Accelerated-Federated-Learning-Over-MAC-in-Heterogeneous-Networks
https://github.com/ramshi236/Accelerated-Federated-Learning-Over-MAC-in-Heterogeneous-Networks
https://github.com/ramshi236/Accelerated-Federated-Learning-Over-MAC-in-Heterogeneous-Networks

FeMnist GTSRB SVHN Cifar10 Cifar100 Cinic10
MLP VGG9 VGG9 VGG11 ResNet20 ResNet20

SGD + Momentum=0.9 (LR in {0.05,0.1}) 53.39 86.96 89.93 84.57 70.82 82.76
Adam (LR=3e-4) 54.25 90.84 91.13 87.13 67.22 81.99

Table 3. The performances of centralized training with corresponding networks (without PANs), i.e., the upper bound of decentralized
training (FL).

FedAvg
FedOpt

Scaffold
FedProx

MOON

0.82

0.84

0.86

0.88

0.90

0.92

0.94

T
es

t
A

cc
ur

ac
y

+0.27 +0.07

+0.34

+0.73
+0.25

Cifar10 α=10.0

OFF

ON

FedAvg
FedOpt

Scaffold
FedProx

MOON

0.82

0.84

0.86

0.88

0.90

0.92

+0.14
+0.24

+0.07

+0.97 +0.76

Cifar10 α=1.0

OFF

ON

FedAvg
FedOpt

Scaffold
FedProx

MOON

0.78

0.80

0.82

0.84

0.86

0.88

0.90

+1.80

+1.53

+0.28

+1.56 +2.00

Cifar10 α=0.5

OFF

ON

Figure 25. Comparisons under various levels of non-i.i.d. data on
Cifar10. Smaller α implies more non-i.i.d. data.

FedAvg
FedOpt

Scaffold
FedProx

MOON

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750

T
es

t
A

cc
ur

ac
y

+1.47

+0.49

+0.36

+0.15 +0.05

Cifar100 α=10.0

OFF

ON

FedAvg
FedOpt

Scaffold
FedProx

MOON

0.550

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750

+0.55

+1.92

+0.21

+1.03 +0.80

Cifar100 α=1.0

OFF

ON

FedAvg
FedOpt

Scaffold
FedProx

MOON

0.55

0.60

0.65

0.70

+2.19

+2.30

+0.98

+0.72 +1.41

Cifar100 α=0.5

OFF

ON

Figure 26. Comparisons under various levels of non-i.i.d. data on
Cifar100. Smaller α implies more non-i.i.d. data.

K=100, E=5

K=100, E=10

K=100, E=20

K=500, E=25

K=500, E=50

K=500, E=100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
es

t
A

cc
ur

ac
y

+1.40 +1.32 +4.14

+8.25

+4.33

+4.24

Cifar10 VGG11 Scaffold

OFF

ON

K=100, E=5

K=100, E=10

K=100, E=20

K=500, E=25

K=500, E=50

K=500, E=100
0.3

0.4

0.5

0.6

0.7

+0.41 +0.39
+0.98

+0.53
+1.81

+1.64

Cifar100 ResNet20 Scaffold

OFF

ON

Figure 27. Comparisons under different FL scenes (K, E) based
on Scaffold.

neural networks, which is not used in our FedPAN algo-
rithm; (3) the computational complexity is O(J), requiring
at most J swaps, which is very efficient to implement during
simulation.

We introduce the shuffle test in the body of this paper.
Specifically, we manually shuffle the network and study the
output change, i.e., the shuffle error defined in the body.
A hyper-parameter Psf is used to control the disorder of
permutation. Given a Psf, we could generate a permuta-

tion matrix Π, then we calculate how many neurons are not
shuffled via computing “Rkept=np.mean(np.diag(Π))”. We
use the functions provided in the Numpy 3 package. This
is calculated and its correspondence to Psf is shown in the
body. The shuffle process is also applied to FL. Specifi-
cally, we present the Pseudo-Code in Alg. 2. Easily, the
model will be shuffled for Nsf times during local training in
expectation. Hence, we calculate the corresponding Rkept
as the diagonal ones after several accumulative permuta-
tion, i.e., “Rkept=np.mean(np.diag(Πrk · · ·Π2Π1))”, where
Π1, Π2, and Πrk denote the generated permutation matri-
ces in each local update step. We simulate the process for a
single layer 10 times and calculate the averaged Rkept. We
keep Psf = 0.1 and show the relations of Rkept and Nsf in
the body.

E. Additional Experimental Results
Shuffle Error on Random Data: We investigate the shuffle
error via taking the random data as input in the body, where
we only present the results based on VGG13. We report
similar results on MLP and ResNet20, which are shown in
Fig. 14 and Fig. 15. Multiplicative PANs with a larger A
make the network more sensitive to neuron permutation.
Weight Divergence: Our proposed PANs could decrease
the weight divergence during FL. Specifically, we split the
training data onto K = 10 clients with α ∈ {1.0, 0.1} and
select all clients in each round, i.e., R = 1.0. We take
H = 20 communication rounds and then calculate the local
gradient variance as an approximation. We vary the number
of local epochs E ∈ {5, 20}. We only report the results on
Mnist with E = 5 in the body. Additional results of Mnist
with E = 20 (Fig. 16) and Cifar10 with E = 5 (Fig. 17)
further verify that PANs could decrease the local gradient
variance.
Matching via Optimal Assignment: We first train a global
model via FL forH = 20 communication rounds, where the
scene contains 10 clients with α = 1.0. Then, we randomly
sample a local client and update the global model for E
epochs. Our goal is to search for a matrix to match the
neurons of the global model and the updated one, i.e., the
local model of this client. We then use 500 test samples
to obtain the neuron’s activations as their representations.

3https://numpy.org/

https://numpy.org/

A
=

0.
0

T
=

1

T
=

2

T
=

4

T
=

8

T
=

12

T
=

16

T
=

32

A
=

0.
01

A
=

0.
03

A
=

0.
1

A
=

0.
15

A
=

0.
2

A
=

0.
25

T
=

1

T
=

2

T
=

4

T
=

8

T
=

12

T
=

16

T
=

32

A
=

0.
05

A
=

0.
1

A
=

0.
2

A
=

0.
25

A
=

0.
5

A
=

0.
75

FedAvg Cifar10 α=0.1 2000 Rounds VGG11

0.830

0.835

0.840

0.845

T
es

t
A

cc
ur

ac
y

Baseline PAN+ A=0.05 PAN+ T=8 PAN◦ A=0.15 PAN◦ T=8

Figure 28. Hyper-parameter analysis on Cifar10 with VGG11.

A
=

0.
0

T
=

1

T
=

2

T
=

4

T
=

8

T
=

12

T
=

16

T
=

32

A
=

0.
01

A
=

0.
03

A
=

0.
1

A
=

0.
15

A
=

0.
2

A
=

0.
25

T
=

1

T
=

2

T
=

4

T
=

8

T
=

12

T
=

16

T
=

32

A
=

0.
05

A
=

0.
1

A
=

0.
2

A
=

0.
25

A
=

0.
5

A
=

0.
75

FedAvg Cifar100 α=0.1 2000 Rounds ResNet20

0.66

0.67

0.68

T
es

t
A

cc
ur

ac
y

Baseline PAN+ A=0.05 PAN+ T=8 PAN◦ A=0.15 PAN◦ T=8

Figure 29. Hyper-parameter analysis on Cifar100 with ResNet20.

Hence, the optimal assignment problem could be solved and
the assignment matrix is a permutation matrix. The results
on various layers of VGG9 and MLP are shown in Fig. 18
and Fig. 19. Notably, the calculated matching ratio, i.e.,
the number in “[]”, is only an approximated value which
represents how much neurons are shuffled. The absolute
value (e.g., 0.062) does not represent the actual permutation
during training.
Visualizing Neurons via Preference Vectors: Similarly,
more of the visualization results via preference vectors of
neurons are provided in Fig. 20, Fig. 21, Fig. 22, and
Fig. 23. Notably, there are only 10 neurons in Fig. 22 be-
cause FC4 is the output layer with 10 classes. Using PANs
could encourage neurons at the same position contribute to
the same classes as much as possible.
Universal Application of PANs: We report the results of
applying PANs to popular FL algorithms on FeMnist, Ci-
far10, Cifar100, and Cinic10 in the body. We show the re-
sults on SVHN and GTSRB in Fig. 24. Training on GTSRB
is not stable, and some algorithms will converge slower,
e.g., FedAvg and FedOpt. This could be improved with the
additional effort of tuning learning rates, while we omit this
in this paper. Comparison results on Cifar10 and Cifar100
under various levels of non-i.i.d. data are shown in Fig. 25
and Fig. 26. The improvements under various scenes based
on Scaffold are shown in Fig. 27. These additional results
further verify the universal application of PANs to improve

the performance of FL.
Hyper-parameter Analysis: We present the performances
of various A with PAN◦ when T = 1 in the body and point
out that setting A = 0.1 is a good choice. Here, we present
a more comprehensive analysis with both additive and mul-
tiplicative PANs. The used FL scene is: K = 100, α = 0.1,
H = 2000, R = 0.1, E = 5. We plot the results on Ci-
far10 with VGG11 and Cifar100 with ResNet20 in Fig 28
and Fig. 29. The leftmost point shows the baseline of the
performance. The four parts in different colors show the
results with various T or A, while the other one is fixed.
For example, the first part shows the performances with
T ∈ {1, 2, 4, 8, 12, 16, 32} in PAN+, while A is fixed to
0.05. Clearly, with fixed T , a larger A leads to degrada-
tion (the green and the red part). Setting A around 0.1 for
PAN◦ is recommended. The results on Cifar100 are more
invariant to T , although the performances fluctuate a lot on
Cifar10. Many of these hyper-parameters could surpass the
baseline.

F. More Studies

F.1. Centralized Training

We report the test accuracies of centralized training on
FeMnist, GTSRB, SVHN, Cifar10, Cifar100, and Cinic10.
The utilized networks are correspondingly MLP, VGG9,
VGG9, VGG11, ResNet20, and ResNet20. The numbers

A
=

0
.0

A
=

0
.0

1

A
=

0
.0

5

A
=

0
.1

A
=

0
.1

5

A
=

0
.2

A
=

0
.2

5

A
=

0
.0

5

A
=

0
.1

A
=

0
.1

5

A
=

0
.2

5

A
=

0
.5

A
=

0
.7

5

0.82

0.84

0.86

0.88

0.90

T
es

t
A

cc
ur

ac
y

GTSRB VGG8 (SGD)

Baseline

PAN+ T=1

PAN◦ T=1

A
=

0
.0

A
=

0
.0

1

A
=

0
.0

5

A
=

0
.1

A
=

0
.1

5

A
=

0
.2

A
=

0
.2

5

A
=

0
.0

5

A
=

0
.1

A
=

0
.1

5

A
=

0
.2

5

A
=

0
.5

A
=

0
.7

5

0.86

0.88

0.90

0.92

0.94

SVHN VGG8 (SGD)

Baseline

PAN+ T=1

PAN◦ T=1

A
=

0
.0

A
=

0
.0

1

A
=

0
.0

5

A
=

0
.1

A
=

0
.1

5

A
=

0
.2

A
=

0
.2

5

A
=

0
.0

5

A
=

0
.1

A
=

0
.1

5

A
=

0
.2

5

A
=

0
.5

A
=

0
.7

5

0.80

0.82

0.84

0.86

0.88

Cifar10 VGG11 (SGD)

Baseline

PAN+ T=1

PAN◦ T=1

A
=

0
.0

A
=

0
.0

1

A
=

0
.0

5

A
=

0
.1

A
=

0
.1

5

A
=

0
.2

A
=

0
.2

5

A
=

0
.0

5

A
=

0
.1

A
=

0
.1

5

A
=

0
.2

5

A
=

0
.5

A
=

0
.7

5

0.66

0.68

0.70

0.72

0.74

Cifar100 ResNet20 (SGD)

Baseline

PAN+ T=1

PAN◦ T=1

A
=

0
.0

A
=

0
.0

1

A
=

0
.0

5

A
=

0
.1

A
=

0
.1

5

A
=

0
.2

A
=

0
.2

5

A
=

0
.0

5

A
=

0
.1

A
=

0
.1

5

A
=

0
.2

5

A
=

0
.5

A
=

0
.7

5

0.86

0.88

0.90

0.92

0.94

T
es

t
A

cc
ur

ac
y

GTSRB VGG8 (Adam)

Baseline

PAN+ T=1

PAN◦ T=1

A
=

0
.0

A
=

0
.0

1

A
=

0
.0

5

A
=

0
.1

A
=

0
.1

5

A
=

0
.2

A
=

0
.2

5

A
=

0
.0

5

A
=

0
.1

A
=

0
.1

5

A
=

0
.2

5

A
=

0
.5

A
=

0
.7

5

0.88

0.90

0.92

0.94

0.96
SVHN VGG8 (Adam)

Baseline

PAN+ T=1

PAN◦ T=1

A
=

0
.0

A
=

0
.0

1

A
=

0
.0

5

A
=

0
.1

A
=

0
.1

5

A
=

0
.2

A
=

0
.2

5

A
=

0
.0

5

A
=

0
.1

A
=

0
.1

5

A
=

0
.2

5

A
=

0
.5

A
=

0
.7

5

0.84

0.86

0.88

0.90

0.92
Cifar10 VGG11 (Adam)

Baseline

PAN+ T=1

PAN◦ T=1

A
=

0
.0

A
=

0
.0

1

A
=

0
.0

5

A
=

0
.1

A
=

0
.1

5

A
=

0
.2

A
=

0
.2

5

A
=

0
.0

5

A
=

0
.1

A
=

0
.1

5

A
=

0
.2

5

A
=

0
.5

A
=

0
.7

5

0.64

0.66

0.68

0.70

0.72

Cifar100 ResNet20 (Adam)

Baseline

PAN+ T=1

PAN◦ T=1

Figure 30. Performances of centralized training with PANs. The two parts respectively show the results of additive PANs and multiplicative
PANs.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Interpolation µ

0.7

0.8

0.9

T
es

t
A

cc
ur

ac
y

Mnist MLP

Avg

OT+Avg

PANs+OT+Avg

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Interpolation µ

0.2

0.4

0.6

T
es

t
A

cc
ur

ac
y

Cifar10 VGG9

Avg

OT+Avg

PANs+OT+Avg

Figure 31. Model fusion of MLP on Mnist (Left) and VGG9 on
Cifar10 (Right) with direct parameter averaging, optimal transport,
and PANs. The x-axis shows the interpolation coefficient.

0 20 40 60 80 100

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
es

t
A

cc
ur

ac
y

Cifar10 VGG11

VGG11-BN-N:78.81

VGG11-BN-Y:77.57

VGG11-GN1:81.67

VGG11-GN2:81.43

VGG11-GN8:80.51

VGG11-GN32:80.52

VGG11-GN1-PAN:81.93

0 20 40 60 80 100

0.2

0.3

0.4

0.5

Cifar100 VGG11

VGG11-BN-N:54.38

VGG11-BN-Y:55.13

VGG11-GN1:51.88

VGG11-GN2:49.98

VGG11-GN8:50.37

VGG11-GN32:50.83

VGG11-GN1-PAN:52.11

0 20 40 60 80 100

Communication Round

0.2

0.4

0.6

0.8

T
es

t
A

cc
ur

ac
y

Cifar10 ResNet20

ResNet20-BN-N:84.57

ResNet20-BN-Y:82.41

ResNet20-GN1:79.12

ResNet20-GN2:78.44

ResNet20-GN8:75.26

ResNet20-GN32:73.62

ResNet20-GN1-PAN:79.07

0 20 40 60 80 100

Communication Round

0.1

0.2

0.3

0.4

0.5

0.6

Cifar100 ResNet20

ResNet20-BN-N:64.85

ResNet20-BN-Y:65.85

ResNet20-GN1:50.42

ResNet20-GN2:48.01

ResNet20-GN8:46.63

ResNet20-GN32:51.50

ResNet20-GN1-PAN:48.79

Figure 32. Comparisons of different normalization techniques in
ConvNet. The top is based on VGG11 and the bottom is based on
ResNet20. We use datasets Cifar10 and Cifar100.

of training epochs are respectively 30, 20, 30, 30, 100, and
100. We utilize both SGD with momentum 0.9 and Adam
as the optimizer. For SGD, we use 0.05 as the learning rate

for MLP and VGG, while 0.1 for ResNet20. For Adam, we
use 0.0003 for all networks. The performances are listed
in Tab. 3. We then add PANs to some datasets and find
that the performances degrade slightly. We vary the hyper-
parameter A in PANs while keeping T = 1. The results
are shown in Fig. 30. Using PANs could harm the training
process slightly, and commonly, a larger A could make the
results worse. Although we try utilizing the adaptive opti-
mizer (i.e., Adam), the results of utilizing PANs do not im-
prove. Advanced optimizers should be proposed to mitigate
the degradation, which is left for future work.

F.2. Optimal Transport for Model Fusion

FL should send down the global model to local clients as
the initialization during each communication round. If not,
coordinate-based parameter averaging will become worse.
The work [38] studies model fusion with different initial-
izations, and utilizes optimal transport [2] to align model
parameters. We split Mnist and Cifar10 into two parts uni-
formly. We train independent models on these two sets cor-
respondingly. The obtained models after training 20 epochs
are denoted as θA and θB . Then, an interpolation is eval-
uated, i.e., (1 − µ)θA + µθB , µ ∈ [0, 1]. Directly av-
eraging these two models will perform poorly, which is
shown in Fig 31 (the line with legend “Avg”). If we align
the models via optimal transport and then interpolate the
aligned models, the results become better (the line with leg-
end “OT+Avg” in Fig 31). We further add PANs during
model training and the performances could be slightly im-
proved (the line with legend “PANs+OT+Avg” in Fig 31).
This shows that PANs may still be helpful with different
initializations.

F.3. BatchNorm vs. GroupNorm

We then investigate the normalization techniques in deep
neural networks. Previous FL works point out that Group-
Norm may be more applicable to FL with non-iid data [15].
Specifically, BatchNorm calculates the mean and variance
of a data batch, which is relevant to local training data.
Hence, the statistical information in BatchNorm will di-
verge a lot across clients. One solution is aggregating the
statistical information during FL, i.e., averaging the “run-
ning mean” and “running variance” in BatchNorm. We de-
note this as “BN-Y”. In contrast, we use “BY-N” to rep-
resent the method that “running mean” and “running vari-
ance” are not aggregated. We also vary the number of
groups in GroupNorm, i.e., {1, 2, 8, 32}, which are denoted
as “GN1”, “GN2”, “GN8”, and “GN32”. We list the con-
vergence curves on Cifar10 and Cifar100 in Fig. 32. We use
VGG11 and ResNet20 as the backbone. The numbers in the
legends denote the final test accuracies. GroupNorm only
improves the performances of Cifar10 with VGG11. Ad-
ditionally, setting the number of groups as 1 is better. We
also apply PANs to networks with “GN1” and find the per-
formance does not improve. The combination of PANs with
various normalization techniques is also interesting, which
is also left for future work.

F.4. Personalization in FL

Finally, we present some possible varieties of PANs for
personalization in FL. In the body of this paper, we take
the same position encodings among clients and implicitly
make neurons combined with their positions. However, if
we take different position encodings or partially shared po-
sition encodings among clients, we could let similar clients
contribute more. Some clients own individual positions,
which could be utilized for personalization. These ideas are
also left for future work.

	1 . Introduction
	2 . Related Works
	3 . Position-Aware Neurons
	3.1 . Permutation Invariance Property
	3.2 . Position-Aware Neurons

	4 . FL with PANs
	4.1 . FedAvg
	4.2 . Applying PANs to FL

	5 . Experiments
	5.1 . Centralized Training
	5.2 . Decentralized Training

	6 . Conclusions
	A . Dataset Details
	B . Network Details
	C . Hyper-parameter Details
	D . Experimental Details
	D.1 . Shuffle Test and Shuffle Test in FL

	E . Additional Experimental Results
	F . More Studies
	F.1 . Centralized Training
	F.2 . Optimal Transport for Model Fusion
	F.3 . BatchNorm vs. GroupNorm
	F.4 . Personalization in FL

