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Abstract

Federated Learning (FL) is an emerging distributed
learning paradigm under privacy constraint. Data hetero-
geneity is one of the main challenges in FL, which results
in slow convergence and degraded performance. Most ex-
isting approaches only tackle the heterogeneity challenge
by restricting the local model update in client, ignoring
the performance drop caused by direct global model ag-
gregation. Instead, we propose a data-free knowledge dis-
tillation method to fine-tune the global model in the server
(FedFTG), which relieves the issue of direct model aggre-
gation. Concretely, FedFTG explores the input space of
local models through a generator, and uses it to transfer
the knowledge from local models to the global model. Be-
sides, we propose a hard sample mining scheme to achieve
effective knowledge distillation throughout the training. In
addition, we develop customized label sampling and class-
level ensemble to derive maximum utilization of knowl-
edge, which implicitly mitigates the distribution discrep-
ancy across clients.  Extensive experiments show that
our FedFTG significantly outperforms the state-of-the-art
(SOTA) FL algorithms and can serve as a strong plugin for
enhancing FedAvg, FedProx, FedDyn, and SCAFFOLD.

1. Introduction

With the explosive growth of data and the strict privacy-
protection policy, reckless data transmission and aggrega-
tion gradually become unacceptable due to the high band-
width cost and risk of privacy leakage. Recently, Federated
Learning (FL) [30,31] has been proposed to replace the tra-
ditional heavily centralized learning paradigm and protect
data privacy. It has been successfully applied in real-world
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Figure 1. Comparison between FedAvg [30] and FedFTG. By fine-
tuning the global model using generated hard samples, FedFTG
alleviates the performance decrease after model aggregation.

tasks, such as smart city [16, 34, 43], health care [8,26,27],
and recommender system [9, 10], etc.

One of the main challenges in FL is the data heterogene-
ity, i.e., the data in clients are non-identically and indepen-
dently distributed (Non-IID). It has been verified that the
vanilla FL algorithm, FedAvg [30], leads to drifted local
models and forgets the global knowledge catastrophically in
this scenario, which further induces degraded performance
and slow convergence [14, 19,21]. This is because the lo-
cal model is updated merely with local data, i.e., minimiz-
ing the local empirical loss. However, minimizing the local
empirical loss is fundamentally inconsistent with minimiz-
ing the global empirical loss [1,24,29] in Non-IID FL.

To tackle the data heterogeneity challenge, most existing
methods, e.g., FedProx [23], SCAFFOLD [ 18], FedDyn [1],
MOON [22] constrain the direction of local model update
to align the local and global optimization objectives. Re-
cently, FedGen [44] learns a lightweight generator to gen-
erate pseudo feature and broadcasts it to clients to regulate
local training. However, all these methods merely conduct
simple model aggregation to get the global model in server,
which ignores local knowledge incompatibility and induces
knowledge forgetting in the global model. In addition, [37]



shows that directly aggregating models will largely degrade
the performance while fine-tuning can greatly boost the ac-
curacy. These motivate us to fine-tune the aggregated global
model in the server with the knowledge in local models. On
the other hand, merely aggregating local models in server
ignores the server’s rich computing resources that could be
potentially utilized to improve the performance of FL, such
as the computing source in cross-silo FL [17].

Motivated by these observations, we propose a novel ap-
proach that boosts the performance of standard FL by on-
the-fly fine-tuning the global model via data-free knowl-
edge distillation (FedFTG), which simultaneously refines
the model aggregation procedure and exploits the rich com-
puting power of the sever. Concretely, FedFTG models the
input space of local models through an auxiliary genera-
tor in the server, then generates pseudo data to transfer the
knowledge in local models to the global model to improve
the performance. To facilitate effective knowledge distilla-
tion throughout the training, FedFTG iteratively explores
the hard samples in data distribution, which will induce
prediction disagreement between local models and global
model. Figure 1 compares FedFTG with FedAvg. FedFTG
fine-tunes the global model with the hard samples to correct
the model shift after model aggregation. The generator and
global model are adversarially trained in a data-free manner,
thus the whole procedure will not violate the privacy policy
in FL. Considering the label distribution shift in data hetero-
geneity scenario, we further propose customized label sam-
pling and class-level ensemble techniques, which explore
the distribution correlation of clients and exploit maximum
utilization of knowledge.

FedFTG is orthogonal to several existing local optimiz-
ers, such as FedAvg, FedProx, FedDyn, SCAFFOLD and
MOON, as it only modifies the procedure of global model
aggregation in the server. Consequently, FedFTG can be
seamlessly embedded into these local FL optimizers, tak-
ing their advantages to further improve the performance of
FedFTG. Extensive experiments on various settings verify
that FedFTG achieves superior performance compared with
state-of-the-art (SOTA) methods.

The main contributions of this work are four-fold:

* We propose FedFTG to fine-tune the global model in
server via data-free distillation, which simultaneously
enhances the model aggregation step and utilizes the
computing power of the server.

* We develop hard sample mining to effectively trans-
fer knowledge to global model. Besides, we propose
customized label sampling and class-level ensemble to
facilitate maximum utilization of knowledge.

* We demonstrate that FedFTG is orthogonal to exiting
local optimizers and can serve as a strong and versatile
plugin to enhance the performance of FedAvg, Fed-
Prox, FedDyn, SCAFFOLD and MOON.

* We verify the superiority of FedFTG against several
SOTA methods for FL, including FedAvg, FedProx,
FedDyn, SCAFFOLD, MOON, FedGen and FedDF,
with extensive experiments on five benchmarks.

2. Related Work

There exist extensive works on improving the global per-
formance of FL via client selection [4, 7, 15], split learn-
ing [11,39], domain adaptation [26, 33], etc. The readers
may refer to monographs [17,38] and the reference therein
to follow up its recent advances. Below, we mainly summa-
rize the most relevant techniques to our work.

Federated Optimizer. The vanilla FL algorithm, i.e. Fe-
dAvg [30] periodically aggregates the local models in server
and updates the local model with its individual data. Fed-
Prox [23] adds a proximal term to the local subproblem to
restrict the local update closer to the initial (global) model.
SCAFFOLD [18] uses a variance reduction technique to
correct the drifted local update. FedDyn [1] modifies the
objective of client with linear and quadratic penalty terms
to align global and local objectives. In summary, all these
methods focus on aligning the local and global model to
narrow the distribution drift during the local training with-
out enhancing the global model directly as in FedFTG.

Knowledge Distillation in Federated Learning. With
the help of an unlabeled dataset, FedDF [25] proposes
an ensemble distillation for model fusion, trains the
global model using the averaged logits from local models.
FedAUX [35] finds a model initialization for the local mod-
els, and weights the logits from local models using (g, 0)-
differentially private certainty scoring. FedBE [3] gener-
ates a series of global models from Bayesian perspective
using the local models, then summarizes these models into
one global model by ensemble knowledge distillation. All
these methods rely on an unlabeled auxiliary dataset in the
server, while it is unclear to which extent should the auxil-
iary dataset be related to training data to guarantee effective
knowledge distillation. Though FedDF maintains the aux-
iliary dataset can be replaced with a pretrained generator, it
does not instantiate how to acquire the generator.

Data-Free Knowledge Distillation (DFKD). DFKD
methods [2, 6] generate pseudo data from a pretrained
teacher model, and use them to transfer knowledge of
teacher model to another student model. The data is gen-
erated by maximizing the response of fake data on teacher
model. Deeplmpression [32] models the output space of
teacher model and recovers the real data by fitting the out-
put space. Deeplnversion [4 1] further optimizes the pseudo
data by regularizing the distribution of intermediate feature
maps. DAFL [2] and DFAD [6] use a generator to gen-
erate data efficiently, where DAFL optimizes the generator
by maximizing the response on prediction and feature level,
and DFAD uses an adversarial training scheme to exploit
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Figure 2. Training procedure of FedFTG in the server. After re-
ceiving local models in ¢-th round and aggregating them, FedFTG
adversarially generates hard sample and transfers knowledge to
the aggregated global model through £,,4. Lc1s and L4 are uti-
lized to boost the fidelity and diversity of hard sample. Besides,
FedFTG uses customized label sampling and class-level ensemble
to derive maximum utilization of knowledge.

the knowledge in teacher model effectively.

FedGen also [44] learns a lightweight generator to en-
semble knowledge of local models in a data-free man-
ner, but uses the generator to regularize the local train-
ing. Besides, we design hard samples mining scheme, cus-
tomized label sampling, and class-level ensemble to effec-
tively transfer the knowledge from local models to global
model in data heterogeneity scenario.

3. Methodology

In this section, we describe the proposed novel federated
learning method: FedFTG. In each communication round,
FedFTG randomly selects a set of clients and broadcasts
the global model to them. Each client initializes the local
model using the global model and trains it with a local opti-
mizer. The server collects the local models and aggregates
them as a preliminary global model. Instead of broadcasting
the aggregated model back to each client directly, FedFTG
fine-tunes this preliminary global model in server using the
knowledge extracted from local models. Concretely, we de-
velop a data-free knowledge distillation method with hard
sample mining to effectively explore and transfer the knowl-
edge to global model. Considering the label distribution
shift in clients, we propose customized label sampling and
class-level ensemble to facilitate more effective knowledge
utilization. Figure 2 visualizes the training procedure on the
server, and the corresponding algorithm is summarized in
Algorithms 1&2. Note that FedFTG is orthogonal to efforts
on optimizing local model training, such as SCAFFOLD,
FedAvg, FedProx, and FedDyn.

3.1. Data-Free Knowledge Distillation With Hard
Sample Mining for Global Model Fine-Tuning

Let w be the model parameter in the server and clients.
In this work, we consider there exist K clients, where

Algorithm 1 FedFTG

Input: 7: communication round; K: client number; C: the
fraction of active client in each round; {Dx}req1,... x}: the
datasets of clients; w: the parameter of the classifier; 0: the
parameter of the generator.

1: initialize model parameters w and 6
2: fort=1,...,7T do
3: St < (random set of [C' - K| clients);
4: for k € S; in parallel do
5: wy, < ClientUpdate(w, Dy,)
> FedAvg, FedProx, FedDyn, and SCAFFOLD
6: end for
7 w, 0 < ServerUpdate(w, 0, {wk }res, )
8: end for

Algorithm 2 ServerUpdate, round ¢

Input: I: iteration of the training procedure in server; Iy, I4: in-
ner iteration of training the generator and the global model;
7g: the global step-size; w, 0, {wk }res;, Aciss Ar.

CAw = ﬁ > kes, Wk —w), w <+ w+ngAw

: compute p¢(y) according to Eq. (9)

fori=1,...,1do

(Z,Y) < (sample a batch of z~N(0, 1) and y ~p:(y))
compute {af’y}kgst,yey according to Eq. (10)
forj=1,...,1,do
update the generator 6 according to Eq. (8) to explore
hard samples based on current global model w
end for
: forj=1,...,I;do
10: update the global model w according to Eq. (8) to
transfer the knowledge from {wx }res, to w

11: end for

12: end for

13: return w, 6
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D, = {(:ck_,i,ym)}i-vz’“l is the dataset individually stored
in k-th client, Ny, is the corresponding number of samples.
Generally speaking, federated learning can be formulated
as the following problem:

1 & 1
rrgngk;fk(w), fr(w) = m;c(xz,yz;m, (1)

where L is the loss function to measure training error, and
dataset Dy, for each k € {1,2,..., K} could be distributed
heterogeneously. Due to the privacy protection constraint in
FL, the server can not directly access local data of clients.
To solve Eq. (1), for each communication round ¢, existing
methods send the global model w to a random set of clients
S; and optimize it by min,, fx(w), k € S;. The server col-
lects the local models {wy }res, and aggregates them by
averaging the gradients to update the global model w.
However, the local models are greatly drifted from each
other in data heterogeneity scenario. Thus, traditional gra-
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Figure 3. Visualization of hard sample mining. By exploring the
hard samples in data distribution and fine-tuning the global model,
the global model can be gradually corrected during training.

dient averaging could lose the knowledge in local models,
and the performance of updated global model is much lower
than local models [45]. To address this issue, we propose
a data-free knowledge distillation method to fine-tune the
global model, so that the global model can preserve the
knowledge in local models and maintain their performance
as much as possible. Concretely, the server maintains a con-
ditional generator G that generates pseudo data to capture
the data distribution of clients as follows,

T = G(z,y;0), (®))

where 0 is the parameter of G, z ~ N(0,1) is a standard
Gaussian noise, and y is the class label of Z sampled from
predefined distribution p;(y).

As shown in Figure 2, we then input the pseudo data x
to the global model to solve the following problem,

HLinIEZNNw,l) [Lmd] = HBHIEZ~N(0,1> |:Z af’yﬁfnd] (3)

y~pt(y) y~pt(y) kES,

where Efjl 4 18 the model discrepancy between global model
w and local model wy,,

Lra = Drr(o(D(@;w))|lo(D(F; wr))), )

where D is the classifier. o is the softmax function, which
will output the prediction score of . Dy denotes the
Kullback-Leibler divergence. af 'Y controls the weight of
knowledge from different local models during ensemble.
By minimizing L,,q, we transfer the knowledge in local
models to the global model. In Section 3.2 we will intro-
duce how to acquire p;(y) and af ¥ to adapt label distribu-
tion shift in data heterogeneity scenario.

Data Fidelity and Diversity Constraints. To better
extract knowledge from local models, the pseudo data =
should fit the input space of local models. Therefore, we
use semantic loss L. to train the generator GG, which will
facilitate the fidelity of pseudo data,

minE . n0,1) [Los] = minE. no.1) {Z af’yﬁﬁzs] )

o y~pi(y) o vere() | oS,
where Eléls is the cross-entropy loss between the prediction
of local model on pseudo data = and the class label v,

‘Clccls = ‘CCE(U(D(EL:1 wk))? y)7 (6)

where Lo is the cross-entropy loss. By minimizing L5,
Z is enforced to yield higher prediction on class ¥, thus it
fits the data distribution of class y.

Simply using £.;s will lead to model collapse of the gen-
erator: G outputs the same data for every class. To address
this issue, we use diversity loss Lg;s in [44] to improve the
diversity of the generated data,

Lois = eﬁ Xige{1,..., Q}(*|\5i*5ﬂ|2*”zi*2j“2) 7

where Z; is generated using z;. By minimizing L4;,, the
pseudo data will be diverse and scattered in the data space.

Hard Sample Mining. Training the generator G using
L5 will generate pseudo data & with low classification er-
ror, which means Z contains the most discriminative fea-
ture of class y and is easy to be classified. However, these
naive samples will not cause the prediction disagreement
between global model and local models, i.e., £,,q4 = 0, thus
the global model is not optimized during training. As illus-
trated in Figure 3, the naive samples are already correctly
classified by the global model. To effectively exploit the
knowledge in local models and transfer them to the global
model, we explore the hard samples in data distribution that
cause prediction disagreement between local models and
global model. Concretely, we adversarially train the gen-
erator and the global model with £,,,4: (1) the generator is
enforced to generate hard samples that maximize £L,,q, and
(2) the global model is trained to minimize L,,4 using the
hard samples. As aresult, the global model can be gradually
fine-tuned to fit the data distribution as in Figure 3.

To the end, the overall objective of FedFTG in the server
is formulated as an adversarial learning scheme,

min max E.n(0,1),y~pe (y) [Lma—Acts Lets —AdisLais] - (8)

3.2. Adaptation to Label Distribution Shift for Ef-
fective Knowledge Distillation

In data heterogeneity scenario, label distributions are dif-
ferent among clients, i.e., p’(y) # p’(y) for different clients
1 and j. This indicates that: (1) the local dataset Dy, of client
is class-imbalanced, and the local model trained by D, con-
tains imbalanced data information; (2) for one class, the im-
portance of knowledge are different among local models of
clients. To facilitate more effective knowledge distillation,
we propose customized label sampling and class-level en-
semble to adapt these two problems respectively.

Customized Label Sampling. Typically, dataset in local
client is class-imbalanced in data heterogeneity scenario,
even having no data for some classes. It has been proved
that deep neural networks tend to learn the majority classes
and ignore the minority classes [5]. Hence, the data infor-
mation of minority classes in local models could be wrong
and misleading, and the generated pseudo data are invalid
to measure the model discrepancy. If uniformly sample the



class label y, these invalid data will influence the global
model training and induce performance decrease. To miti-
gate this issue, we customize the sampling probability p;(y)
according to the distribution of whole training data in each
round, so that more pseudo data with effective information
can be generated,

Ny
pe®) o< Y > Bt yiyeny, luims] = Y 0l )
keS¢ i=1 keSt

where 1.ondition 1S 1 if the condition is true and O other-
wise, nj, is the instance number of class y in client k. Ac-
cording to Eq. (9), the pseudo data of majority classes have
high probability to be generated, thus FedFTG can guar-
antee effective knowledge distillation in data heterogeneity
scenario.

Class-Level Ensemble. The widely used ensemble
method in knowledge distillation assigns the same weight to
the knowledge from different teacher models [25,44], i.e.,
af Y= ﬁ in Eq. (3) and Eq. (5). Due to the label distri-
bution shift, for one class the importance of knowledge are
different among local models. If assigning the same weight
to clients, the important knowledge can not be figured out
and utilized properly. Therefore, we propose class-level en-
semble, which assigns the ensemble weight according to the
individual data distribution of clients. Specifically, we com-
pute the weight af Y via the data proportion of class y in
client k against the total data in S,

afv :nZ/Z n?, (10)

1E€ESt

As a result, the knowledge from clients can be flexibly in-
tegrated according to their importance on classes, so that
FedFTG can facilitate maximum utilization of knowledge
from local models.

4. Experiments

In this section, we empirically verify the effectiveness
of FedFTG'. We summarize the implementation details in
Section 4.1, and compare FedFTG with several SOTA FL
algorithms in Section 4.2. Ablation studies are conducted
to verify the necessity of each component of FedFTG in
Section 4.3. To further validate the effect of FedFTG on
real-world FL applications, we evaluate the performance of
FedFTG on three real-world datasets in Section 4.4.

4.1. Implementation Details

Baselines. We compare FedFTG against FedAvg [30],
FedProx [23], SCAFFOLD [18], FedDyn [1], MOON [22],
FedGen [44] and FedDF [25]. Since FedDF does not ex-
plain how to obtain the generator, we train it in the same
way as FedGen.

ICode is available at https:/github.com/ZhangLin-PKU/FedFTG.

Datasets. CIFAR10 and CIFAR100 datasets [20] with
heterogeneous dataset partition are used to test the efficacy
of FedFTG, which are two difficult tasks in FL scenario
and are widely adopted in FL research. Similar to existing
works [1, 12,42], we use Dirichlet distribution Dir(/3) on
label radios to simulate the non-iid data distribution among
clients, where a smaller § indicates higher data hetero-
geneity. During the implementation, we set 5 = 0.3 and
B =0.6.

Network Architecture. For both CIFAR10 and CI-
FAR100, we employ ResNet18 [13] as the basic backbone.
We borrow the generator network architecture from DFAD
[6] for FedFTG and FedDF. For FedGen, the network of
generator is composed of two embedding layers (for inputs
z and y, respectively) and two fully-connected (FC) layers
with LeakyReLLU and BatchNorm layers between them.

Hyperparameters. For all methods, we set the num-
ber of local training epoch £ = 5, communication round
T = 1000, the client number K = 100 with the active
fraction C' = 0.1 (i.e., |S¢| = 10). For local training, the
batchsize is 50 and the weight decay is 1le — 3. The learn-
ing rates for classifier and generator are initialized to be 0.1
and 0.01 respectively, and they are decayed quadratically
with weight 0.998. The dimension of z is 100 for CIFAR10
and 256 for CIFAR100. I, I, I in Algorithm 2 are 10, 1
and 5, respectively. If not specifically declared, we adopt
Aes = 1.0 and Ag;s = 1.0, and adopt SCAFFOLD as the
FL optimizer in FedFTG.

We further provide detailed implementations and extra
experiment results in the supplementary material.

4.2. Performance Comparison

Test Accuracy. Table 1 reports the test accuracy of all
compared algorithms on CIFAR10 and CIFAR100 datasets.
We provide the performance of centralized learning in the
first line. All experiments are repeated over 3 random seeds.
In Table 1, FedFTG achieves the best performance in all
scenarios, surpassing the second one (i.e., SCAFFOLD) by
at least 1.5%. FedDF also employs data-free knowledge
distillation to improve the global model in server. It outper-
forms FedAvg and FedProx, and outperforms FedDyn and
MOON in some cases, which further validates the superior-
ity of the scheme “fine-tuning the global model in server”.
However, it is worse than SCAFFOLD and FedFTG. Fed-
Gen yields lower accuracy compared with FedDF and
FedFTG, and shows marginal performance gains than Fe-
dAvg in some cases. The performance of FedDF and Fed-
Gen further verifies the effectiveness of the proposed mod-
ules in FedFTG.

Communication Rounds. Table 2 evaluates differ-
ent FL methods in term of the number of communication
rounds to reach target test accuracy (75% and 80% for CI-
FAR10, 40% and 50% for CIFAR100, respectively). In Ta-



Table 1. Test Accuracy (%) of different FL. methods on CIFAR10 and CIFAR100.

CIFARI10 CIFAR100

B =06 B8=03 iid B8 =06 B8=03
centralized learning 92.55+0.05 73.98+0.26
FedAvg 83.78+0.13  82.04+0.46 79.59+1.01 50.294+0.34  50.67+0.34  50.17£0.19
FedProx 84.10+£0.39  82.36+0.38  80.12+0.43 51.25+0.62  50.94+0.40 50.82+0.20
FedDyn 85.194+0.58 82.87+0.62 80.15+1.00 53.2740.01 51.68+0.31 50.51+0.34
MOON 84.34+0.09  82.67+0.08 80.97+0.46 52.51£0.70  52.55+0.49 51.88+0.25
SCAFFOLD 85.99+0.06 84.55+0.30 82.14%+1.20 53.324+0.32  53.91+0.33  54.36+0.32
FedGen 83.91+0.36  82.23+0.73  79.72+0.85 50.38+0.27 50.71+0.55  50.08+0.24
FedDF 84.47+0.20  82.92+0.64 80.97+0.74 52.124+0.15 51.36+0.02 51.26%0.09
FedFTG 87.34+0.16 86.06+£0.19 84.384+0.49 56.94+0.19 56.49+0.55 55.96+0.39

Table 2. Evaluation of different FL methods on CIFAR10 and CIFAR100 (8 = 0.3), in terms of the number of communication rounds to
reach target test accuracy (acc). Note that we highlight the best and second best results in bold.

CIFAR10 CIFAR100
acc = 75% acc = 80% acc = 40% acc = 50%
FedAvg 153.67+20.33  425.33+61.67 86.67+6.33 713.67+191.33
FedProx 143.67+0.33 391.67+13.33 86.00+£1.00 529.00436.00
FedDyn 90.67+2.33 183.67+23.33 64.00£8.00 239.33+15.67
MOON 128.00+10.00  347.00+24.00 79.67+2.33 376.00429.00
SCAFFOLD 100.33+14.67 212.00+£24.00 58.33+3.67 185.67+0.33
FedGen 140.00+4.00  406.67+29.33 95.00£1.00 684.001+92.00
FedDF 132.67+11.33  329.00+42.00 94.50+1.50 452.00+£5.00
FedFTG 92.67+14.33 188.67+31.33 57.00£1.00 166.33+10.67
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ble 2, FedFTG achieves the second best and the best re-
sults on CIFAR10 and CIFAR100, respectively. Besides,
FedFTG reduces the round number required by its FL op-
timizer (SCAFFOLD) in all scenarios. For CIFAR10, al-
though FedDyn uses fewer rounds to achieve the target ac-
curacy, its final accuracy is much worse than FedFTG, as
displayed in Table 1. Below, we provide the results of
using FedDyn as the optimizer of FedFTG, and the de-
rived method FedDyn+FedFTG requires fewer rounds to
reach target accuracy than FedDyn. Figure 4 displays the
learning curve of different methods in 1000 communication
rounds, where FedFTG achieves distinct performance gain
after 1000 rounds. Though FedDyn has a faster increase
rate in the beginning, the increase trend is gradually slow-
ing down as training goes, and its accuracy is falling be-
hind FedFTG after 150 and 50 rounds for CIFAR10 and
CIFAR100 respectively.
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Figure 5. (a) Test accuracy w.r.t. data heterogeneity. (b) Test
accuracy w.r.t. fraction C' of active clients in each round (8 =
0.3). All experiments are conducted on CIFAR10.

Data heterogeneity and Partial Client Participant.
Figure 5(a) displays the test accuracy on different 3 values.
In this figure, FedFTG achieves the best accuracy on all set-
tings, which validates that FedFTG is effective in various
data heterogeneity scenarios. Besides, FedFTG gains more
accuracy improvement in extreme data heterogeneity sce-
nario 8 = 0.2. In addition, as the degree of data heterogene-
ity decreases i.e., § increases, the accuracy of each method
is ascending. Figure 5(b) displays the test accuracy of FL
methods with different fractions of active clients in each
communication round. FedFTG also yields the best per-
formance in this figure. Besides, the more clients involved
in communication, the higher accuracy will be achieved.

Orthogonality of FedFTG with existing FL. optimiz-
ers. Table 3 provides the performance of FedFTG using
FedAvg, FedProx, FedDyn, SCAFFOLD and MOON opti-
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Figure 6. Performance of FedFTG using different hyperparameters (a) Acss, (b) Agis, (¢) dimension d of noise z on CIFAR10 with 8 = 0.3.

Table 3. The impact of FL optimizer on FedFTG.
(a) Test accuracy (%) on CIFAR10, 8 = 0.3 and 0.6.

Accuracy (%)
8 =0.6 £8=0.3
FedAvg+FedFTG 83.824+0.31 82.2740.67
FedProx+FedFTG 84.06+0.32 82.21+0.46
FedDyn+FedFTG 83.1740.50 81.43+0.18
MOON+FedFTG 83.814+0.45 82.194+0.91
SCAFFOLD+FedFTG 86.06+0.19 84.38+0.49

(b) the round number to reach the target accuracy
(acc = 75% and acc = 80%) when 3 = 0.3.

Round
acc = 75% acc = 80%
FedAvg+FedFTG 122.00+4.00 279.334+17.67
FedProx+FedFTG 117.33+6.67 278.67+25.33
FedDyn+FedFTG 79.00+3.00 168.00+13.00
MOON+FedFTG 114.33+6.67 276.004+12.00
SCAFFOLD+FedFTG 92.67+14.33 188.67£31.33

mizers. In Table 3, SCAFFOLD+FedFTG yields the best
test accuracy among all the optimizers. FedDyn+FedFTG
performs better than SCAFFOLD+FedFTG in terms of the
round number to reach the target accuracy. This is con-
sistent with the results in Table 2, where FedDyn requires
fewer rounds than SCAFFOLD. Comparing Table 3 with
Tables 1 and 2, we notice that for any FL optimizer, its
performance can be largely boosted by using FedFTG.
This validates the effectiveness and the orthogonality of
FedFTG. Besides, simply using FedAVG+FedFTG as lo-
cal optimizer already exceeds the other methods in Table 1
except SCAFFOLD.

4.3. Ablation Study

Necessity of each component in FedFTG. Table 4
displays the test accuracy of FedFTG after discarding
some modules and losses, trained with 500 communication
rounds on CIFARI10, 8 = 0.3. Here hsm, cls and abe
represent the hard sampling mining, customized label sam-
pling and class-level ensemble, respectively. We can see
that removing any module leads to worse and unstable per-

Table 4. Impact of the each components in FedFTG. The experi-
ments are conducted on CIFAR10, 5 = 0.3.

Method Accuracy (%)
baseline FedFTG 83.43+0.10
—hsm 82.49+0.42
-cls 82.39+0.22
module -abe 82.401+0.21
-hsm&cls 82.18+0.16
-hsm&abe 82.15+0.14
—cls&abe 82.111+0.28
-hsmé&clsé&abe 81.98+0.14
- Leis 82.50+0.55
- Lais 82.52+0.35
loss
- [/cls‘ Cdis 8212:|:Ol6
Drr < Lmse 10.1740.26

formance, i.e., lower accuracy and larger confidence inter-
val. In addition, their joint absence can cause a further de-
crease on accuracy. On the other hand, a similar tendency is
observed for the losses: the absence of single loss will lead
to performance decrease, and removing multiple losses will
enlarge the decrease. It should be noticed that, if replac-
ing the KL divergence with Mean Average Square (L,se)
to measure the model discrepancy, the model will collapse,
which leads to severe performance degradation.

Robustness of FedFTG on hyperparameters. To mea-
sure the influence of hyperparameter selection, we select
Acts and Ag;s from [0.5,0.75,1.0,1.25,1.5] and select the
dimension d of noise data z in [50, 100, 150, 200, 250]. Fig-
ure 6 illustrates the test accuracy in term of the box plot,
where FedFTG achieves similar performance among all the
choices. Besides, the worst accuracy in Figure 6(a)-(b) is
better than the best of previous works in Table 1. This indi-
cates that FedFTG is not sensitive to the selection of hyper-
parameter in a large range.

Comments on feature-level pseudo data. FedGen ad-
vises that the data in feature space are more compact than
in input space, thus it generates pseudo data in feature-level
and fine-tunes the last few FC layers of federated model.
Motivated by this, we compare the performance of FedFTG



Table 5. The impact of feature-level generation (F) and input-
level generation (I) on FedFTG. The experiments are conducted
on CIFARI10, # = 0.3 and 0.6.

Accuracy (%)
8=0.6 8=0.3
FedFTG(F) 84.67+0.35 82.76+0.81
FedFTG(I) 86.06+0.19  84.38+0.49

Table 6. Test accuracy (%) on real-world datasets MIP-TCD,
Compcar and Tiny-ImageNet.

Method MIO-TCD CompCar  Tiny-ImageNet
FedAvg 89.63+1.06 43.34+2.93 34.68+0.67
FedProx 89.69+1.00 44.07+3.41 35.394+0.54
FedDyn 90.47£0.99  50.46£2.57 41.7740.28
SCAFFOLD 89.88+1.11 48.6443.46 38.80+0.18
FedGen 89.85+1.03 45.96+4.18 35.4440.35
FedDF 90.01£0.70  47.31£3.47 36.19£0.40
FedFTG 91.16+0.92 51.85+3.46 42.234+0.22

using feature-level generation (F) and input-level genera-
tion (I) in Table 5. Though FedFTG(F) still exceeds the
other methods in Table 1, it suffers significant performance
drop compared with FedFTG(TI), which indicates the input-
level generation is more effective for FedFTG. This is be-
cause FedFTG(F) only fine-tunes the last few layers of the
global model, so the effect of knowledge transfer is limited.

4.4. Experiments on Real-World Datasets

In this section, we test the performance of FedFTG on
more challenging real-world datasets - vehicle classification
datasets MIO-TCD [28] and CompCar [40], and large-scale
image classification dataset Tiny-ImageNet. To better val-
idate the effectiveness of FedFTG, we use the surveillance
subset of CompCar, of which the images are collected by
surveillance cameras. For MIO-TCD and Tiny-ImageNet,
we assign the training data to 100 clients, while for Comp-
Car the client number is 50. 3 of Dirichlet distribution is 0.6
for all these datasets. The images of MIO-TCD and Comp-
Car are resized to 112 x 112 before training, and we adopt a
deeper generator for them. The communication round is 50,
100 and 1000 for MIO-TCD, CompCar and Tiny-ImageNet
respectively. The other settings are the same as in Sec-
tion 4.1. Experiment results are presented in Table 6.

From this table, we find that FedFTG consistently out-
performs the other methods in all scenarios, which verifies
the effectiveness of FedFTG in real-world FL applications.
FedDF and FedGen also adopt data-free knowledge gen-
eration to improve the federated model. Though they yield
higher performance than FedAvg and FedProx, FedFTG ex-
ceeds them by 1% ~ 6%. This further validates the effec-
tiveness of the proposed modules in FedFTG.

Zhttps://www.kaggle.com/c/tiny-imagenet

5. Discussion

Privacy issue. Since FedFTG recovers the training data
of clients in server, it may violate the privacy regulation
in FL. However, according to our observation, the pseudo
data only captures the high-level feature pattern of real data,
which cannot be understood by human beings (see Figure
2). Besides, as the generator is trained by all local mod-
els, the pseudo data tend to show shared features of data
in clients, which means the attribute of individual data will
not be revealed. Uploading label statistics of data in clients
may also leak privacy. One optional solution is adding noise
to label statistics. According to our experiments, when the
noise ratio is less than 10%, its influence on performance is
less than 0.1% on CIFAR10, 8 = 0.3 setting.

Communication cost. Compared with other methods,
FedFTG only need to additionally transmit the label statis-
tics of training data (i.e., {nf’y}keshye[le], M is the
class number), which induces negligibly extra transmission
cost. If the training data keep the same during training, the
label statistics can be reported to server before training, thus
no extra transmission cost will be introduced.

Limitations. The main limitation of this work mainly
exists in computation efficiency. As FedFTG additionally
trains the global model apart from local training, it will
make the whole training time longer than the other methods.
In our experiment, FedFTG requires about double the time
of FedAVG in each communication round. Besides, as the
global model training is conducted in the server, FedFTG is
more applicable to the cross-silo FL applications as defined
in [17], where the server can be organizations that own suf-
ficient computation source.

6. Conclusion

In this paper we propose a new data-free knowledge dis-
tillation method FedFTG to fine-tune the global model and
to boost the performance of federated learning. A hard sam-
ple mining scheme is proposed to effectively explore the
knowledge in local models and transfer it to global model.
Facing the label distribution shift in data heterogeneity sce-
nario, we propose customized label sampling and class-
level ensemble to derive maximum utilization of knowl-
edge. Extensive experiments on five benchmarks validate
the effectiveness of the proposed FedFTG.
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7. Supplementary
7.1. Exploration of Long-Tail problem
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Figure 7. Test accuracy of model trained on class-imbalanced data.
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Figure 8. Correlation of model accuracy, pseudo data accuracy
and the instance number on each class. Note that the class IDs are
ordered via the instance number.

To explore the influence of long-tailed data on model
performance, we train models using multiple subsets of CI-
FARI10, which have different degrees of imbalance. Here
the subset is generated by Dirichlet distribution Dir(/3),
where a smaller [ indicates more imbalanced data. The
data number of each subset is 5000, and the architecture
of the model is ResNet34 [13]. The results are illustrated in
Figure 7. Here, the curves in green and blue are the test ac-
curacy on fotal test data and partitive test data respectively,
where the distribution of partitive test data is the same as the
distribution of training data. We can see there is a perfor-
mance gap between two curves, and the gap becomes larger
when the degree of imbalance is increased. This is because
the model only learns the majority classes, and these classes
also dominate the partitive test data, thus the model achieves
high accuracy on partitive test data; whereas for the total test
data that contains balanced data for every class, the model
can not correctly predict the data of minority classes, thus
the model yields lower test accuracy on total test data. The
results in Figure 7 verifies that the model tends to learn ma-
jority data from imbalanced training data and ignore the mi-
nority classes. In the following, we term the model trained
using long-tailed data as “the biased model”.

To further explore the influence of the biased model on
pseudo data generation, we evaluate the accuracy of a bi-
ased model trained by a class-imbalanced CIFARI10 sub-
set, and the quality of pseudo data generated via the bi-
ased model. The data quality is displayed in terms of the

percentage of pseudo data that are correctly classified by a
well-trained classifier, which is trained on all data of CI-
FARI10 and achieves 81.38% test accuracy. The results are
illustrated in Figure 8. We can see that the model tends to
learn majority classes and yields extremely low even zero
accuracies for minority classes 7,10 and 9. Moreover, the
quality of pseudo data is highly related to original data dis-
tribution. For the minority classes, the test accuracy of the
pseudo data is less than 10%, i.e., the quality of the pseudo
data is even worse than random noise. This indicates that
the pseudo data generated via biased model could be in-
valid to conduct knowledge transfer, which motivates as to
customize the sample probability of label during data gen-
eration to facilitate effective knowledge transfer.

7.2. Visualization of Data Heterogeneity

In Figure 9, we figure out the data distributions of clients
that generated by Dirichlet distribution Dir(3) with differ-
ent S as well as IID data distributions. For each 3 value,
we display the data distributions of 10 clients. In Fig-
ure 9, the data distributions of clients are significantly dif-
ferent when (3 is small, and the client even has no data for
some classes. When 3 grows, the data is distributed more
evenly in each client, and the discrepancy of data distribu-
tions among clients becomes smaller.

7.3. Detailed Hyperparameters

Here we introduce the setting of hyperparameters for
baselines during experiments. For FedProx, the proximal
regularization parameter p is 1e —4. o in FedDyn is 1e — 2.
We set the local update round in SCAFFOLD following [ 1],
which is 50 according to our experiment setting. Follow-
ing [22], we set 7 = 0.5, tune p from {0.1, 1,5} and report
the best result. For FedGen and FedDF, the learning rate
for the generator is the same as FedFTG, i.e., it is initialized
as 0.01 and is decayed quadratically with weight 0.998. As
Resnet18 only has one fully-connected layer, [ in FedGen is
L — 1, where L is the total layer number.

7.4. Detailed Architecture of Generator

Table 7 lists the architectures of generators for FedFTG,
FedDF and FedGen used in Section 4.1 ~ Section 4.3.
Here, d is the dimension of noise data z, and it is 100 and
256 for CIFAR10 and CIFAR100, respectively. M is the
class number of datasets, and it is 10 and 100 for CIFAR10
and CIFAR100 respectively. The inplace of LeakReL.U is
0.2 here. Note that in Table 7(b) the output of genera-
tor is 512-dimensional, as the input of the last FC layer in
ResNet18 is 512-dimensional. If using the other classifiers,
the dimension of the generator’s output should be adjusted
accordingly.

Table 8 lists the architectures of generators used in Sec-
tion 4.4. Here d = 256 for all the datasets MIO-TCD,
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Figure 9. Visualization of the instance number per class allocated to each clients (indicated by dot size), for different 5 values of Dirichlet

distribution Dir(53).

Table 7. The architectures of generators used in Section 4.1 ~ Section 4.3.

(a) Generator for FedFTG and FedDF

2z € RY~ N(0,1)
m =Map(y) € RM y € [1,..., M]
FC(z) — 4096
FC(m) — 4096
Concat — 8192
Reshape, BN — 128 x 8 x 8
Conv2D, BN, LeakyReLU — 128 x 8 X 8
Upsampling — 128 x 16 x 16
Conv2D, BN, LeakyReLU — 64 x 16 x 16
Upsampling — 64 x 32 x 32
Conv2D, Tanh — 3 x 32 x 32

CompCar and Tiny-ImageNet. s is the image size, and s =
112,112, 64 for MIO-TCD, CompCar and Tiny-ImageNet
respectively. Note that for the experiments of VGGI1 in
Table 3 in the main paper, we also adopt these two genera-
tors for FedDF, FedGen and FedFTG.

7.5. Supplementary Experiment Results

Table 9 illustrates the communication rounds of different
methods to reach the target test accuracy (75% and 80% for
CIFAR10, 40% and 50% for CIFAR100) when 8 = 0.6,
which is a supplement to Table 2 in the main paper. Same

(b) Generator for FedGen

z € RT~ N(0,1)
m =Map(y) € RM y € [1,..., M]
FC(z) — 4096
FC(m) — 4096
Concat, BN — 8192
FC, BN, LeakyReLU — 8192
FC — 512

as Table 2, FedFTG achieves the second best and the best
convergence for CIFAR10 and CIFAR100 respectively. Be-
sides, it greatly reduces the round numbers required by its
FL optimizer SCAFFOLD.

Table 10 displays the test accuracy when adopting
VGG11 [36] and ResNet34 [13] as the classifier. In this
table, FedFTG yields the best performance in all scenarios,
which validates the effectiveness of FedFTG on various ar-
chitectures of deep neural network.



Table 8. The architectures of generators used in Section 4.4.

(a) Generator for FedFTG and FedDF

z € R~ N(0,1)
m =Map(y) € RM y € [1,..., M]

(b) Generator for FedGen
2z € R~ N(0,1)

lfg((z))% 522 m =Map(y) € RM, er [,..., M)
m)— s FC(z) — s
Concat — 252 FC(m) — s?

Concat, BN — 252
FC, BN, LeakyReLU — s>
FC, BN, LeakyReLU — s°

FC — 512

Reshape, BN — 512 x (s\16) x (s\16)
Conv2D, BN, LeakyReLU — 256 x (5\8) x (5\8)
Conv2D, BN, LeakyReLU — 128 X (s\4) x (s\4)
Conv2D, BN, LeakyReLU — 64 x (s\2) x (s\2)

Conv2D, BN, LeakyReLU — 64 X s X s

Conv2D, Tanh —+ 3 X s X s

Table 9. Evaluation of different FL. methods on CIFAR10 and CIFAR100 (8 = 0.6), in terms of the number of communication rounds to
reach target test accuracy (acc). Note that we highlight the best and second best results in bold.

CIFAR10 CIFAR100
acc = 75% acc = 80% acc = 40% acc = 50%

FedAvg 104.33+6.67 270.67+£13.33 81.67+2.33 563.67+163.33
FedProx 109.67+8.33 263.0+£27.0 81.67+11.33 476.00+=199.00
MOON 102.67+1.33  252.33+32.67 83.67+3.33 354.004+21.00
FedDyn 72.67+7.33 133.334+28.67 56.00+6.00 213.6746.33

SCAFFOLD 77.00+3.00 161.00+£8.00 61.67+£7.33 186.33+10.67
FedGen 114.00+8.00 284.33+30.67 82.00+5.00 571.33+78.67
FedDF 97.67+£8.33 246.331+24.67 90.00£6.00 445.00+£42.00
FedFTG 73.67+4.33 143.33+5.67 55.00+3.00 152.33+10.67

VGGI11 ResNet34
FedAvg 82.05+0.59 80.484+0.89
FedProx 82.104+0.53  81.0240.53
FedDyn 85.384+0.44 81.13%1.11
MOON 83.694+0.76  81.154+0.46
SCAFFOLD 86.784+0.37 83.314+0.71
FedGen 84.384+0.56 80.7240.44
FedDF 84.71+0.78  81.2040.46
FedFTG 87.46+0.49 85.00+0.45

Table 10. Test Accuracy (%) of different methods on CIFAR10
using VGG11 and ResNet34 networks (3 = 0.3).
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