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Abstract

Predictive learning ideally builds the world model of
physical processes in one or more given environments. Typ-
ical setups assume that we can collect data from all environ-
ments at all times. In practice, however, different prediction
tasks may arrive sequentially so that the environments may
change persistently throughout the training procedure. Can
we develop predictive learning algorithms that can deal
with more realistic, non-stationary physical environments?
In this paper, we study a new continual learning problem in
the context of video prediction, and observe that most ex-
isting methods suffer from severe catastrophic forgetting in
this setup. To tackle this problem, we propose the continual
predictive learning (CPL) approach, which learns a mix-
ture world model via predictive experience replay and per-
forms test-time adaptation with non-parametric task infer-
ence. We construct two new benchmarks based on RoboNet
and KTH, in which different tasks correspond to different
physical robotic environments or human actions. Our ap-
proach is shown to effectively mitigate forgetting and re-
markably outperform the naive combinations of previous
art in video prediction and continual learning.

1. Introduction

Predictive learning is an unsupervised learning technique
to build a world model of the environment by learning the
consequences from historical observations, sequences of ac-
tions, and corresponding future observation frames. The
standard predictive learning setup is assumed to operate
the model in a stationary environment with relatively fixed
physical dynamics [9, 15, 38, 41]. However, the assump-
tion of stationarity does not always hold in more realis-
tic scenarios, such as in the settings of continual learning
(CL), where the model is learned through tasks that arrive
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Figure 1. The new problem of continual predictive learning and
the general framework of our approach at test time.

sequentially. For example, in robotics (see Fig. 1), world
models often serve as the representation learners of model-
based control systems [1 1, 17—19], while the agent may be
subjected to non-stationary environments in different train-
ing periods. Under these circumstances, it is not practical
to maintain a single model for each environment or each
task, nor is it practical to collect data from all environments
at all times. A primary finding of this paper is that most
existing predictive networks [9, 15, 38, 41] cannot perform
well when trained in non-stationary environments, suffering
from a phenomenon known as catastrophic forgetting [ 3].

We formalize this problem setup as continual predic-
tive learning, in which the world model is trained in time-
varying environments (i.e., “tasks” in the context of contin-
ual learning) with non-stationary physical dynamics. The
model is expected to handle both newer tasks and older ones
after the entire training phase (see Section 2 for detailed se-
tups). There are two major challenges.

1.1. Covariate-Dynamics—Target Shift

Unlike in the settings of domain-incremental or class-
incremental CL for deterministic models, the world model,



which can be viewed as a conditioned generative model,
cannot assume a stationary distribution of training targets
or fixed target space. Therefore, different from all previous
CL problems, the unique challenge of continual predictive
learning is due to the co-existence of three types of distribu-
tion shift, including the covariate shift in Px, the target shift
in Py, and the dynamics shift Py | x !, Notably, the covari-
ate shift [14,28-31,39,43] and target shift [2, 16,21,27,50]
have been widely considered by existing methods, whereas
the conditional distribution is typically assumed to be in-
variant. In our setup, however, the conditional distribution
Py |x corresponding to the spatiotemporal dynamics also
changes over training periods. It significantly increases the
probability of catastrophic forgetting in the world model.

To combat the dynamics shift, we first present a new
world model that learns multi-modal visual dynamics of
different tasks on top of task-specific latent variables. Fu-
ture frames are generated by drawing samples from learned
mixture-of-Gaussian priors conditioned on a set of categori-
cal task variables, and combining them with a deterministic
component of future prediction (see Section 3.1).

Second, we specifically design a novel training scheme
named predictive experience replay. Like deep generative
replay (DGR) [40], the proposed training method leverages
a learned generative model to produce samples of previ-
ous tasks. Yet, in our approach, these samples are fed into
the world model as the first frames to generate entire se-
quences, which can be reused as model inputs for rehearsal.
The world model alternates between (i) generating rehearsal
data without backpropagating the gradients, (ii) regressing
the facilitate future frames of previous tasks produced by
the world model itself, and (iii) generating future frames
from real data of the current task. Another advantage of this
training scheme is about the memory efficiency, as it only
retains parts of low-dimensional action vectors in the buffer
for action-conditioned predictive replay (see Section 3.2).

1.2. Task Inference: Coupled Forgetting Issues

The second challenge in continual predictive learning is
the task ambiguity at test time, which can greatly affect the
prediction results. Unlike existing CL methods for fully
generative models [33,40], in our setup, the models are re-
quired not only to solve each task seen so far, but also to in-
fer which task they are presented with. A naive solution is to
infer the task using another neural network. However, due
to the inevitable forgetting issue of the task inference model
itself, coupled with that of the world model, this method is
unlikely to perform well. In Section 3.3, we propose the
non-parametric task inference strategy, which overcomes
the intrinsic nature of forgetting of a deterministic model.

'In predictive learning settings, the input X is in forms of sequential
observation frames X7.7 and the training target Y corresponds to future
frames X7 1.7+ . We here skip the input action signals for simplicity.

We also present a self-supervised, test-time training process
that recalls the pre-learned knowledge of the inferred task
through one or several online adaptation steps.

We construct two new benchmarks for continual predic-
tive learning based on real-world datasets, RoboNet [6] and
KTH [37], in which different tasks correspond to different
physical robotic environments or human actions. Our CPL
approach is shown to effectively avoid forgetting and re-
markably outperform the straightforward combinations of
previous art in video prediction and continual learning.

2. Problem Setup

Unlike existing predictive learning approaches, we con-
sider to learn a world model (M) in non-stationary environ-
ments (i.e., the evolution of tasks), such that

‘)?T-H:T+H ~ M(Xy.r,ar7r -1, k), (D

where &.7 and X7 1.74 g are respectively the observed
frames and future frames to be predicted. The task index k
is known at training, but not observed at test. It requires our
approach not only to solve each task seen so far, but also to
infer which task it is presented with, denoted as ’7; Here,
ar.7+p—1 18 the optional inputs of action signals when M
is learned for vision-based robot control, as in the action-
conditioned video prediction experiments in this paper. For-
mally, continual predictive learning assumes that:

Covariate shift: P(Xf:T) #+ P(Xlk;JTrl)
Dynamics shift: P(Xf 1.0y g |Xiir) # P(quiii:T+H|X1k}1)

Target shift: P(Xf 1.4 p) # P(X;E:TJFH),
2

where we leave out ar.rypg—1 for simplicity in the con-
ditional distribution of visual dynamics. The setup is in
part similar to class-incremental CL for supervised tasks
that assumes P(X*) # P(xF1), {YF} = {YrF1y,
P(Y*) # P(Yk*t1). {YF} denotes a constant label set
for discriminative models. In contrast, continual predictive
learning does not assume a fixed target space, and therefore
may have more severe catastrophic forgetting issues.

3. Approach

In this section, we present the new continual predictive
learning (CPL) approach, which first mitigates catastrophic
forgetting within the world model from two aspects:

* Mixture world model: A recurrent network that cap-
tures multi-modal visual dynamics. Unlike existing mod-
els [9, 18], the learned task-specific priors are in forms of
mixture-of-Gaussians to overcome dynamics shift.

* Predictive experience replay: A new rehearsal-based
training scheme that combats the forgetting within the
world model and is efficient in memory usage.
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Figure 2. The overall network architecture of the mixture world model and the predictive experience replay training scheme in the proposed
CPL method. (a) The world model learns representations in the forms of mixture-of-Gaussians based on categorical task variables. (b) As
for the predictive experience replay, the world model (M) interacts with the initial-frame generative model (G). In this replay stage, we
first use G to generate the first frames of previous tasks without backpropagating the gradients, then use M to predict the corresponding
future frames, and finally combine the rehearsal data and real data to jointly train M and G.

To cope with the challenge of task ambiguity when test-
ing the world model in an unknown task, we propose:

* Non-parametric task inference: Instead of using any
parametric task inference model that may introduce ex-
tra forgetting issues, we use a trial-and-error strategy over
the task label set to determine the present task.

3.1. Mixture World Model

The world model M considers a new remedy to catas-
trophic forgetting from the perspective of spatiotemporal
representation. As mentioned above, the forgetting prob-
lem within existing world models [9, 18] is mainly caused
by the covariate-dynamics-target shift in time-varying en-
vironments. Therefore, the key idea of the proposed world
model in CPL is to use mixture-of-Gaussian variables to
capture the multi-modal distribution of visual dynamics in
the latent space, as well as that of spatial appearance in the
input/output observation space. Accordingly, as shown in
Fig. 2(a), the world model consists of three components:

Representation module:  z; ~ q4(XF,, k)
Encoding module:  Z; ~ py(Xf,_1, k)

Dynamics module: /'?t = pg(X{ft_l, a1:4-1,21:4, k).

3)

The representation module infers the latent state z, from the
target frames. It takes as input the categorical task variable
k € {1,...,K} to cope with the target shift in continual
predictive learning scenarios. The encoding module corre-
sponds to the covariate shift and dynamically maps the input
frames to Z; in the same latent subspace as z;. The dynamics

module learns the deterministic transition component from
inputs to prediction targets. It responds to multi-modal spa-
tiotemporal dynamics by taking as input the task-specific
latent variable z;. All components are implemented as neu-
ral networks, in which the dynamics module is particularly
composed of stacked ST-LSTM layers [47].

The task-specific latent representation z; is drawn from
a mixture-of-Gaussian distribution, inspired by existing un-
supervised learning methods that use Gaussian Mixture pri-
ors for variational autoencoders [10, 22, 33]. Our mixture
world model is an early work that uses this representa-
tion form to model the multi-modal priors in spatiotem-
poral dynamics. Specifically, for each task, the represen-
tation module and the encoding module are both condi-
tioned on the present task label. They are jointly trained
to learn the posterior and prior distribution of z; by opti-
mizing the Kullback- Leibler divergence At task Ty, the
objective function L% (Xf, 17, a¥.p ;) combines the
KL loss with the reconstruction loss:

T+H
Z [EQ(zlzt | X]k:t»k?) Ing(th | Xlkgtflv alf:tfh Z1:¢, k) (4)
t=2

— aDrr(q(ze | XLy, k) || p(ze | XLy, K))],

where « is set to 10~% in our experiments. In the test phase,
we discard the representation module ¢4 and only use the
encoding module py, to sample task-specific latent variables
for frames generation.

3.2. Predictive Experience Replay

The two main challenges in typical CL setups are catas-
trophic forgetting and memory limitation. Due to the co-



Algorithm 1 Predictive experience replay

Algorithm 2 Testing procedure

Input: Training data {X e, {af. g1 ey
QOutput: World model M, generative model G

1: Train M at 77 according to Eq. (4)

2: Train G at 77 according to Eq. (6) with k = 1

3: fork=2,..., K do

4: # Replay video sequences (skip the batch size)

5 fork=1,....,k—1do

6 X1 — Q(a17 k) )

7: X2kT+H « M(Xl ,a2 r+H-1,K)

8: end for

9 # Mix replayed data at T1.,,_1 and real data at Ty,
Dlik—1  1:k—1 ;

10: (X7 i 1) U (Xl )

11: Train M according to Eq. (5)
12: Train G according to Eq. (6)
13: end for

existence of covariate shift, target shift, and dynamics shift,
these challenges become even more urgent in the context
of continual predictive learning based on video data. One
common way to tackle these challenges is generative re-
play [33,40], which considers using a generative model to
produce samples of previous tasks. However, the generative
replay method cannot be used directly in our setup, as it is
extremely difficult to generate a valid video sequence using
a generative model alone.

Therefore, we propose the predictive experience replay,
which firmly combines an initial-frame generative model
(G), which learns to generate the first frame of videos at pre-
vious tasks given the task labels, with the world model (M).
To counter the coviariate shift of image appearance in non-
stationary environments, G also uses learnable mixture-of-
Gaussian latent priors, denoted by e. As shown in Fig. 2(b),
for each previous task 7;, we first use G to generate the
first frames of the rehearsal video sequences, and then use
M to predict the corresponding future frames. Finally, we
mix the rehearsal sequences at previous tasks and real se-
quences at the present task 7Ty, to train G and M in turn. We
summarize the training procedure in Alg. 1. The predictive
experience replay is different from all existing generative
replay methods because the world model plays a key role in
the rehearsal process.

In particular, for action-conditioned predictive learning
scenarios, we maintain a buffer to keep parts (~7%) of
the low-dimensional action sequences from previous tasks.
During predictive experience replay, we first sample an ac-
tion sequence from the buffer af.;., ;;_; at a previous task
77;. We feed the initial action a’f and the task label & into g

to ensure that the generated first frame /'?f is valid for robot
control, and perform M to produce predictive replay results

Yk
Xoipy g given X1 and a¥ . L rr—1- In predictive experience

Input: Observation frames Xj.7, optional actions a;.74
Output: Predicted future frames Q?T+1:T+ H
# Non-parametric task inference
fork=1,...,K do
leg/g_i_l T M(XI:T/Qa a1:7-1, k)
end for R
k =argminge k) ZtT:T/QH(Xt —&})?
# Test-time adaptation (optional)
Optimize M with E’j\,l()(l:T, a1.7—1)
# Model deployment
Xryrrenm — M(Xyr, avrig-1, k)

Rl A A A

replay, we train the world model M at 7 by minimizing

k-1
L :Z‘C?M(XIIC:T-i-Hva'IIC:T-&-H—l) )
k=1

k k k
+ £M(X1:T+H7 al:T+H—1)'

The objective function of the initial-frame generative model
G can be written as

ﬁg = Eq(e\Xlk,k) logp(‘)flk Ieaallgvk)
—BDKL( (e Xf k) [ p(e]| k)

+Z (o] ZF
=1
— BDxr(q(e| X} jf) l[p(e] ff))],

where the reconstruction loss is in an £5 form and [3 is set to
10~* through empirical grid search.

6
logp(X1 le, al, ) ©)

3.3. Non-Parametric Task Inference

In the mixture world model, the task label has a signif-
icant impact on the learned priors and corresponding pre-
diction results. Since it is unknown at test time, it can only
be inferred from the input observation sequences, i.e., video
classification. However, existing video classification mod-
els tend to underperform in the domain-incremental CL set-
ting, which will magnify the catastrophic forgetting prob-
lem jointly trained with the world model. To avoid the in-
herent forgetting issue of model-based task inference, we
propose a new non-parametric method that only exploits the
learned mixture world model to make task inference.

More precisely, as shown in Alg. 2, we feed the first half
of each input sequence into the world model &.7 /2, along
with a hypothetic task label k. We then enumerate each
task label k¥ € {1,..., K} and evaluate the outputs of the
world model on the remaining frames of the input sequence
Xr/241.7. Finally, we choose the task label k that leads to
the best prediction quality.



Method Action-conditioned Action-free
PSNR' SSIM™ (x1072) PSNR" SSIM™ (x1072)

SVG [9] 18.72 £ 0.61 68.59 +2.22 18.92 £0.51 68.08 £+ 2.20
PredRNN [47] 19.45 66.38 19.56 69.92
PhyDNet [15] 19.60 68.68 21.00 75.47
PredRNN + LwF [26] 19.10 64.73 19.79 71.43
PredRNN + EWC [24] 21.15 74.72 21.15 78.02
CPL-base + EWC [24] 21.29 £0.30 75.16 = 0.98 21.38 £0.18 76.68 £+ 0.69
CPL-base 19.36 + 0.00 63.57 £ 0.00 20.15 £ 0.02 71.15 £0.08
CPL-full 23.26 = 0.10 80.72 £+ 0.23 22.48 £+ 0.03 78.84 £+ 0.07
CPL-base (Joint training) | 24.64 + 0.01 83.73 + 0.00 22.56 £+ 0.01 79.57 £0.02

Table 1. Quantitative results of continual predictive learning on the RoboNet benchmark in both action-conditioned and action-free setups.
(Lines 1-3) Existing video prediction models with i.i.d. assumption. (Lines 4-6) Combinations of predictive models and continual learning
approaches. (Lines 7-8) Our predictive model based on learned mixture-of-Gaussian priors, and the the entire CPL with predictive expe-
rience replay and non-parametric task inference. (Line 9) A baseline model jointly trained on all tasks throughout the training procedure,
whose results can be roughly viewed as the upper bound of our approach.

In addition to using P(X7/o41.7|X1.7/2) to perform
task inference, we also use this self-supervision for test-
time adaptation, which allows the model to continue train-
ing after deployment. Test-time adaptation effectively re-
calls the pre-learned knowledge in the inferred task 7
through one-step (or few-steps) online optimization, thus
further alleviating the forgetting problem.

4. Experiment
4.1. Experimental Setup

Benchmarks. We quantitatively and qualitatively evalu-
ate CPL on the following two real-world datasets:

* RoboNet [6]. The RoboNet dataset contains action-
conditioned videos of robotic arms interacting with a va-
riety of objects in various environments. We divide the
whole dataset into four continual learning tasks according
to the environments (i.e., Berkeley — Google — Penn —
Stanford). For each task, we collect about 3,840 training
sequences and 960 testing sequences.

* KTH action [37]. This dataset contains gray-scale videos
which include 6 types of human actions. We directly use
the action labels to divide the dataset into 6 tasks (i.e.,
Boxing — Clapping — Waving — Walking — Jogging —
Running). For each task, we collect about 1,500 training
sequences and 800 testing sequences in average.

We define the task orders by random sampling, and with-
out loss of generality, our approach is effective to any task
orders (see Section 4.4). More experimental configurations
and the implementation details can be found in the Supple-
mentary Material.

Evaluation criteria. We adopt SSIM and PSNR from
previous literature [9,47] to evaluate the prediction results.
We run the continual learning procedure 10 times and report
the mean results and standard deviations in the two metrics.

Compared methods. We compare CPL with the follow-

ing baselines and existing approaches:

* CPL-base: A baseline model that excludes the new com-
ponents of Gaussian mixtures, predictive replay, and task
inference.

* PredRNN [47], SVG [9], PhyDNet [15]: Video predic-
tion models focused on stochastic, deterministic, and dis-
entangled dynamics modeling respectively.

 LwF [26]: It is a distillation-based CL method built on
the memory state of PredRNN [47].

« EWC [24]: It constrains the parameters of PredRNN and
CPL-base on new tasks with additional loss terms.

4.2. RoboNet Benchmark

We first evaluate CPL on the real-world RoboNet bench-
mark, in which different continual learning tasks are di-
vided by laboratory environments. We conduct both action-
conditioned and action-free video prediction on RoboNet.
The former follows the common practice [3, 48] to train the
world model to predict 10 frames into the future from 2 ob-
servations and corresponding action sequence at the 11 time
steps. For the action-free setup, we use the first 5 frames as
input to predict the next 10 frames.

Quantitative comparison. Table | gives the quantitative
results on RoboNet, in which the models are evaluated on
the test sets of all 4 tasks after the training period on the last
task. We have the following findings here. First, CPL out-
performs existing video prediction models by a large mar-
gin. For instance, in the action-conditioned setup, it im-
proves SVG in PSNR by 24.3%, PredRNN by 19.6%, and
PhyDNet by 18.7%. Second, CPL generally performs bet-
ter than previous continual learning methods (i.e., LWF and
EWC) combined with video prediction backbones. Note
that a naive implementation of LwF on top of PredRNN
even leads to a negative effect on the final results. Third,
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Figure 3. Results on the action-conditioned RoboNet benchmark.
The horizontal axis represents the sequential training process, and
the vertical axes represent test results on particular tasks after each
training period. The purple dashed line indicates the results of the
baseline model jointly trained on all tasks.

by comparing CPL-full (our final approach) with CPL-base
(w/o Gaussian mixture latents, predictive experience replay,
or non-parametric task inference), we can see that the new
technical contributions have a great impact on the perfor-
mance gain. We provide more detailed ablation studies
in Section 4.4. Finally, CPL is shown to effectively ease
catastrophic forgetting by approaching the results of jointly
training the world model on all tasks in the i.i.d. setting
(23.26 vs. 24.64 in PSNR). Apart from the average scores
for all tasks, in Fig. 3, we provide the test results on par-
ticular tasks after individual training periods. As shown in
the bar charts right to the main diagonal, CPL performs par-
ticularly well on previous tasks, effectively alleviating the
forgetting issue. Please refer to the Supplementary Material
for detailed comparison results.

Qualitative comparison. Fig. 4 provides the qualitative
comparisons on the action-conditioned RoboNet bench-
mark. Specifically, we use the final models after the training
period of the last task to make predictions on the first task.
We can see from these demonstrations that our approach
is more accurate in predicting both future dynamics of the
objects as well as the static information of the scene. In
contrast, the predicted frames by PredRNN+LwF and CPL-
base+EWC suffer from severe blur effect in the moving ob-
ject or the static (but complex) background, indicating that
directly combining existing CL algorithms with the world
models cannot effectively cope with the dynamics shift in
highly non-stationary environments.

4.3. KTH Benchmark

Quantitative comparison. Table 2 shows the quantitative
results on the test sets of all 6 tasks after the last training

Input frames Ground truth and predictions
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Figure 4. Showcases of action-conditioned video predlctlon in
the first environment of RoboNet (i.e., Berkeley) after training the
models in the last environment (i.e., Stanford).

Method PSNR SSIM (x10~?) |
SVG [9] 2220 £0.02  69.23 £ 0.01
PredRNN [47] 23.27 70.47
PhyDNet [15] 23.68 72.97
PredRNN + LwF [26] 24.25 70.93
CPL-base + EWC [24] | 2432 +£0.15  69.02 + 0.48
CPL-base 2296 £ 0.05  63.98 £ 0.02
CPL-full 29.12 £ 0.03  84.50 -+ 0.04
CPL-base (Joint train) | 28.12 £ 0.01 _ 82.16 £ 0.00

Table 2. Quantitative results on the KTH benchmark.

period of the models on the last task. We can observe that
CPL significantly outperforms the compared video predic-
tion methods and continual learning methods in both PSNR
and SSIM. Furthermore, an interesting result is that our ap-
proach even outperforms the joint training model, as shown
in the bottom line in Table 2. While we do not know the
exact reasons, we state two hypotheses that can be inves-
tigated in future work. First, the Gaussian mixture priors
enable the world model to better disentangle the representa-
tions of visual dynamics learned in different continual learn-
ing tasks. Second, the predictive experience replay allows
the pre-learned knowledge on previous tasks to facilitate the
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Figure 5. Results on the KTH benchmark. The horizontal axis rep-
resents the sequential training process, and the vertical axes repre-
sent test results on particular tasks after each training period.

| Replay | Infer k | Random k | Adapt | PSNR  SSIM |

X X X X 2296  68.98
v X X X 2721 79.99
v v X X 27.82  81.51
v X v X 26.56  78.64
v v X v 29.12  84.50

Table 3. Ablation study for each component of CPL on the KTH
benchmark. “Replay” denotes the use of predictive experience re-
play. “Infer £” indicates the use of non-parametric task inference.
“Random k” means that the world model takes as input a random
task label at test time. “Adapt” means test-time adaptation.

learning process on new tasks. Fig. 5 provides the inter-
mediate test results on particular tasks after each training
period, which confirm the above conclusions.

Qualitative comparison. We visualize a sequence of pre-
dicted frames on the first task of KTH in Fig. 6. As shown,
all existing video prediction models and even the one with
LwF generate future frames with the dynamics learned in
the last task (i.e., Running), which clearly demonstrates
the influence of the dynamics shift. Images generated by
CPL-base+EWC suffer from a severe blur effect, indicat-
ing that the model cannot learn disentangled representations
for different dynamics in the non-stationary training envi-
ronments. In comparison, CPL produces more reasonable
results. To testify the necessity of task inference, we also

Input frames
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PhyDNet
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(with label “Running”) &
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Figure 6. Showcases of predicted frames of the first task (i.e.,
Boxing) after the training period of the last task (i.e., Running).

provide incorrect task labels for CPL. As shown in the third
line from the bottom, the model takes as input the Boxing
frames along with an erroneous task label of Running. In-
terestingly, CPL combines the inherent dynamics of input
frames (reflected in motion of arms) with the dynamics pri-
ors from the input task label (reflected in motion of legs).

4.4. Ablation Study

Effectiveness of each component in CPL. We conduct
ablation studies on the KTH benchmark step by step. In Ta-
ble 3, the first line shows the results of the CPL-base model
and the bottom line corresponds to our final approach. In
the second line, we train CPL-base with predictive expe-
rience replay and observe a significant improvement from
22.96 to 27.21 in PSNR. In the third line, we improve the
world model with mixture-of-Gaussian priors and accord-
ingly perform non-parametric task inference at test time.
We observe consistent improvements in both PSNR and
SSIM upon the previous version of the model. In the fourth
line, we skip the non-parametric task inference during test-
ing and use a random task label instead. We observe that



Dataset PSNR SSIM (x10~) |
RoboNet | 23.58 £0.28  79.67 + 3.75
KTH 28.93 £0.14  83.99 + 0.40

Table 4. Robustness of CPL on random task orders.

the performance drops from 27.82 to 26.56 in PSNR, indi-
cating the importance of task inference to predictive expe-
rience replay. Finally, in the bottom line, we introduce the
self-supervised test-time adaptation. It shows a remarkable
performance boost compared with all the above variants.

Is CPL robust to the task order? As shown in Table 4,
we further conduct experiments to analyze that whether
CPL can effectively alleviate catastrophic forgetting regard-
less of the task order. We additionally train the CPL model
in 3-4 random task orders. From the results, we find that
the proposed techniques including mixture world model,
predictive experience replay, and non-parametric task infer-
ence are still effective despite the change of training order.

5. Related Work

Continual learning of supervised tasks. Continual
learning is designed to cope with the continuous infor-
mation flow, retaining or even optimizing old knowledge
while absorbing new knowledge. Mainstream paradigms
include regularization, replay, and parameter isolation [&].
The regularization approaches typically tackle catastrophic
forgetting [13] by constraining the learned parameters on
new tasks with additional loss terms, e.g., EWC [24], or
distilling knowledge from old tasks, e.g., LWF [26]. For
replay-based approaches, a typical solution is to retain a
buffer on earlier tasks of representative data or feature ex-
emplars [, 34,35]. Some approaches also use generative
networks to encode the previous data distribution and syn-
thesize fictitious data for experience replay, e.g., DGR [40]
and CURL [33]. The parameter isolation approaches al-
low the neural networks to dynamically expand when new
tasks arrive [30] or encourage the new tasks to use previ-
ously “unused” parameter subspaces [20].

Continual learning of unsupervised tasks. Most exist-
ing approaches are mainly focused on supervised tasks of
image data. Despite the previous literature that discussed
unsupervised CL [5, 23, 33], our approach is significantly
different from these methods as it explores the specific chal-
lenges of continual predictive learning for video data, espe-
cially the covariate-dynamics-target shift. The most related
method to CPL is CURL [33], which introduces a mixture-
of-Gaussian latent space for class-incremental CL and com-
bat forgetting via generative replay. There are three major
differences between CPL and CURL. First, CURL cannot
be directly used in our setup as it does not handle the dy-
namics shift in non-stationary spacetime, while CPL tackles

it through a new world model. Second, CPL greatly bene-
fits from the carefully-designed predictive replay algorithm,
while it is extremely difficult for CURL to replay valid
video frames using a fully generative model alone. Third,
CPL provides a non-parametric task inference method as
opposed to the model-based inference method in CURL.

Video prediction. RNN-based models have been widely
used for deterministic video prediction [7, 32, 38, 41, 42,

,47,49]. Shi et al. [38] proposed ConvLSTM to im-
prove the learning ability of spatial information by com-
bining convolutions with LSTM transitions. Following this
line, Wang et al. [47] proposed PredRNN, modeling mem-
ory cells in a unified spatial and temporal representation.
Stochastic video prediction models assume that different
plausible outcomes would be equally probable for the same
input, and thus incorporate uncertainty in the models using
GANSs [44,45] or VAEs [3,4,9,12,25]. Particularly, Yao et
al. proposed to adapt video prediction models from multi-
ple source domains to a target domain via distillation [49].
However, it cannot be easily used as a solution to continual
predictive learning, as the number of retained model param-
eters increases linearly with the number of tasks.

6. Discussion

In this paper, we explored a new research problem of
continual predictive learning, which is challenging due to
the co-existence of the covariate, dynamics, and target shift.
We proposed an approach named CPL, whose major contri-
butions of CPL can be viewed in three aspects. First, it
presents a new world model to capture task-specific visual
dynamics in a Gaussian mixture latent space. Second, it
introduces the predictive experience replay method to over-
come the forgetting issue in the world model. Third. it
leverages a non-parametric task inference strategy to avoid
coupling the forgetting issues caused by the introduction of
a task inference model. Our approach has shown compet-
itive results on RoboNet and KTH benchmarks, achieving
remarkable improvements over the naive combinations of
existing world models and CL algorithms.

Although CPL can be easily extended to more complex
tasks, the potential limitation is that it has not been eval-
uated in the entire pipeline of vision-based robot control,
which includes the processes of predictive learning and de-
cision making. In future work, we plan to integrate CPL in
a model-based reinforcement learning framework to further
validate its effectiveness for downstream tasks.
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