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Abstract

Multi-frame human pose estimation has long been a
compelling and fundamental problem in computer vision.
This task is challenging due to fast motion and pose oc-
clusion that frequently occur in videos. State-of-the-art
methods strive to incorporate additional visual evidences
from neighboring frames (supporting frames) to facilitate
the pose estimation of the current frame (key frame). One
aspect that has been obviated so far, is the fact that cur-
rent methods directly aggregate unaligned contexts across
frames. The spatial-misalignment between pose features of
the current frame and neighboring frames might lead to un-
satisfactory results. More importantly, existing approaches
build upon the straightforward pose estimation loss, which
unfortunately cannot constrain the network to fully leverage
useful information from neighboring frames.

To tackle these problems, we present a novel hierarchi-
cal alignment framework, which leverages coarse-to-fine
deformations to progressively update a neighboring frame
to align with the current frame at the feature level. We
further propose to explicitly supervise the knowledge ex-
traction from neighboring frames, guaranteeing that useful
complementary cues are extracted. To achieve this goal,
we theoretically analyzed the mutual information between
the frames and arrived at a loss that maximizes the task-
relevant mutual information. These allow us to rank No.1
in the Multi-frame Person Pose Estimation Challenge on
benchmark dataset PoseTrack2017, and obtain state-of-the-
art performance on benchmarks Sub-JHMDB and Pose-
Track2018. Our code is released at https://github.
com/Pose-Group/FAMI-Pose, hoping that it will be
useful to the community.

*Corresponding Authors

Figure 1. State-of-the-art methods like PoseWarper and DCPose
directly aggregate unaligned contexts from neighboring frames,
which may fail for scenes with fast motion or pose occlusion.
We perform temporal feature alignment between each supporting
frame and the key frame, delivering robust pose estimations.

1. Introduction
A key component of our capacity to interact with oth-

ers lies in our ability to recognize the poses of humans
[36, 37, 48]. Likewise, detecting human poses is crucial for
an intelligent machine to adjust its action and properly allo-
cate its attention when interacting with people. Nowadays,
pose estimation finds abundant applications in a wide spec-
trum of scenarios including action recognition, augmented
reality, surveillance, and tracking [39, 67].

An extensive body of literature focuses on pose esti-
mation in static images, ranging from earlier approaches
[47, 57, 59, 70] utilising tree models or random forest mod-
els to recent attempts employing deep convolutional neural
networks [6,42,54,60]. For pose estimation in videos, such
methods are severely challenged in handling deteriorated
video frames arising from scenes with fast motion and pose
occlusion. Incorporating and leveraging additional contexts
from neighboring frames is desirable to fill in the absent
motion dynamics within a single frame and facilitate pose
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estimation.
One line of work [2, 39, 58] proposes to aggregate

vanilla sequential features of neighboring frames (support-
ing frames). [39] trains a convolutional LSTM to model
both spatial and temporal features, and directly predicts
pose sequences for videos. [58] presents a 3D-HRNet to
assemble features over a tracklet. Another line of work
[35,45,50] employs optical flow or implicit motion estima-
tion to polish the pose estimation of the current frame (key
frame). [45, 50] propose to compute dense optical flow be-
tween frames, and leverage the flow based motion field for
refining pose heatmaps temporally across multiple frames.
[35] aggregates the pose heatmaps of consecutive frames
and models motion residuals to improve pose estimation of
the key frame.

Upon scrutinizing and experimenting on the released im-
plementations of existing methods [5, 11, 35], we observe
that they suffer from performance deterioration in challeng-
ing cases such as rapid motion and pose occlusion. As il-
lustrated in Fig. 1, in the pose occlusion scenario, existing
methods like DCPose fail to recognize the right ankle of the
occluded person, leading to unexpected results. In the fast
motion scenario, existing methods encounter difficulties in
identifying the left wrist due to motion blur. We conjec-
ture that the reasons are twofolds. (1) It is common that the
same person in the current frame and a neighboring frame
is not well aligned, especially for situations involving rapid
motion of human subjects or cameras. However, existing
methods tend to directly aggregate unaligned contexts from
neighboring frames, these spatially misaligned features po-
tentially diminish the performances of models. (2) State-
of-the-art approaches simply employ the conventional MSE
(Mean Square Error of joints) loss to supervise the learning
of pose heatmaps, while lacking an effective constraint on
guaranteeing information gain from neighboring frames as
well as a supervision at the intermediate feature level.

In this paper, we present a novel framework, along with
theoretical analysis, to tackle the above challenges. The
proposed method, termed FAMI-Pose (Feature Alignment
and Mutual Information maximization for Pose estima-
tion), consists of two key components. (i) FAMI-Pose con-
ducts coarse-to-fine deformations that systematically up-
date a neighboring frame to align with the current frame at
the feature level. Specifically, FAMI-Pose first performs a
global transformation, which holistically rearranges neigh-
boring frame feature to preliminarily rectify spatial shifts
or jitter. Subsequently, a local calibration is exploited to
adaptively move and modulate each pixel of neighboring
frame feature for enhanced feature alignment. (ii) FAMI-
Pose further engages an information-theoretic objective as
an additional intermediate supervision at the feature level.
Maximizing this mutual information objective allows our
model to fully mine task-relevant cues within the neighbor-

ing frames, extracting purposeful complementary knowl-
edge to enhance pose estimation on the key frame. To
the best of our knowledge, we are the first to methodi-
cally investigate the problem of feature alignment in human
pose estimation and provide insights from an information-
theoretic perspective.

We extensively evaluate the proposed method on three
widely used benchmark datasets, PoseTack2017, Pose-
Track2018, and Sub-JHMDB. Empirical evaluations show
that our approach significantly outperforms current state-
of-the-art methods. Our method achieves 84.8 mAP, 82.2
mAP, and 96.0 mAP on PoseTrack2017, PoseTrack2018,
and Sub-JHMDB, respectively. Our results are submitted
to the official evaluation server of PoseTack2017, and rank
No.1 for this large benchmark dataset. We also present ex-
tensive ablation analyses on the contribution of each com-
ponent, and validate the efficacy of feature alignment and
the proposed mutual information loss.

The contributions of this work are summarized as:

• We propose to examine the multi-frame human pose
estimation task from the perspective of effectively
leveraging temporal contexts through feature align-
ment.

• To explicitly supervise the knowledge extraction from
neighboring frames, we propose an information-
theoretic loss function, which allows maximizing the
task-relevant cues mined from supporting frames.

• Our approach sets new state-of-the-art results on three
benchmark datasets, PoseTrack2017, PoseTrack2018,
and Sub-JHMDB. Our source code has been released.

2. Related Work
In this section, we briefly review the following three top-

ics that are closely related to our work, namely image-based
human pose estimation, video-based human pose estima-
tion, and feature alignment.

2.1. Image-Based Human Pose Estimation

Conventional solutions to image-based human pose esti-
mation utilize pictorial structures [47, 70] to model the spa-
tial relationships among body joints. These methods tend
to rely on handcrafted features and have limited represen-
tational abilities. Fueled by the explosion of deep learning
[19, 58] and the availability of large-scale pose estimation
datasets such as PoseTrack [1, 27] and COCO [34], various
deep learning methods [2,8,17,18,22,51,56,65,66,68] have
been proposed. These methods can be broadly categorized
into two paradigms: bottom-up and top-down. Bottom-up
approaches [6,30–32] first detect individual body parts, and
then assemble these detected constituent parts into the en-
tire person. [6] proposes a dual convolution structure to si-



multaneously predict part confidence maps and part affinity
fields (that represent the relationships between body parts).
On the other hand, top-down approaches [41,42,52,60,62]
first detect human bounding boxes and then estimate human
poses within each bounding box. [62] leverages deconvo-
lution layers to replace the commonly used bi-linear inter-
polation for spatial-upsampling of feature maps. A recent
work in [52] presents a high resolution network (HRNet)
that retains high resolution feature maps throughout the en-
tire inference, achieving state-of-the-art results on multiple
image-based benchmarks.

2.2. Video-Based Human Pose Estimation

Pose estimation models trained for image-based data
could not generalize well to video sequences due to their
inability to incorporate abundant cues from neighboring
frames. To model and leverage temporal contexts across
frames, one direct approach would be employing convolu-
tional LSTMs as proposed in [2, 39]. A key shortcoming
of such models might be their tendency to misalign features
across different frames, which unfavourably reduces the po-
tency of the supporting frames. [45, 50] explicitly estimate
motion fields by computing optical flow between consecu-
tive frames, and these motion cues are subsequently used
for aligning pose heatmaps. [35] estimates motion offsets
between the key frame and supporting frames, and these
offsets provide the basis to perform resampling of pose
heatmaps on consecutive frames. In both cases, the pose es-
timation accuracy would be heavily dependent on the per-
formance of the optical flow or motion offset estimation.
Furthermore, the lack of an effective supervision at the in-
termediate features level for these approaches could lead to
inaccurate pose estimations.

2.3. Feature Alignment

Feature alignment is an important topic for many com-
puter vision tasks (e.g., semantic segmentation [33,40], ob-
ject detection [7, 20]), and numerous efforts have recently
been made to address this problem. [38] presents an index-
guided framework that employs indices to guide the pool-
ing and upsampling. [23] proposes to learn the transforma-
tion offsets of pixels to align upsampled feature maps. [24]
presents an aligned feature aggregation module to align the
features of multiple different resolutions for better aggrega-
tion. Whereas previous methods mostly tackle spatial mis-
alignment between network inputs and outputs, we focus
on temporal (i.e., across frames) feature alignment in this
work.

3. Our Approach
Preliminaries To detect human poses from the video

frames, we first extract the bounding box of each individual
person. Technically, for a video frame It, we first employ

an object detector to extract the bounding box for each indi-
vidual person. This bounding box is then enlarged by 25%
to crop the same individual on a predefined window N of
neighboring frames. Overall, for person i, we obtain the
cropped image Iit for the key frame and {Iit+δ | δ ∈ N} for
the supporting (neighboring) frames.

Problem Formulation Presented with a key frame Iit
along with its supporting frames {Iit+δ | δ ∈ N}, our goal
is to estimate the pose in Iit . We seek to better leverage the
supporting frames through a principled feature alignment
and mining task relevant information, thereby addressing
the common drawback of existing approaches in failing to
adequately tap into the temporal information.

Method Overview An overview of our pipeline is il-
lustrated in Fig. 2. For each supporting frame Iit+δ , FAMI-
pose performs a two-stage hierarchical transformation to
align Iit+δ with the key frame Iit at the feature level. Specif-
ically, FAMI-Pose consists of two main modules, a global
transformation module and a local calibration module. We
first perform feature extraction on Iit and Iit+δ to obtain zit
and zit+δ , respectively. These features are then fed into our
global transformation module, which learns the parameters
of an affine transformation to obtain a coarsely aligned sup-
porting frame feature z̄it+δ . zit and z̄it+δ are then handed
to the local calibration module, which performs pixel-wise
deformation to produce finely aligned features ¯̄zit+δ . Fi-
nally, we aggregate all aligned supporting frame features
{¯̄zit+δ | δ ∈ N} and the key frame feature zit to obtain our
enhanced feature z̃it. z̃

i
t is passed to a detection head that

outputs pose estimations Ĥi
t . The task objective is to min-

imize the heatmap estimation loss LH which measures the
discrepancy between Ĥi

t and the ground truth Hi
t . On top

of this, we also design a mutual information objective LMI

which effectuates a feature level supervision for maximiz-
ing the amount of complementary task-relevant information
encoded in z̃it. In what follows, we introduce the complete
FAMI-Pose architecture and the mutual information objec-
tive in detail.

3.1. Feature Alignment

Feature alignment starts with feature extraction, which
is done with the HRNet-W48 network [52] (the state-of-
the-art method for image-based human pose estimation) as
the backbone. The extracted features zit and zit+δ are then
passed through a global transformation module and a local
calibration module, to progressively align zit+δ with zit. We
would like to highlight that we do not pursue an image-level
alignment, instead we drive the network to learn a feature-
level alignment between a supporting frame and the key
frame.

Global Transformation We observe that most failure
cases for pose estimation in videos occur due to rapid move-
ments of persons or cameras, which inevitably lead to large



Figure 2. Overall pipeline of our FAMI-Pose framework. The goal is to detect the pose of person i in the key frame Iit , with the assistance
of its supporting frames. For clarity of illustration, we only show a single supporting frame Iit+δ in this figure. We first extract their
respective features zit and zit+δ . These features are then handed to our global transformation module and the local calibration module for
temporal alignment. The key frame feature zit and aligned features ¯̄zit+δ for all supporting frames are aggregated to z̃it , which is passed to a
detection head that outputs pose estimates Ĥi

t . Besides the heatmap estimation loss LH that measures the discrepancy between Ĥi
t and the

ground truth Hi
t , we introduce an additional feature level supervision through our Mutual Information objective LMI to extract maximal

task-relevant complementary information from supporting frames.

spatial shifts or jitters between neighboring frames. In or-
der to align a supporting frame to the key frame, we design a
global transformation module (GTM). The GTM computes
spatial rearrangement parameters of a global affine transfor-
mation to obtain a coarse preliminary alignment of support-
ing frame feature zit+δ with the key frame feature zit.

More specifically, the GTM includes two submodules:

1. A spatial rearrangement parameter estimation network
φ that estimates affine transformation parameters Θ
from the input feature pair as φ : (zit, z

i
t+δ) → Θ ∈

R2×3. The elements of Θ correspond to translation,
rotation, shear, and scaling operations.

2. Subsequently, a global affine transformation T is per-
formed to obtain the preliminarily aligned supporting
frame feature T : (zit+δ,Θ)→ z̄it+δ .

The operations of the GTM can be expressed as follows:

Θ = φ
(
zit ⊕ zit+δ

)
,(

xp
yp

)
=

[
θ11 θ12 θ13

θ21 θ22 θ23

]
︸ ︷︷ ︸

Θ

 x̄p
ȳp
1

 , (1)

where (xp, yp) and (x̄p, ȳp) denote the coordinates of pixel
p for zit+δ and z̄it+δ , respectively.

Local Calibration The global transformation module
produces a coarse alignment. We then design our local cali-
bration module (LCM) to perform meticulous fine-tuning at
a pixel-level, yielding finely aligned features ¯̄zit+δ .

Specifically, given z̄it+δ and zit, we independently esti-
mate convolution kernel sampling offsets O and modulated
scalars M for the feature z̄it+δ:

z̄it+δ ⊕ zit
residual−−−−→
blocks

regular−−−−−−→
convolution

O,

z̄it+δ ⊕ zit
residual−−−−→
blocks

regular−−−−−−→
convolution

M.
(2)

The adaptively learned kernel offsets O and modulated
scalars M respectively correspond to location shifts and in-
tensity fluctuations of each pixel in z̄it+δ with respect to the
key frame feature zit.

Subsequently, we implement the local calibration oper-
ation through the modulated deformable convolution [73].
Given the preliminarily aligned features z̄it+δ , the kernel
sampling offsets O, and the modulated scalars M as in-
puts, the modulated deformable convolution outputs the
fine-tuned feature ¯̄zit+δ:(

z̄it+δ, O,M
) modulated deformable−−−−−−−−−−−→

convolution
¯̄zit+δ. (3)

To anticipate the discussion of the mutual information
loss, we would like to point out that the key frame fea-



ture zit is only used for computing the global transformation
parameters in GTM and convolutional parameters in LCM.
Its information will not be propagated into the final aligned
supporting frame feature ¯̄zit+δ .

Heatmap Generation Ultimately, we aggregate over
all final aligned supporting frame features {¯̄zit+δ | δ ∈ N}
and the key frame feature zit via element-wise addition to
obtain the enhanced feature z̃it. z̃

i
t is fed to a detection head

to produce pose heatmap estimations Ĥi
t . We implemented

the detection head using a stack of 3×3 convolutions. By ef-
fectively leveraging temporal information from supporting
frames through our coarse-to-fine alignment modules, our
FAMI-Pose is more adept at tackling visual degeneration
issues and therefore gives more accurate pose heatmaps.

3.2. Mutual Information Objective

We can certainly train the FAMI-Pose in a direct end-to-
end manner with a pose heatmap loss, as is done in most
previous methods [5, 35, 52, 58, 62]. Given our systematic
examination of extracting temporal features for pose esti-
mation, it would be fruitful to investigate whether introduc-
ing supervision at the feature level would facilitate the task.

Naively, we could formulate the feature level objective as
the L1 or L2 difference between supporting frames feature
zit+δ and the key frame feature zit. However, such rigid-
alignment is likely to lead to erosion of complementary
task-specific information from supporting frames. Conse-
quently, the temporal features thus optimized would be in-
adequate for providing relevant supporting information to
facilitate pose estimation.

It is therefore crucial that we highlight the purposeful
complementary information from the supporting frames.
Towards this end, inspired by [21, 72], we propose a mu-
tual information objective, which seeks to maximize the
amount of complementary task-relevant information in the
enhanced feature z̃it.

Mutual Information Mutual information (MI) is a
measure of the amount of information shared between ran-
dom variables. Formally, MI quantifies the statistical de-
pendency of two random variables v1 and v2:

I(v1;v2) = Ep(v1,v2)

[
log

p(v1,v2)

p(v1)p(v2)

]
, (4)

where p(v1,v2) is the joint probability distribution between
v1 and v2, while p(v1) and p(v2) are their marginals.

Mutual Information Loss Within this framework,
our primary objective for learning effective temporal fea-
ture alignment can be formulated as:

max I
(
yit; z̃

i
t | zit

)
, (5)

where yit represents the label, and I
(
yit; z̃

i
t | zit

)
denotes the

amount of task-relevant information in the enhanced feature

z̃it, complementary to (i.e., excluding) the information from
the key frame feature zit. Intuitively, optimizing this ob-
jective will maximize the additional relevant and comple-
mentary information we seek to extract from neighboring
frames to support the pose estimation task.

Due to the notorious difficulty of the conditional MI
computations especially in neural networks [21,53], we per-
form a simplification. We first factorize Eq. 5 as follows:

I
(
yit; z̃

i
t | zit

)
= I

(
yit; z̃

i
t

)
− I

(
z̃it; z

i
t

)
+ I

(
z̃it; z

i
t | yit

)
,

(6)

where I
(
yit; z̃

i
t

)
measures the relevance of the label yit and

feature z̃it, I
(
z̃it; z

i
t

)
indicates the dependence between the

two features z̃it and zit, and I
(
z̃it; z

i
t | yit

)
represents the

task-irrelevant information in both z̃it and zit. Heuristically,
when optimizing over the task objective, the task-specific
information will have an overwhelming presence over the
task-irrelevant information. Therefore, we may assume that
the task-irrelevant information will be negligible upon suf-
ficient training [14, 72]. This simplifies Eq. 6 to:

I
(
yit; z̃

i
t | zit

)
→ I

(
yit; z̃

i
t

)
− I

(
zit; z̃

i
t

)
. (7)

Moreover, we introduce two regularization terms to allevi-
ate information dropping:

min
[
I
(
yit; z

i
t+δ | z̃it

)
+ I

(
yit; z

i
t | z̃it

)]
. (8)

The terms I
(
yit; z

i
t+δ | z̃it

)
and I

(
yit; z

i
t | z̃it

)
respectively

measure the vanishing task-relevant information in zit+δ and
zit during feature alignment. They serve to facilitate the
nondestructive propagation of information. Simultaneously
minimizing these two terms would prevent excessive infor-
mation loss in zit+δ and zit while maximizing the primary
complementary task-relevant mutual information objective.

Similar to Eq. 7, we simplify the two regularization
terms in Eq. 8 as follows:

I
(
yit; z

i
t+δ | z̃it

)
→ I

(
yit; z

i
t+δ

)
− I

(
zit+δ; z̃

i
t

)
,

I
(
yit; z

i
t | z̃t

)
→ I

(
yit; z

i
t

)
− I

(
zit; z̃

i
t

)
.

(9)

Finally, we simultaneously optimize the complementary
information term in Eq. 5 and the two regularization terms
in Eq. 8 to provide feature level supervision:

LMI =

Vanishing w.r.t. zit︷ ︸︸ ︷
I
(
yit; z

i
t | z̃it

)
+

Vanishing w.r.t. zit+δ︷ ︸︸ ︷
I
(
yit; z

i
t+δ | z̃it

)
− α · I

(
yit; z̃

i
t | zit

)︸ ︷︷ ︸
Complementary

,
(10)

where α serves as a hyper-parameter in our network to bal-
ance the ratios of different terms. These MI terms can be
estimated by existing MI estimators [4, 9, 53, 55]. In our
experiments, we employ the Variational Self-Distillation
(VSD) [53] to estimate the MI for each term.



Method Head Shoulder Elbow Wrist Hip Knee Ankle Mean
PoseTracker [15] 67.5 70.2 62.0 51.7 60.7 58.7 49.8 60.6

PoseFlow [64] 66.7 73.3 68.3 61.1 67.5 67.0 61.3 66.5

JointFlow [10] - - - - - - - 69.3

FastPose [69] 80.0 80.3 69.5 59.1 71.4 67.5 59.4 70.3

TML++ [25] - - - - - - - 71.5

Simple (ResNet-50) [62] 79.1 80.5 75.5 66.0 70.8 70.0 61.7 72.4

Simple (ResNet-152) [62] 81.7 83.4 80.0 72.4 75.3 74.8 67.1 76.7

STEmbedding [29] 83.8 81.6 77.1 70.0 77.4 74.5 70.8 77.0

HRNet [52] 82.1 83.6 80.4 73.3 75.5 75.3 68.5 77.3

MDPN [16] 85.2 88.5 83.9 77.5 79.0 77.0 71.4 80.7

Dynamic-GNN [67] 88.4 88.4 82.0 74.5 79.1 78.3 73.1 81.1

PoseWarper [5] 81.4 88.3 83.9 78.0 82.4 80.5 73.6 81.2

DCPose [35] 88.0 88.7 84.1 78.4 83.0 81.4 74.2 82.8

FAMI-Pose (Ours) 89.6 90.1 86.3 80.0 84.6 83.4 77.0 84.8

Table 1. Quantitative results on the PoseTrack2017 validation set.

Method Head Shoulder Elbow Wrist Hip Knee Ankle Total
PoseTracker [15] - - - 51.5 - - 50.2 59.6

PoseFlow [64] 64.9 67.5 65.0 59.0 62.5 62.8 57.9 63.0

JointFlow [10] - - - 53.1 - - 50.4 63.4

TML++ [25] - - - 60.9 - - 56.0 67.8

KeyTrack [49] - - - 71.9 - - 65.0 74.0

DetTrack [58] - - - 69.8 - - 65.9 74.1

Simple (ResNet-152) [62] 80.1 80.2 76.9 71.5 72.5 72.4 65.7 74.6

HRNet [52] 80.1 80.2 76.9 72.0 73.4 72.5 67.0 74.9

PoseWarper [5] 79.5 84.3 80.1 75.8 77.6 76.8 70.8 77.9

DCPose [35] 84.3 84.9 80.5 76.1 77.9 77.1 71.2 79.2

FAMI-Pose (Ours) 86.1 86.1 81.8 77.4 79.5 79.1 73.6 80.9

Table 2. Performance comparisons on the PoseTrack2017 test set.
These results are published in the PoseTrack2017 leaderboard.

3.3. Training Objective

Our training objective consists of two parts. (1) We adopt
the heatmap estimation loss function LH to supervise the
learning of final pose estimates:

LH =
∥∥∥Ĥi

t −Hi
t

∥∥∥2

2
, (11)

where Ĥi
t and Hi

t denotes the prediction heatmap and
ground truth heatmap, respectively. (2) We also leverage
the proposed MI loss to supervise the temporal features as
described in Sec. 3.2. The overall loss function is given by:

Ltotal = LH + β · LMI. (12)

4. Experiments
In this section, we present our experimental results

on three widely used benchmark datasets, namely Pose-
Track2017 [27], PoseTrack2018 [1], and Sub-JHMDB [28].

4.1. Experimental Settings

Datasets PoseTrack is a large-scale benchmark for hu-
man pose estimation and articulated tracking in videos, con-
taining challenging sequences of people in crowded scenar-
ios and performing rapid movement. The PoseTrack2017
dataset includes 514 video sequences with a total of 16, 219
pose annotations. These are split (following the official

Method Head Shoulder Elbow Wrist Hip Knee Ankle Mean
STAF [46] - - - 64.7 - - 62.0 70.4

AlphaPose [13] 63.9 78.7 77.4 71.0 73.7 73.0 69.7 71.9

TML++ [25] - - - - - - - 74.6

MDPN [16] 75.4 81.2 79.0 74.1 72.4 73.0 69.9 75.0

PGPT [3] - - - 72.3 - - 72.2 76.8

Dynamic-GNN [67] 80.6 84.5 80.6 74.4 75.0 76.7 71.8 77.9

PoseWarper [5] 79.9 86.3 82.4 77.5 79.8 78.8 73.2 79.7

DCPose [35] 84.0 86.6 82.7 78.0 80.4 79.3 73.8 80.9

FAMI-Pose (Ours) 85.5 87.7 84.2 79.2 81.4 81.1 74.9 82.2

Table 3. Quantitative results on the PoseTrack2018 validation set.

Method Head Shoulder Elbow Wrist Hip Knee Ankle Total
TML++ [25] - - - 60.2 - - 56.9 67.8

AlphaPose++ [13, 16] - - - 66.2 - - 65.0 67.6

DetTrack [58] - - - 69.8 - - 67.1 73.5

MDPN [16] - - - 74.5 - - 69.0 76.4

PoseWarper [5] 78.9 84.4 80.9 76.8 75.6 77.5 71.8 78.0

DCPose [35] 82.8 84.0 80.8 77.2 76.1 77.6 72.3 79.0

FAMI-Pose (Ours) 83.6 84.5 81.4 77.9 76.8 78.3 72.9 79.6

Table 4. Performance comparisons on the PoseTrack2018 test set.

Method Head Shoulder Elbow Wrist Hip Knee Ankle Avg
Part Models [44] 79.0 60.3 28.7 16.0 74.8 59.2 49.3 52.5

Joint Action [63] 83.3 63.5 33.8 21.6 76.3 62.7 53.1 55.7

Pose-Action [26] 90.3 76.9 59.3 55.0 85.9 76.4 73.0 73.8

CPM [61] 98.4 94.7 85.5 81.7 97.9 94.9 90.3 91.9

Thin-slicing Net [50] 97.1 95.7 87.5 81.6 98.0 92.7 89.8 92.1

LSTM PM [39] 98.2 96.5 89.6 86.0 98.7 95.6 90.0 93.6

DKD(ResNet-50) [43] 98.3 96.6 90.4 87.1 99.1 96.0 92.9 94.0

K-FPN(ResNet-18) [71] 94.7 96.3 95.2 90.2 96.4 95.5 93.2 94.5

K-FPN(ResNet-50) [71] 95.1 96.4 95.3 91.3 96.3 95.6 92.6 94.7

MotionAdaptive [12] 98.2 97.4 91.7 85.2 99.2 96.7 92.2 94.7

FAMI-Pose (Ours) 99.3 98.6 94.5 91.7 99.2 91.8 95.4 96.0

Table 5. Performance comparisons on the Sub-JHMDB dataset.

protocol) into 250, 50, and 214 video sequences for train-
ing, validation, and testing. The PoseTrack2018 dataset
contains 1, 138 video sequences (and 153, 615 pose annota-
tions), with 593 for training, 170 for validation, and 375 for
testing. Both datasets are annotated with 15 joints, with an
additional label for joint visibility. Training videos provide
dense pose annotations in the center 30 frames, and vali-
dation videos further provide pose annotations every four
frames. The Sub-JHMDB dataset contains 316 videos for
a total of 11, 200 frames. Annotations are done for 15 joints
but only visible joints are annotated. Three different data
splits are performed for this dataset, each with a training to
testing ratio of 3 : 1. Following previous works [39,43,71],
we report the mean accuracy over the three splits.

Implementation Details Our FAMI-Pose is imple-
mented with PyTorch. The input image size is fixed to
384 × 288. We perform data augmentation including ran-
dom rotation [−45◦, 45◦], random scaling [0.65, 1.35], ran-
dom truncation, and horizontal flipping. The predefined
window N of neighboring frames is set to {−2,−1, 1, 2},
i.e., 2 previous and 2 future frames. We employ the HRNet-
W48 model pre-trained on the COCO dataset for feature ex-



Figure 3. Visual results of our FAMI-Pose on benchmark datasets. Challenging scenes such as high-speed motion or pose occlusion are
involved.

traction. Subsequent weight parameters are initialized from
a standard Gaussian distribution, while biases are initialized
to 0. We employ the Adam optimizer with a base learning
rate of 1e−4 (decays to 1e−5, 1e−6, and 1e−7 at the 8th,
12th, and 16th epochs, respectively). Training is done with
4 Nvidia Geforce RTX 2080 Ti GPUs and a batch size of
48. All training process is terminated within 20 epochs. To
weigh different losses in Eq. 10 and Eq. 12, we set α = 1.0
and β = 0.1, and have not densely tuned them.

Evaluation Metric We benchmark our model using
the standard human pose estimation protocol [52, 62],
namely the average precision (AP) metric. We compute the
AP for each body joint, and then average over all joints to
get the final results (mAP). Note that only visible joints are
calculated in performance evaluation.

4.2. Comparison with State-of-the-art Approaches

Results on the PoseTrack2017 Dataset We first eval-
uate our model on the PoseTrack2017 validation set and
test set. A total of 14 methods are compared, includ-
ing PoseTracker [15], PoseFlow [64], JointFlow [10], Fast-
Pose [69], TML++ [25], SimpleBaseline (ResNet-50 and
ResNet-152), STEmbedding [29], HRNet [52], MDPN
[16], Dynamic-GNN [67], PoseWarper [5], DCPose [35],
and our FAMI-Pose. Their performance on the Pose-
Track2017 validation set is reported in Table 1. The pro-
posed FAMI-Pose consistently outperforms existing meth-
ods, achieving an mAP of 84.8. Significantly, our FAMI-
Pose is able to improve the mAP by 7.5 points over the
widely adopted backbone network HRNet-W48 [52]. Our
model also achieves a 2.0 mAP gain over the previous state-
of-the-art approach DCPose [35]. In particular, we obtain
encouraging improvements for the more challenging joints
(i.e., wrist, ankle): with an mAP of 80.0 (↑ 1.6) for wrists
and an mAP of 77.0 (↑ 2.8) for ankles. Another interesting
observation is that pose estimation approaches that incorpo-
rate neighboring frames (such as PoseWarper and DCPose)
outperforms methods that use only the single key frame.
This suggests the importance of embracing complementary

Method Global Transformation Local Calibration MI Loss Wrist Ankle Mean
HRNet [52] 73.3 68.5 77.3

(a) X 78.1 74.3 82.9

(b) X X 79.7 76.0 84.0

(c) X X X 80.0 77.0 84.8

Table 6. Ablation of different components in FAMI-Pose.

Supp. Frame Window N Head Shoulder Elbow Wrist Hip Knee Ankle Mean

N = {−1} 88.1 89.2 83.9 78.0 83.5 80.7 73.4 82.8

N = {−1, 1} 89.1 89.5 84.8 79.0 84.2 82.3 74.9 83.9

N = {−2,−1, 1} 89.3 89.8 85.3 79.8 84.2 82.6 76.2 84.5

N = {−2,−1, 1, 2} 89.6 90.1 86.3 80.0 84.6 83.4 77.0 84.8

Table 7. Impact of modifying the supporting frame window.

cues from neighboring frames.
The quantitative comparisons on the PoseTrack2017 test

set are reported in Table 2. Since the pose annotations
are not publicly available, we upload our model predic-
tions to the PoseTrack official evaluation server: https:
//posetrack.net/leaderboard.php to obtain re-
sults. FAMI-Pose again surpasses previous state-of-the-art,
attaining an mAP of 80.9 (↑ 1.7), with an mAP of 81.8,
77.4, 79.1, and 73.6 for the elbow, wrist, knee, and ankle,
respectively. As illustrated in in Fig. 3, the visualized re-
sults for scenes with rapid motion or pose occlusions attest
to the robustness of our method. More visualized results
can be found on our project page1.

Results on the PoseTrack2018 Dataset We further
benchmark our model on the PoseTrack2018 dataset. The
detailed results on the validation and test sets are tabulated
in Table 3 and Table 4, respectively. From these tables,
we observe that our FAMI-Pose consistently attains the new
state-of-the-art results for all joints. We obtain a 82.2 mAP
on the validation set and a 79.6 mAP for the test set.

Results on the Sub-JHMDB Dataset Results for the
Sub-JHMDB dataset are reported in Table 5. We observe
that existing methods have already achieved an impressive
accuracy. Specifically, the current state-of-the-art method
MotionAdaptive obtains a 94.7 mAP on this dataset. In

1https://github.com/Pose-Group/FAMI-Pose

https://posetrack.net/leaderboard.php
https://posetrack.net/leaderboard.php
https://github.com/Pose-Group/FAMI-Pose


Figure 4. Visual comparisons of the predictions of our FAMI-Pose
(a), HRNet-W48 (b), PoseWarper (c), and DCPose (d) on the chal-
lenging cases from PoseTrack2017 and PoseTrack2018 datasets.
Inaccurate pose estimations are highlighted by the red dotted cir-
cles.

contrast, our method is able to achieve a 96.0 mAP. We also
obtain a 99.3 mAP for the head joint and a 99.2 mAP for
the hip joint. The 1.3 mAP improvement over the already
impressive state-of-the-art methods might be an evidence to
show the effectiveness of the proposed method.

4.3. Ablation Study

We perform ablation experiments to examine the con-
tribution of feature alignment as well as the influence of
each component in our method (i.e., Global Transformation
Module, Local Calibration Module, and MI Loss). We also
investigate the impact of modifying the predefined window
N of supporting frames. These experiments are conducted
on the PoseTrack2017 validation dataset.

Feature Alignment We empirically evaluate the effi-
cacy of proposed components for facilitating and guiding
feature alignment in our FAMI-Pose framework. We report
the AP for the wrist and ankle joints as well as the mAP
for all joints in Table 6. (a) For the first setting, we re-
move the local calibration module and MI loss in FAMI-
Pose, employing only the global transformation module
(GTM) for feature alignment. Remarkably, the coarse fea-
ture alignment with the GTM already improves upon the
baseline (HRNet-W48 backbone) by a significant margin of
5.6 mAP and the 82.9 mAP is in fact on par with the pre-
vious state-of-the-art 82.8 mAP of DCPose [35]. This cor-
roborates the effectiveness of our approach in introducing
feature alignment to facilitate video-based pose estimation.
Feature alignment is noticeably more effective in leverag-
ing temporal information from supporting frames as com-
pared to previous methods which adopt optical flow or mo-
tion offset estimations. (b) For the next setting, we incorpo-
rate the local calibration module (LCM) on top of the global
alignment to obtain fine-tuned feature alignment. This fine-
tuning improves the mAP by 1.1 to 84.0. (c) The final set-
ting includes the MI objective and corresponds to our com-
plete FAMI-Pose framework. The improvement of 0.8 mAP
provides empirical evidence that our proposed MI loss is
effective as an additional supervision to facilitate the learn-

ing of complementary task-specific information in temporal
features.

Supporting Frames In addition, we investigate the
effects of adopting different supporting frame windows
N for pose estimation. The results in Table 7 suggest
a performance improvement with higher number of sup-
porting frames, whereby the mAP increases from 82.8 for
N = {−1} to 83.9, 84.5, 84.8 at N = {−1, 1}, N =
{−2,−1, 1}, N = {−2,−1, 1, 2}, respectively. This is in
line with our intuitions, i.e., incorporating more support-
ing frames enables accessing a larger temporal context with
more complementary and useful information that are bene-
ficial for improving the pose estimation on the key frame.

4.4. Comparison of Visual Results

In addition to the quantitative analysis, we further exam-
ine the ability of our model to handle challenging scenar-
ios such as rapid motion or pose occlusions. We illustrate
in Fig. 4 the side-by-side comparisons of a) our FAMI-
Pose against state-of-the-art methods, namely b) HRNet-
W48 [52], c) PoseWarper [5], and d) DCPose [35]. It is
observed that our approach yields more robust and accurate
pose estimates for such challenging scenes. HRNet-W48 is
designed for image-based pose estimation and does not in-
corporate information from supporting frames, resulting in
poor performance on degraded video frames. On the other
hand, PoseWarper and DCPose implicitly estimate motion
cues between frames to improve pose estimation but lack
feature alignment and effective supervision on information
gain. Through a principled design of the GTM and LCM
for progressive feature alignment as well as the MI objec-
tive to enhance complementary information mining, FAMI-
Pose shows a better ability to handle visual degradation.

5. Conclusion

In this paper, we examine the multi-frame human pose
estimation task from the perspective of effectively leverag-
ing temporal contexts through feature alignment and com-
plementary information mining. We present a hierarchi-
cal coarse-to-fine network to progressively align support-
ing frame feature with the key frame feature. Theoretically,
we further introduce a mutual information objective for ef-
fective supervision on intermediate features. Extensive ex-
periments show that our method delivers state-of-the-art re-
sults on three benchmark datasets, PoseTrack2017, Pose-
Track2018, and Sub-JHMDB.
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