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Abstract

We present LASER, an image-based Monte Carlo Local-
ization (MCL) framework for 2D floor maps. LASER in-
troduces the concept of latent space rendering, where 2D
pose hypotheses on the floor map are directly rendered
into a geometrically-structured latent space by aggregat-
ing viewing ray features. Through a tightly coupled ren-
dering codebook scheme, the viewing ray features are dy-
namically determined at rendering-time based on their ge-
ometries (i.e. length, incident-angle), endowing our repre-
sentation with view-dependent fine-grain variability. Our
codebook scheme effectively disentangles feature encoding
from rendering, allowing the latent space rendering to run
at speeds above 10KHz. Moreover, through metric learn-
ing, our geometrically-structured latent space is common to
both pose hypotheses and query images with arbitrary field
of views. As a result, LASER achieves state-of-the-art per-
formance on large-scale indoor localization datasets (i.e.
ZInD [5] and Structured3D [38]) for both panorama and
perspective image queries, while significantly outperform-
ing existing learning-based methods in speed.

1. Introduction
Camera localization aims to estimate the spatial rela-

tionship between a given input image w.r.t. an environ-
mental representation. Diverse application-driven variants
have been addressed in the computer vision, robotics, and
AR/VR literature. Particular problem instances are defined
in terms of the scope of the pose geometric model (e.g.
SE(2) vs SE(3)), the type of input query imagery (e.g. RGB,
depth), as well as the type of the environmental geometric
reference (e.g. geometric maps, registered image collec-
tions). Instances where the queries and the geometric refer-
ence share the same domain define camera localization as a
direct geometric registration problem (e.g. ICP [21], SfM-
based geometric verification [26]). Conversely, whenever
query observations and the geometric reference are from
different domains, it requires the design of integrative cross-
modality data representations able to distinguish and asso-
ciate input observations and reference data.
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Figure 1. LASER diagram. Learning-based MCL frameworks
encode camera pose hypotheses and query images into a common
metric space to measure their similarities. Compared to existing
works, LASER directly renders latent features and has a reduced
sampling dimension.

This work focuses on solving for the camera pose of a
query panorama/perspective image w.r.t. a 2D floor map,
under the Monte Carlo Localization (MCL) framework [7].
MCL adopts a generative framework, where the solution
(i.e. camera pose) space is systematically sampled to ren-
der observation hypotheses and states the problem in terms
of a maximum likelihood search and/or optimization w.r.t.
a query observation. Note that in this work, we solely fo-
cus on improving the measurement model, hence we are
only interested in localizing individual queries without ini-
tialization. Yet, it is straight-forward to integrate our work
into a full MCL framework with customizable temporal up-
dates. Conventional MCL methods [7, 34] require depth
sensors and have limited robustness to environmental vari-
ability (e.g. furniture/object changes) due to their explicit
geometric modeling. Extensions leveraging image-based
room layout estimation [2,32] address content variability at
the expense of imposing environmental or capture assump-
tions such as Manhattan world, known ceiling or camera
height. Recent supervised learning approaches [12,14] have
learned a common latent space for both synthesized and
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query observations. However, their explicit high-fidelity
rendering and CNN-based encoding corresponding to in-
dividual pose hypothesis is computationally burdensome.
Given the time-sensitivity and the accuracy dependency on
the number of samples for MCL applications, their compu-
tational burden compromises estimation accuracy for online
operation. Moreover, the attained latent space representa-
tions are not geometrically interpretable while lacking ex-
pressiveness and level of detail due to the coarse-level ho-
mogenization common to convolutional architectures. We
address these challenges within a geometrically-structured
metric learning framework, which performs latent-space
rendering while prioritizing applicability to unseen environ-
ments, computational efficiency, estimation accuracy and
robustness.

We circumvent expensive explicit rendering-and-
encoding of sampling observations by directly rendering
features in a learnable common metric space from a
rasterized 2D floor map. Such latent space rendering is
enabled by a rendering codebook, which allows map points
to have view-dependent dynamic features for representing
rendering-time dynamics (i.e. viewing ray geometries such
as length and incident-angle). Importantly, we structure
said latent space to be geometrically meaningful by en-
coding visibility-based omni-directional observations into
discretized circular (i.e. angular cyclical) representations.
This representation, namely circular feature, along with
the view-dependent feature encoding from the rendering
codebook, provides fine-grain structured descriptors for
geometry and semantics at a high sampling FPS of 10KHz.
Extensive experiments on Structured3D [38] and ZInD
datasets [5] show that our proposed framework signif-
icantly outperforms state-of-the-art frameworks both in
accuracy and speed. The main technical contributions and
innovations driving these performance gains are:
(1) Map-aware 2D visual localization framework: While
existing MCL frameworks render hypotheses over a local
scope (i.e. contents visible to the camera), LASER uses
a 2D variant of the PointNet [22] to attain latent encoding
from 2D point cloud maps. The PointNet learns global con-
text from the map and provides the latent feature with map-
level scope which improves LASER’s recall.
(2) Latent space rendering based on codebook scheme:
LASER obviates the redundant rendering-and-encoding of
an intermediate representation for individual samples by di-
rectly render features in the latent space. Powered by our
rendering codebook scheme, the features are dynamically
determined in rendering-time to encode fine-grain ray ge-
ometries. Such design achieves significantly higher sam-
pling speed and accuracy at the same time.
(3) Geometrically-structured metric learning: LASER
structures the metric learning to be geometrically meaning-
ful using a rotationally-covariant 2D omni-directional cir-

cular feature. Its fine-grain structured variability implicitly
expresses environmental layouts for high-accuracy localiza-
tion, and seamlessly supports query images with arbitrary
field of views. In addition, this choice implicitly encodes
many orientations that reduces the rotation dimension from
the MCL sampling space.

2. Related Works

The general 6-DoF relocalization methods either explic-
itly [3, 19, 23–25, 28, 29, 35, 36, 40] or implicitly [1, 8, 15]
find appearance correspondences between the query image
and scene representations (e.g. images with known camera
poses, sparse/dense 3D reconstructions). The camera pose
can then be predicted from neural networks [1,8,15] or can
be recovered using SfM methods [20, 26, 30, 31, 33, 37, 39]
from explicit correspondences. The appearance dependency
limits their robustness to appearance changes and cannot
work with pure geometry maps (e.g. occupancy map).

Monte Carlo Localization (MCL) [4, 7, 17, 34] is the
most popular framework for 2D localization on pure geom-
etry maps. With our interest solely on single query, MCL
defines a measurement model over geometry observations
from depth sensors and compares it with simulated observa-
tions sampled from the floor map. The methods limit the in-
put type to geometric measurements, which also limit their
robustness to geometry variation/occlusions in the map (e.g.
changes in furniture/object). Some extensions of MCL take
intensity images as input. Boniardi et al. [2] recover room
geometry by explicitly extracting room layout edges using
CNNs. Wang et al. [32] further cooperates semantic infor-
mation for localization in large indoor spaces. All these
methods are subject to strong assumptions such as Manhat-
tan world and known ceiling or camera height, which limit
their applications.

Recent learning-based methods [12–14] extend the MCL
into a metric learning framework. They utilize learnable
CNNs to encode query images and render location into
the same metric latent space to estimate their similarity.
For rendering a given camera pose, PfNet [14] uses a spa-
tially transformed bird’s-eye map image, while LaLaLoc
[12] assumes known camera and ceiling height, and renders
the layout depth image. Given the heavy rendering-and-
encoding process, these methods are computationally bur-
densome, which limits their performance for time-sensitive
or SWaP-constrained applications.

Neural Radiance Field (NeRF) [16, 18] is a newly
emerging area that synthesizes photo-realistic images from
scene-specific neural representations learned using back-
propagation. In contrast, our scene representation is the ren-
dering codebooks inferred from PointNet, whose estimation
process is scene-agnostic. Moreover, our latent space ren-
dering synthesizes view-dependent latent features.
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Figure 2. LASER inference workflow. Learnable components are shown in dark-gray boxes. (a) Panorama or perspective images are
processed into circular features with ResNet50. (b) Rasterized 2D point cloud map is encoded using PointNet into rendering codebooks,
from which our uniformly sampled circular features are rendered. (c) The similarities between image and map circular features are
measured at their best matched rotation. (d) The final estimation is iteratively refined until its likelihood stops improving.

3. Method

3.1. Problem Formulation

We define camera localization as estimating the 2D pose
p∗ = [t, θ] ∈ SE(2), associated with a given query image
I, w.r.t. a reference map M. The pose parameters t ∈ R2

and θ∈ [0, 2π) define, respectively, the camera’s planar dis-
placement vector and yaw axis rotation. The input query I
may be panorama or a perspective image with known FoV.
We do not limit the format of map M, but assume it encodes
the occupancy information within a 2D plane.
Monte Carlo Localization. The general Monte Carlo Lo-
calization (MCL) framework [7] defines a measurement
model P (I |p;M), which expresses the likelihood of im-
age I being observed at camera pose p on map M. Hence-
forth, we obviate the non-random parameter M from our
formulation for simplicity. The posterior distribution of p
after observing I is the solution of interest. Following Bayes
rule, MCL estimates the posterior distribution P (p | I) as

P (p | I) = P (I |p)P (p)
P (I)

(1)

where P (I) is a normalization constant that can be safely
ignored, while P (p) is the prior camera pose distribution,
which we assume uniformly distributed within the map
area. Finally, the full posterior can be approximated by
drawing particles from P (p) whose likelihoods will be es-
timated using the measurement model as defined in Eq.5.
Localization as Metric Learning. The measurement
model P (I |p) within the MCL framework defines the simi-
larity across the camera pose and image domains. We adopt
deep metric learning [11] to learn a unified metric space for
comparing cross-domain similarity between the query im-
age and camera pose hypotheses as shown in Fig.2. We

detail how images and camera poses are encoded in to the
metric space in §3.3 and §3.2, respectively.
Circular Feature. Contrary to conventional flattened
descriptors used in metric learning, we introduce circu-
lar features to encode spatial visibility, leading to our
geometrically-structured metric learning. We define a cir-
cular feature as an ordered set of feature vectors

F = {fα |α = 0 · · ·V −1} (2)

where V is the number of feature segments. Each feature
segment fα∈RD encodes a local directional FoV of 2π

V ra-
dians in the range

[
2πα
V , 2π(α+1)V

)
on the 2D plane. We de-

note this ordered set F as a circular feature since the first and
last feature segments correspond to adjacent FoVs. With
this design, the omni-directional 2D spatial information is
implicitly encoded in the order of feature segments.
Measurement Model. We first define the similarity mea-
surement between two circular features Fi = {fαi |α =
0 · · ·V −1} and Fj = {fαj |α = 0 · · ·V −1} as

S
(
Fi,Fj

)
=

∑V
α=1 cos(f

α
i , f

α
j )

2V
+ 0.5 (3)

where cos(·, ·) computes the vector cosine similarity, and
the function output is normalized to [0, 1]. We further define
a rotating operator R

(
F, θ

)
to rotate the underlying spatial

information of a circular feature F with a given angle θ by

R
(
F, θ

)
= {f (α+V θ

2π )%V |α = 0 · · ·V −1} (4)

where the 1D feature space is linearly interpolated when
the indexing yields non integer values. Finally, we define
the measurement model as

P (I |p) = P (I | t, θ) = A · S
(
FI,R

(
Ft, θ

))
(5)
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where A is the PDF normalization constant, and FI and Ft

are circular features encoded from the query image and ren-
dered at location t on the map respectively.
Rotation Reduction. As MCL needs a large number
of samples to approximate the camera pose posterior in
SE(2), we systematically reduce the rotation dimension
from the MCL sampling step. For a sample location t with
a canonical orientation, the optimal relative rotation of its
circular feature Ft w.r.t. an image circular feature FI can be
found by

θopmt = argmax
θt

S
(
FI,R

(
Ft, θt

))
(6)

Substituting into Eq.5, we attain a simplified measurement
model obviating θ and conditioned solely on t as

P (I | t) = A′ · S
(
FI,R

(
Ft, θ

opm
t

))
(7)

For solving Eq.6, we rotate Ft with uniformly sampled θt in
[0, 2π), and keep the best. This discretized search initializes
rotation to a rough value, which will later be refined as in
§3.4. The rotation matching process is highly efficient since
it reuses the same circular feature and does not render new
hypotheses, where its throughput is detailed in Table.3.

3.2. Map Branch

In this section, we show how circular features are ren-
dered from 2D floor maps with a given camera pose.
Rasterized 2D Point Cloud Map. Given a general 2D map
representation M (e.g. floorplan or occupancy grid) encod-
ing area occupancy info, we uniformly sample points on the
occupancy boundaries (i.e. walls) to form a 2D point cloud
M = {mi | i = 0 · · ·N−1}. Each point mi = [ti,ni, si]
encodes its location ti, normal vector ni and optional se-
mantic information si. Available semantic information (e.g.
door or window labels), are encoded as multiple binary
masks appended to the point representation.
Latent Space Rendering. To circumvent the inefficient
two-stage rendering-and-encoding process, we propose la-
tent space rendering that directly renders circular features
for given locations by aggregating features from visible map
points. However, visibility proved to be a necessary but in-
sufficient cue for the effective selection and rendering of
latent space features (as shown in Fig.4). More specifically,
visibility for static environments is locally constant at most
sampling locations, providing a limited spatial context. To
mitigate potential homogenization of our representations,
we analyze fine-grain rendering dynamics such as length
and incident-angle of the viewing rays between features and
sampling location, and define an adaptive rendering mech-
anism.
Rendering Codebooks. We propose an over-specified
latent space in order to endow map points with view-
dependent features to encode rendering dynamics. We en-
code the 2D point cloud map with a 2D variant of PointNet
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Figure 3. Rendering codebook. The map point features are dy-
namically (view-dependent) determined at rendering-time by the
codebook and rendering dynamics. Linear interpolation is applied
between adjacent codes in the codebook. Features from multiple
codebooks are aggregated by summation.

[22] to assign each map point mi two sets of features Gi =
{gβ

i |β = 0 · · ·G−1} and Hi = {hγ
i | γ = 0 · · ·H−1}, de-

noted as distance and incident-angle codebook respectively.
Features in the codebook have the same dimension as circu-
lar feature segments gβ ,hγ ∈RD. At rendering-time, map
point features are chosen from the codebooks based on their
distance and incident-angle w.r.t. the rendering location as
shown in Fig.3. Formally, assume a rendering location t̂
and a map point mi = [ti,ni, si], let di = ti − t̂, we can
compute its rendering dynamics by

di = ∥di ∥ (8)

ψi = atan2
(
∥di × ni∥, di ·ni

)
(9)

where di and ψi are distance and incident-angle respec-
tively. The clockwise incident-angle ψ ∈ [0, 2π) distin-
guishes the four quadrants. With mi’s associated code-
books Gi and Hi, its feature fi is then determined by

fi = g
Gψi
2π

i + h
min(

Hdi
dmax

,H)

i (10)

where dmax is a pre-defined maximum distance for the dis-
tance codebook. Similar to Eq.4, for non-integer indexing,
we linearly interpolate between its two closest codes. Fi-
nally, if mi passes the visibility test to location t̂, we project
fi to circular feature Ft̂ = {fα

t̂
|α = 0 · · ·V −1} by

f
V ωi
2π

t̂
= fi (11)

where ωi is the angle of viewing ray di. Finally, the pro-
jected map point features are averaged into each segment.
See supplementary for more rendering details.

3.3. Image Branch

In this section, we show how circular features are ex-
tracted from panorama and perspective images.
Circular Feature from Panoramas. For panorama images
in equirectangular projection, each image column corre-
sponds to a fixed horizontal FoV, as shown in Fig.2(b). Such
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capture configuration facilitates a bijective mapping be-
tween our groups of adjacent input image columns and the
segments in our rendered circular representation. The query
panorama is fed into a ResNet50 [10] encoder to obtain a
feature map, which is subsequently squeezed by averaged-
pooling in the vertical dimension to comply with the feature
dimensions of our circular segments, and averaged-pooled
again in the horizontal direction to V elements, in accor-
dance to the preconfigured number of feature segments in
each circular feature.
Circular Feature from Perspective Images. We assume
input perspective query images having known FoV and zero
pitch/roll angle w.r.t. the ground plane. Note that for indoor
query images, pitch/roll angles may be rectified from van-
ishing point estimates [6, 9]. Accordingly, each perspective
image column corresponds to a non-fixed but known hori-
zontal FoV as shown in Fig.2(a). We extract an image fea-
ture map with a ResNet50 encoder, using average pooling
to squeeze the vertical dimension, and apply a perspective-
to-equirectangular transform on the feature map to get the
final circular feature. Since perspective images have no
more than 180° FoV, its circular feature will have segments
without assigned values, which will be masked out in the
computation. Eq.3 will also be re-normalized to have range
[0, 1]. In supplementary, our model’s robustness to capture
pitch/roll angle alignment noise is detailed.

3.4. Refinement Branch

We address the discretized pose sampling nature of our
MCL approach, by proposing a light-weight continuous re-
finement branch to improve upon the current estimation.
As Fig.2(d) shows, with current best estimation t∗ and θ∗,
our refinement branch takes two circular features FI and
R
(
Ft∗ , θ

∗) as input. The refinement network uses two
1D convolution layers with circular padding followed by a
fully-connected layer to predict two offsets δt, δθ for trans-
lation and rotation respectively. Then we render the updated
map circular feature R

(
Ft∗+δt, θ

∗+δθ
)

and compute its sim-
ilarity to FI using Eq.3. If the similarity score improved
upon the original camera pose, we accept the step and iter-
ate, otherwise we consider the refinement converged. The
first refinement is always accepted to unquantize the estima-
tion. This refinement usually converges within 3 iterations.

3.5. Training & Inference

Triplet Loss. We use triplet loss [27] to learn a mutual met-
ric space between images and maps. To form a triplet, we let
the image circular feature FI be the anchor, the map circu-
lar feature at ground truth camera pose F+ =R

(
Ftgt , θgt

)
be the positive, and the map circular feature at a randomly
sampled camera pose F− =R

(
Ftrnd , θrnd

)
to serve as the

negative. Then the triplet loss is defined as

Ltriplet = 2·max
(
S
(
FI,F+

)
−S

(
FI,F−)+0.5, 0) (12)

Context Loss. Our similarity function S, and consequently
also our triplet loss Ltriplet, relies on aggregating element-
wise comparisons, which effectively disregarding any intra-
feature context. We design an additional context loss, pro-
viding feature segments a wider scope of its circular fea-
ture for learning context information (i.e. properties of the
room/map). We first define circular feature context F as the
mean of its normalized feature segments

F =

∑V
α=1 f

α/∥fα∥
V

(13)

which we apply to our training triplet similarly to Eq.12

Lcontext = max
(
cos(FI,F

+
)−cos(FI,F

−
)+1.0, 0

)
(14)

With the context loss, circular features achieve better coarse
level expressiveness, improving recall for query images
with limited FoV, as shown in Table.2. This loss also
acts as a regularizer by mitigating feature segments having
large variance, leading to a smoother posterior estimation as
shown in Fig.4.
Refinement Loss. For training the refinement branch, we
sample circular features within a 0.5 meter radius and a 30
degree angle from the ground truth camera pose. We super-
vise the refinement branch using a regression loss as

Lrefine t =
∥∥(tgt−t∗)−δt

∥∥
Lrefine r = min

(∣∣(θgt−θ∗)−δθ∣∣, 2π−∣∣(θgt−θ∗)−δθ∣∣)
(15)

Implementation Details. For triplet and context loss
we sample 100 negative samples and broadcast the single
ground truth (GT) sample for each training iteration. For
refinement loss, we sample 20 hard negatives near the GT
camera pose with a disturbance sampled from uniform dis-
tribution bounded in 30 degree and 0.5 meter radius. We
combine the mean of all losses with equal weights. We set
the hyper-parameters as G = H = 32, V = 16, D = 128
and dmax = 10m consistently throughout the benchmark-
ing. We sample the map into 2D point cloud with a 10 cm
interval at occupancy boundaries. We render circular fea-
tures for a 0.1m×0.1m uniform grid within the map range.
For solving the relative rotations in Eq.6, we evaluate 16
uniformly sampled angles and keep the best. Finally, the
posterior distribution is estimated using Eq.1,7. To extract
final estimations from the posterior grid map, we apply a
3×3 non-maximum suppression to extract the maximums.
For maximums that have larger score than a threshold (i.e.
0.8), we send them into the refinement branch to get the
final estimations with their likelihoods as uncertainty esti-
mation. Sorting by their likelihoods, a top-k estimation is
available. More details see supplementary.
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Figure 4. Posterior map comparison with panorama query. Our method leverages semantic information and provides a single clear
maximum without ambiguities compared to baselines. Without context loss, the posterior map becomes slightly nosier. Without semantic
labels, symmetric ambiguities emerge. Without circular feature, an accurate clear maximum cannot be identified from the clusters. Without
codebook, the posterior map fails to show clear maxima.
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Figure 5. Posterior map comparison with perspective queries.
With increasing query FoV, our method has increasing confidence
around the GT location. Compared to MCL, our method leverages
semantic information, which greatly reduces ambiguities.

4. Experiments

4.1. Datasets and Setups

We test on Zillow Indoor Dataset (ZInD) [5] and Struc-
tured3D dataset (S3D) [38]. ZInD provides 1,575 real world
unfurnished residential homes with 59,361 panoramas,
while S3D is a synthetic dataset containing 3,500 houses
created by designers with 21,835 panoramas each having
different lighting and furnishing levels. Both datasets pro-
vide 2D floor maps with windows and doors labels, and the
360° panoramas are registered to the floor maps.

We follow the official training/testing splitting for both
datasets, and train separate models for panorama and per-
spective images. For benchmarking (Table.1 and Fig.7a),
where we report performance for multiple perspective im-
age FoVs, the model for perspective images is trained us-
ing images with FoVs uniformly sampled from 45° to 135°.
For ablation study experiments, we report performance on

a representative 90° FoV, where the model is trained exclu-
sively on images with 90° FoV. All perspective images are
cropped from panoramas in the dataset with zero pitch, roll
angles, a random yaw angle and equal horizontal/vertical
FoVs.

4.2. Benchmark

We use LaLaLoc [12], PfNet [14] and MCL [7] as our
baseline methods (see Table.1). For MCL, we simulate
a 72-ray 2D LiDAR giving ground-truth distance without
noise as its input. The PfNet takes input a semantic labelled
floor map same as the one in Fig.4. For LaLaLoc, we follow
their original protocol and take panoramas with known rota-
tion as input and samples at 0.5m×0.5m grid. For PfNet and
MCL, we sample a 0.1m×0.1m grid with 16 rotation angles
same to our framework. We also attached a random baseline
to show the statistics of the dataset. To compare with meth-
ods not utilizing semantic map labels (i.e. MCL, LaLaLoc),
we report our performance without using semantic informa-
tion as well. LASER exhibits superior accuracy and recall
compared to our baseline methods. When the semantic la-
beling is not available, LASER recall rate is close to MCL
with the GT depths as input. For panorama queries, LASER
exhibits slightly better accuracy on S3D compared to ZInD
due to the slight annotation errors in ZInD. For perspec-
tive query images, distance information becomes harder to
extract since the room layout is sometimes not observable.
In such case, LASER works better with furnished rooms in
S3D, where the furniture provide cues for measuring dis-
tance. See supplementary for a more detailed discussion.

4.3. Performance Studies

Qualitative Study. In Figs.4,5, we visualize posterior maps
for LASER and our baselines. Likelihoods are normal-
ized w.r.t. their upper and lower bounds which vary among
methods. We square our cosine distance for better visu-
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ZInD Structured3D (Furnishing-Level : Full)

Query Method <1m med
terr (cm)

<1m med
rerr (deg)

10cm recall
(%)

50cm recall
(%)

1m recall
(%)

1m & 30°
recall (%)

top-3
1m recall (%)

<1m med
terr (cm)

<1m med
rerr (deg)

10cm recall
(%)

50cm recall
(%)

1m recall
(%)

1m & 30°
recall (%)

top-3
1m recall (%)

- Random (70.71) (90.00) 0.00 0.61 2.15 0.26 5.71 (70.71) (90.00) 0.00 0.53 2.36 0.29 7.48

Panorama

PfNet 48.77 15.20 0.70 19.21 37.15 28.82 50.58 44.37 14.97 1.65 27.52 47.38 36.48 64.05
LaLaLoc 10.65 - 35.61 71.69 76.00 - 91.62 6.83 - 58.57 85.98 87.51 - 98.23

MCL 11.88 5.60 38.96 86.33 90.15 85.21 98.66 6.44 7.18 57.22 77.49 86.51 67.12 99.41
Ours (no sem) 5.66 0.49 67.52 86.81 88.48 85.24 96.17 4.83 0.28 59.99 75.19 83.50 67.00 97.17

Ours 5.16 0.47 78.83 96.83 97.12 96.99 98.90 3.87 0.23 79.20 95.05 95.52 94.76 98.41

Perspective
60° FoV

PfNet 63.31 23.48 0.21 5.23 15.86 9.19 24.87 61.27 17.60 0.35 6.01 16.91 11.20 26.75
MCL 21.72 5.40 6.05 18.66 23.58 20.13 39.76 21.79 7.50 5.48 14.50 18.80 12.79 35.12

Ours (no sem) 26.22 1.27 3.56 19.40 24.94 20.95 42.46 32.95 1.53 1.89 16.97 23.69 14.67 46.38
Ours 29.39 1.21 4.61 34.42 44.30 42.10 61.88 16.97 0.98 11.02 41.48 45.96 43.13 65.65

Perspective
90° FoV

PfNet 56.55 14.24 0.55 10.97 26.78 19.63 38.62 60.00 12.49 0.59 8.78 24.34 18.74 34.41
MCL 17.00 5.08 11.28 30.18 34.72 31.41 53.43 15.41 6.14 9.55 22.63 26.81 20.33 46.91

Ours (no sem) 19.29 0.94 7.99 29.87 35.15 31.57 54.37 25.11 0.87 3.83 22.04 27.58 18.74 51.27
Ours 22.09 0.85 9.42 51.62 59.40 57.77 76.23 12.99 0.64 20.86 53.51 56.28 54.21 76.31

Perspective
120° FoV

PfNet 53.81 11.74 0.74 14.21 31.42 25.94 43.83 60.27 12.51 0.77 10.14 28.05 22.39 38.95
MCL 14.72 5.17 17.12 43.19 48.17 43.96 66.52 12.66 6.61 16.44 34.00 39.13 29.40 59.46

Ours (no sem) 15.56 0.92 14.19 42.49 46.99 43.75 65.86 22.96 1.03 7.72 32.76 40.19 27.64 63.64
Ours 19.07 0.80 15.18 65.37 72.14 71.08 85.28 11.31 0.70 30.88 68.83 70.95 69.77 87.98

Table 1. Comparison with baselines on ZInD and S3D (fully furnished) dataset. For indicating accuracy, we report median translation
(terr) and rotation error (rerr) for all instances localized under 1m. We report recall at different translation accuracy levels, recall for inliers
(<1m and <30°) and top-3 recall at 1m.

Panorama Persp. 90° FoV

Model <1m med
terr (cm)

<1m med
rerr (deg)

1m recall
(%)

<1m med
terr (cm)

<1m med
rerr (deg)

1m recall
(%)

base 7.22 5.45 97.06 20.59 5.46 54.55
+ refine 5.16 0.47 97.12 20.76 1.15 54.53
- cxtloss 8.54 5.45 95.76 21.57 5.46 50.52

- pointnet 7.84 5.46 95.87 23.46 5.68 50.26
- codebook 22.74 5.87 64.26 61.05 23.70 10.34
- circ-feat. 17.30 - 58.24 46.31 - 20.11

‘+’ with component ‘−’ without component

Table 2. Ablation study over model components. The base
model uses the estimation from the posterior map without refine-
ment. Without codebook, each map point is assigned a fixed fea-
ture. Without PointNet, all map points with the same semantic
label share a fixed codebook. Without the circular structure (i.e.
V =1), the feature becomes agnostic to rotation.

alization. Fig.6 shows LASER is robust to challenging
cases such as complex appearance and geometry conditions.
While most failure cases are caused by ambiguities, some
long-tail distributed location and texture also causes failure.
Model Ablation. In Table.2, we show the ablation study
over model components on ZInD dataset. Recall and me-
dian errors are reported for panorama and persp-90° in-
put. Our refinement step unquantizes the discrete estima-
tions, improving rotation accuracy from quantized initial-
ization. Translation accuracy is similarly improved when
the sampling density becomes a bottleneck. Context loss
improves recall, and the improvements become more ev-
ident for queries with small FoV. Replacing the PointNet
with a shared codebook across map points with same se-
mantic labels makes LASER agnostic to the input map do-
main, but slightly degrades all metrics. Omission of code-
book rendering or circular feature encoding, largely de-
grades all performance metrics.
Performance over FoV. In Fig.7a, we show performance
over different query image FoVs. The perspective query im-
ages have same horizontal and vertical FoV, while equirect-
angular query images always have 180° vertical FoV. With

(a) Furnished & Non-Square Room (b) Non-Lambertian Wall

(h) Occlusion-caused Ambiguity

Window 

Behind

Door

(c) Close to Opened Door (d) Room Ambiguity

(f) Symmetric Ambiguity(e) Long-tail Location Failure

(g) Long-tail Texture Failure

Figure 6. Qualitative study on method robustness under chal-
lenging cases. Success, ambiguous and failure cases are placed
inside green, yellow and red boxes respectively. The GT locations
are circled red and ambiguities are circled yellow in the posterior
maps where floor maps are overlayed.

increasing image FoV, LASER consistently gains better per-
formance. LASER has lower translation error with equirect-
angular views, but lower rotation error from perspective
views, while their 1m-recall is similar.
Performance over Hyper-Parameters. Fig.7b shows that
the incident-angle codebook improves rotation accuracy
while the distance codebook is better in translation. Com-
bining both gives the best. Performance is not sensitive to
codebook size, where a modest number (i.e. 16) is satisfac-
tory. Fig.7c shows increasing the translation sample density
improves the recall and translation accuracy, but such im-
provement becomes marginal after 0.1m×0.1m. While re-
call is not sensitive to rotation sample density, where a mod-
est number (i.e. 16) is satisfactory. Fig.7d shows a modest
rendering resolution V (i.e. 16/32) is satisfactory.
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(a) Performance over FoV. (Left: Recall) (Right: Accuracy)
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Figure 7. Detailed performance analysis. Different query types are shown in line-types. Different metrics/configurations are shown in
colors. Note that some figures have two y-axes showing different metrics in separate colors.

(d) Recovered Layout

(a) Codebooks Visualization (b) Map Metric Space Visualization

(c) Recovered Semantic Label

Query Panorama

Window

Door

ℍ

𝔾 𝔾 +ℍ

Figure 8. Visualization and interpretability. (a) Codebook visu-
alization using cosine kernel PCA. (b) Visualization of map metric
space using cosine kernel t-SNE. (c,d) Recovered image semantic
labels and room layout by inversely matching image circular fea-
ture exhaustively against all map point codebooks. (d) The recov-
ered viewing rays and incident-angles are shown in gray and green
lines respectively.

Codebook Visualization and Interpretability. As shown
in Fig.8(a,b), both codebook and sampled feature map ex-
hibit smooth transitions between adjacent codes while there
are distinctiveness for distant codes and different rooms.
The distance codebook has less variation after a certain dis-
tance, which is a cue for choosing dmax. Furthermore, we
exhaustively match image feature to the codebooks of all
map points. We greedily record the code with closest dis-
tance, where the semantic label can be recovered from its
map point as shown in Fig.8(c). The distance and incident-
angle can be also recovered w.r.t. to its codebook as shown
in Fig.8(d). This shows our model is implicitly learning to
extract semantic and layout from the image.
Timing. As shown in Table.3, LASER is significantly faster
than existing works both in sampling and query, which al-
lows its application in time-sensitive re-localization. Within
the query, the refinement step is relatively slower since the
sequential rendering is not massively parallelizable.

Method Sampling Fps Sampling Time (s) Query Fps Query Module Time (ms)
PfNet 2471 ± 1328 48.95 ± 38.95 5.06 ± 1.77 ResNet50 10.5 ± 1.2

LaLaLoc 15.47 ± 5.96 25.13 ± 23.67 0.30 ± 0.06 Measure 17.7 ± 7.4
Ours 13238 ± 1890 0.97 ± 1.09 8.31 ± 0.64 Refine 92.7 ± 16.1

Table 3. Timing. Performance on S3D with a single NVIDIA
Tesla V100 following the algorithm configurations as in §4.2.

5. Conclusions and Discussions
LASER introduces the concept of feature codebook

which leverages the redundancy of overspecified feature
predictions to achieve runtime dynamic latent feature as-
signments, while obviating additional expensive encoding
processes. Moreover, we instantiate our codebook scheme
into a novel latent space rendering process, where rendering
dynamics are efficiently encoded into latent feature repre-
sentations. In practice, latent space rendering enables our
proposed geometrically-structured metric learning frame-
work to achieve state-of-art efficiency and accuracy within
the 2D visual localization task.

Besides the success that feature codebook achieved in
the 2D visual localization task, the codebook scheme can
also be applied in general learning tasks to replace the
encoder network. In addition to the speed-up, the code-
book scheme enables the seamless debugging using the
(nearest-neighbor) inverse matching as shown in Fig.8(c,d).
In practice, the nearest-neighbor matching can be easily
extended to extract probabilistic estimation. We believe
such tool has strong potential to benefit general learning
tasks in the aspects of interpretability, probabilistic estima-
tion/calibration, and improving speed/latency.

Limitations to address in future work include modeling
object-based (e.g. furniture) partial map occlusions. More-
over, we have not considered the semantics between vis-
ibility and environmental state (e.g. leveraging a door’s
open/close status to reason about the content visibility). Fi-
nally, the scope of our latent space rendering, may be ex-
tended to 3D space or consider more complex rendering-
time dynamics such as surface BRDF.
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