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(a) SPADE (b) SEAN (c) Ours
Figure 1. Synthesized results of SPADE [22], SEAN [35] and our method. (a) With the class-level guidance, SPADE produces blurry
synthesis results. (b) With the region-level style vector, SEAN generates better details, but still prefers spatially uniform synthesis result.
(c) Benefited from pixel level fine-grained guidance, our RESAIL is effective in generating visually plausible image with clear details.

Abstract
Semantic image synthesis is a challenging task with

many practical applications. Albeit remarkable progress
has been made in semantic image synthesis with spatially-
adaptive normalization, existing methods usually normal-
ize the feature activations under the coarse-level guidance
(e.g., semantic class). However, different parts of a seman-
tic object (e.g., wheel and window of car) are quite differ-
ent in structures and textures, making blurry synthesis re-
sults usually inevitable due to the missing of fine-grained
guidance. In this paper, we propose a novel normaliza-
tion module, termed as REtrieval-based Spatially Adap-
tIve normaLization (RESAIL), for introducing pixel level
fine-grained guidance to the normalization architecture.
Specifically, we first present a retrieval paradigm by find-
ing a content patch of the same semantic class from train-
ing set with the most similar shape to each test seman-
tic mask. Then, the retrieved patches are composited into
retrieval-based guidance, which can be used by RESAIL for
pixel level fine-grained modulation on feature activations,
thereby greatly mitigating blurry synthesis results. More-
over, distorted ground-truth images are also utilized as al-
ternatives of retrieval-based guidance for feature normal-
ization, further benefiting model training and improving vi-
sual quality of generated images. Experiments on several
challenging datasets show that our RESAIL performs favor-
ably against state-of-the-arts in terms of quantitative met-
rics, visual quality, and subjective evaluation. The source
code is available at https://github.com/Shi-
Yupeng/RESAIL-For-SIS.
1. Introduction

Semantic image synthesis aims to generate photo-
realistic image from the given semantic map. It is an im-

portant problem in computer vision that can be adopted in
a variety of downstream tasks such as virtual idol, special
effect, robotics [13] and image manipulation [9].

Humans have a remarkable ability to produce new cre-
ation from past experiences as references. In their early
ages, children can paint a picture including flowers, sky and
buildings by referring to templates of representative objects
and backgrounds. Thus, producing something from refer-
ences is a natural way for image generation because edit-
ing the references and stitching them is relatively easy than
creating the entire image out of thin air. Inspired by this
spirit, early works have well studied reference-based image
synthesis, where proper references are searched from exter-
nal memories [4, 7, 11, 14, 16]. Nonetheless, the retrieval,
editing and stitching are conducted in separated and hand-
crafted manners, which are optimized in a sub-optimal way.
SIMS [23] leverages deep network for further improving the
quality of reference-based synthesized results, but it simply
takes the retrieved image as network input, which is limited
in synthesizing complex real-world scenes.

With the recent advance of deep generative networks,
some recent studies [21,22,25,26,35] tackle semantic image
synthesis using a spatially-adaptive normalization archi-
tecture, achieving significant performance improvements.
However, with the coarse-level guidance (e.g., semantic
class), these methods modulate the activations inside each
semantic object in spatially uniform manner, regardless of
the huge internal variation of the objects. This inevitably
leads to blurry results, especially for large semantic object
with complex parts. We take two representative spatially-
adaptive normalization architectures as examples in Fig. 1.
SPADE [22] leverages the semantic layout as input and
learns the modulation parameters through several convo-
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lution layers, being limited in generating high-quality ob-
ject parts and leading to blurry synthesis results (Fig. 1(a)).
SEAN [35] improves SPADE by extracting style codes from
selected regions, leading to flexible style control. However,
the style map is generated by broadcasting the style codes
to the corresponding semantic regions, which also prefers
spatially uniform synthesis result (Fig. 1(b)). Most recent
methods, e.g., CLADE [26] and OASIS [25], intrinsically
are also based on coarse-level guidance.

In this paper, we tackle the above issues by presenting
a novel feature normalization method, termed as REtrieval-
based Spatially AdaptIve normaLization (RESAIL). Our in-
tuition is two-fold. On the one hand, the object segment
mask of the input semantic map can not only provide the
semantic class but also the object shape. On the other hand,
the training dataset contains rich shape and texture infor-
mation of objects which cannot be entirely captured by the
learned deep generative networks. Taking these intuitions
into account, given a object segment mask, we present a
retrieval paradigm for retrieving a segment image with the
most similar shape from the training dataset. The retrieved
segment images are then composited into a retrieval-based
guidance, which naturally is spatially variant in pixel level.
We further propose a retrieval-based spatially adaptive nor-
malization, where retrieval-based guidance and semantic
map collaborate to provide pixel level fine-grained modu-
lation on feature activations. As shown in Fig. 1(c), bene-
fited from pixel level fine-grained guidance, our RESAIL is
effective in generating visually plausible image with clear
details. In contrast to SIMS [23], our method leverages
retrieval-based guidance for spatially adaptive normaliza-
tion, which is more effective in synthesizing photo-realistic
images. In comparison to SPADE [22] and SEAN [22], our
RESAIL can effectively leverage pixel level fine-grained
guidance for improving synthesized results.

When retrieval-based guidance is used for feature nor-
malization, it is difficult to exploit perceptual supervision
for training, due to that the ground-truth image correspond-
ing to retrieval-based guidance is missing. On the contrary,
the ground-truth image of a semantic map can be naturally
treated as a retrieval-based guidance, while the ground-truth
image itself can also be used to facilitate perceptual super-
vision. However, ground-truth image is quite different from
real retrieval-based guidance, and using it as guidance can-
not make the learned model generate better synthesis results
in the testing stage. Instead, we introduce a data distor-
tion mechanism on ground-truth images to mimic the qual-
ity of retrieval-based guidance. During training, the dis-
torted ground-truth images are also used as alternatives of
retrieval-based guidance, making it feasible to leverage per-
ceptual supervision for improving model training and visual
quality. Experiments on several challenging datasets show
that our RESAIL performs favorably against state-of-the-

arts. The contributions of this work are summarized as:
• A novel retrieval-based synthesis model is proposed by

leveraging the retrieval-based guidance as pixel level
fine-grained modulation, i.e., Retrieval-based Spatially
Adaptive Normalization (RESAIL), for semantic im-
age synthesis.

• During training, a data distortion mechanism on the
ground-truth images is introduced to facilitate model
training and improves visual quality of synthesized re-
sults.

• Extensive experiments show the effectiveness of our
proposed method in synthesizing photo-realistic image
from given semantic map.

2. Related Work
2.1. Semantic Image Synthesis

Many methods have been proposed to tackle semantic
image synthesis. Here we focus on GAN-based methods,
and also list other related methods [3, 17, 23].

Pix2pix [12] proposed a general framework for image-
to-image translation, and Pix2pixHD [29] improved it for
generating high-resolution images. In these methods, the
semantic map is simply used as input to the network.
SPADE [22] exploited the semantic maps to predict trans-
formation parameters for modulating the activations in nor-
malization layers. Auxiliary guidance (e.g., style map [35]
or 3D noise map [25]) are incorporated with semantic map
for diverse synthesis and easier controlling (details of nor-
malization layer are surveyed in Sec. 2.2). Instead of inject-
ing semantic map into the network directly, CC-FPSE [19]
and SC-GAN [30] leveraged semantic map to predict the
external parameters (convolution kernels [19] or semantic
vectors [30]), which are further used by another network to
guide the image synthesis.

Elaborate networks have also been explored in semantic
image synthesis. SPADE [22] employed a generator con-
sisting of several residual blocks with upsampling layers
and the PatchGAN discriminator. LGGAN [27] explored
the local context information and introduce a local path-
way in the generator for details synthesizing. CC-PFSE [19]
and SC-GAN [30] employed two generators for coarse and
fine image synthesis. Besides generator, CC-FPSE [19]
proposed a feature-pyramid discriminator for semantically
aligned image synthesis. SESAME [21] and OSAIS [25]
improved the PatchGAN discriminator with a semantics-
related mechanism. In addition, CollogeGAN [18] used the
StyleGAN [15] as the generator to improve visual quality
and explored the local context with class-specific models.

Among these methods, CC-FPSE and SC-GAN first syn-
thesize a coarse image and use it to guide the fine image
synthesis. While our method directly uses retrieval-based
guidance to facilitate pixel level fine-grained modulation on
activations.
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Figure 2. Illustration of our method. (a) Given a semantic map M , we first retrieve a set of segments from the training dataset according to
each semantic region of M and composite them into the retrieval-based guidance Ir . It provides a pixel-level fine-grained guidance for the
semantic image synthesis. (b) The architecture of our generator. It takes the semantic map and guidance as input, and consists of several
RESAIL ResBlocks following upsample layers. (c) Detailed architecture of the RESAIL ResBlock used in (b). It learns the pixel level
fine-grained modulation parameters from the semantic map and guidance for modulating the normalized activations.

2.2. Conditional Normalization

Conditional normalization [6, 10, 22, 35] has been ex-
tensively studied in conditional image synthesis. Different
from the earlier normalization techniques, conditional nor-
malization layers require external data to learn the affine
transformation parameters which are then used to modu-
late the normalized activations. For example, Conditional
Instance Normalization (CIN) [6] modified the γ and β pa-
rameters of Instance Normalization (IN) from length C vec-
tors to N × C matrices, and the external style s is used
to index the row of γ and β. AdaIN [10] learned a neu-
ral network that mapping the given style vectors to the γ
and β parameters of IN. CIN and AdaIN perform uniformly
across spatial coordinates, which may not be beneficial for
the spatially-varying synthesis tasks, such as semantic im-
age synthesis. Instead, SPADE [22] proposed to learn a
spatially-varying affine transformation in the semantic class
level. SEAN [35] extended the SPADE with a style map
which is composed of the style vectors for each region, and
learned the transformation parameters from both semantic
map and the style map in the region level. OASIS [25] in-
troduced a 3D noise concatenating with the semantic map
to perform the spatially-variant normalization, but the 3D
noise provides limited semantic information for the synthe-

sis. CLADE [26] learned a parameter bank for each se-
mantic class, which is used to generate the parameters for
modulation, but still limited to coarse-level guidance.

In contrast, our RESAIL module takes the retrieved re-
sults to introduce pixel level fine-grained guidance for se-
mantic image synthesis.

2.3. Retrieval-based Image Synthesis
In the early studies, many retrieval-based methods [4, 7,

11,14,16] have been proposed for conditional image synthe-
sis. For example, Hays et al. [7] used a collection of images
as retrieval database for image completion. In testing stage,
similar images are retrieved via the descriptor matching and
used to complete the missing regions. Lalonde et al. [16]
retrieved object segments from a large image database and
then interactively composited them into an image. Chen et
al. [4] developed a system that retrieved and synthesized
an image from a freehand sketch with associated text la-
bels. Isola and Liu [11] presented an analysis-by-synthesis
method that retrieved segments according to the given query
image and combined these segments to form a “scene col-
lage” that explains the query. Recently, SIMS [23] lever-
aged deep network for improving the quality of synthesized
results. However, it simply takes the retrieved image as
network input, failing in exploiting progress in conditional
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Figure 3. Illustration of data distortion on ground-truth image Igt.
Specifically, Igt is first decomposed into several segments based
on semantic map. Then each segment is distorted separately by
modifying shape, color, and resolution. Finally, distorted segments
are composited into a distorted ground-truth image Ĩgt.

normalization. In contrast, our method uses retrieval-based
guidance for spatially adaptive normalization, which is ben-
eficial for synthesizing photo-realistic images.

3. Proposed Method
Given a semantic map M ∈ {0, 1}H×W×C , semantic

image synthesis aims to generate the corresponding images
Î ∈ RH×W×3. Here H , W , and C denote the height,
width, and number of categories in semantic map, respec-
tively. In this section, we first present a retrieval paradigm
to produce a retrieval-based guidance Ir (Sec. 3.1). We
also introduce the distorted ground-truth as the alternative
of retrieval-based guidance, and introduce the perceptual
supervision to facilitate model training, (Sec. 3.2). With
the guidance, we propose a Retrieval-based Spatially Adap-
tive Normalization (RESAIL) to perform pixel level fine-
grained modulation on activations (Sec. 3.3). Finally, we
introduce several loss terms for training the model to gener-
ate the photo-realistic images (Sec. 3.4).

3.1. Retrieval-based Guidance
Given the semantic map M , we first present a retrieval

paradigm to obtain the retrieval-based guidance from the
training dataset which contains pixel level fine-grained in-
formation. As shown in Fig. 2(a), the semantic map M can
be decomposed into several object segment masks M =
{(Ms

i , y
c
i )}, where Ms

i denotes the cropped binary segment
mask of one object and yci is the corresponding category.
Similarly, a training image can also be decomposed into
segment images according the semantic map. We define
these segments as the retrieval unit. In training or testing
stage, the retrieval-based guidance is obtained by,

Ir = Θ
(
{Γ(Dtr,Ms

i , y
c
i ) | (Ms

i , y
c
i ) ∈ M}

)
(1)

where Γ(Dtr,Ms
i , y

c
i ) denotes the retrieval function defined

on training dataset Dtr. It finds a segment image with cat-
egory yci and the most similar shape with Ms

i . When there
is no matching segment image in training dataset, we re-
place it with a black image. Θ(·) function recomposes the
retrieved segments to form the guidance. Note that, in the
training stage, we ignore the original segment images corre-
sponding to M and retrieve the other most compatible seg-
ment images based on the geometric consistency score [28].
More details are provided in the Suppl.

3.2. Distorted Ground-truth as Guidance
The retrieval-based guidance image Ir lacks of paired

ground-truth, making it impossible to exploit perceptual su-
pervision during training. Intuitively, the ground-truth im-
age can be used as both the guidance and the ground-truth,
resulting a paired training data. However, ground-truth im-
age is quite different from real retrieval-based guidance
(e.g., color, shape and resolution distortion usually are in-
evitable in retrieval-based guidance, see Fig. 2(a)). Thus,
directly using ground-truth as guidance in training bene-
fits little to learn generator that works well for retrieval-
based guidance. Instead, we introduce a data distortion
mechanism on ground-truth images to mimic the quality
of retrieval-based guidance. As illustrated in Fig. 3, the
ground-truth is first decomposed into a set of separate seg-
ments. Then these segments are distorted by changing
shape, color and resolution, respectively. Finally, the dis-
torted segment images are recomposed into the distorted
ground-truth Ĩgt, which can be utilized as alternative of
retrieval-based guidance. Due to that the distorted ground-
truth has the real paired image (i.e., original ground-truth),
we can introduce perceptual supervision on synthesis re-
sults to facilitate model training and improve visual quality.

3.3. Network Architecture
Retrieval-based Spatially Adaptive Normalization. With
the guidance Ir (or Ĩgt) and semantic map M , we propose
a REtrieval-based Spatially AdaptIve normaLization (RE-
SAIL) to perform pixel level fine-grained modulation on
feature activations. Specifically, we adopt the conditional
normalization architecture with spatially adaptive modula-
tion. As the guidance image contains pixel level informa-
tion about the object class, we first use it to learn the fine-
grained modulation parameters (i.e., γr for scale and βr for
bias) by a four-layer convolutional network. Due to there
are some semantic regions missing in the retrieval-based
guidance image (no matching segment images or shape
gaps), 3×3 kernel is used in the convolutional layer to com-
plete the information in the missing region. Besides, we
use the AdaIN incorporated with the semantic map in the
intermediate two layers to further enrich the semantic infor-
mation of the missing area. The detailed structure is shown
in Fig. 2(c). Analogous to [22,35], we also learn the coarse
modulation parameters (i.e., γs and βs) from the semantic
map. Two sets of parameters are weighted summed to get
the final pixel level fine-grained modulation parameters,

γ = αγγ
s + (1− αγ) γ

r,

β = αββ
s + (1− αβ)β

r,
(2)

where αγ and αβ are learnable weight parameters, and the
input activations are finally modulated by,

RESAIL(h,M, Ir) = γc,y,x
hn,c,y,x − µc

σc
+ βc,y,x , (3)
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(a) Qualitative comparison on Cityscapes.
GT SPADE CC-FPSE OASIS OursSemantic Map

(b) Qualitative comparison on ADE20K (top two rows) and COCO-Stuff (bottom two rows).
Figure 4. Qualitative comparison of our method with the competing methods on the (a) Cityscapes, (b) ADE20K and COCO-Stuff datasets.
Our model generates images with better perceptual quality and finer details.

where h denotes the input activations with a batch of N
samples, µ and σ denote the mean and standard deviation
of the activations. (n ∈ N, c ∈ C, y ∈ H,x ∈ W ) sites the
modulated activations value. More details about the RE-
SAIL module are provided in the Suppl.
Generator. Fig. 2(b) illustrates the architecture of our gen-
erator G, which is built on the generator of SPADE [22].
Analogous to [22], we employ a generator consisting of
several RESAIL residual blocks (RESAIL ResBlk) with up-
sampling layers. The semantic map M and guidance (Ir or
Ĩgt) are resized and fed to each RESAIL module to guide
the image synthesis,

Î = G(M, Ir), Îgt = G(M, Ĩgt). (4)

3.4. Loss Functions
As discussed above, we first introduce the perceptual

loss Lvgg [29] and feature matching loss LFM [29] between
Igt and the synthesized image Îgt to facilitate the model
training. To encourage the generator to synthesize photo-
realistic images, we also introduce the adversarial loss [21]
on synthesized images (both Î and Îgt). Besides, to empha-
size the synthesis of each semantic region, we incorporate a
segmentation loss with the model training. Specifically, we

introduce a pretrained segmentation network S to classify
the category of each entry on the generated image,

Lcls = −EM

∑
c

αc

∑
i,j

Mi,j,c logS(Î)i,j,c

 , (5)

where αc denotes the class balancing weight [25], and S
is pretrained on the training dataset. Lcls is introduced on
both Î and Îgt. Finally, we combine all the above losses to
give the overall learning objective,

L = λvggLvgg + λfmLfm + λadvLadv + λclsLcls, (6)

where λ∗ denotes tradeoff parameters for different losses.

4. Experiments
4.1. Experimental Settings
Datasets. We evaluate our model on four common used
datasets, Cityscapes [5], ADE20K [34], ADE20K-outdoor
and COCO-Stuff [1]. The training set of Cityscapes consists
of 3,000 images, including 35 semantic categories, while
the validation set consists of 500 images. The ADE20K
dataset contains over 20,000 images for training and 2,000
images for validation with 150 semantic classes in to-
tal. The ADE20K-outdoor dataset is a subset of ADE20K
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Figure 5. Multi-modal synthesis capability of our method. Each column represents the synthesized results with the given semantic map
(top row). During testing, we retrieve a set of different guidance images, resulting diverse synthesized images (i.e., left 2 columns). We can
also fix most semantic regions and change the retrieved segments of certain objects to achieve local editing results (i.e., right 3 columns).
The retrieval-based guidance images used for the image synthesis are given in the red rectangle.

(c) SPADE+

(e) SEAN+ (f) Ours

(b) SPADE

(d) Pix2pixHD+

(a) Semantic map

Figure 6. Ablation study on the RESAIL module. Model+ denotes introducing the retrieval-based guidance to the model (see Sec. 4.4 and
the Suppl for more details). With the proposed RESAIL module and the retrieval-based guidance, our method produces more photo-realistic
details (red circle). Zoom for a better view.

only containing outdoor scenes. COCO-Stuff consists of
118,000 training images and 5,000 validation images.

Evaluation Metric. Pixel ACcuracy (AC) and mean
Intersection-Over-Union (mIOU) are adopted, which mea-
sure the agreement between synthesized image and given
input [3, 21, 22]. They both require a pretrained segmen-
tation model to compute segmentation accuracy [2, 31, 32].
We also utilize Frechet Inception Distance (FID) [8] to eval-
uate the quality of synthesized images.

Implementation Details. We train our model on four Tesla
v100 GPUs and adopt ADAM optimizer with β1 = 0 and
β2 = 0.999 where the learning rates are set to 0.0001 for
generator and 0.0004 for discriminator. Additionally, we

apply the spectral normalization [20] to each layer in both
generator and discriminator, and use synchronized Batch-
Norm [33] in RESAIL blocks.

4.2. Qualitative Results
We first qualitatively compare our model with the state-

of-the-art methods [19, 22, 25] on the Cityscapes, ADE20K
and COCO-Stuff datasets, and the results are illustrated in
Fig. 4. For SPADE [22] and CC-FPSE [19], degenerated
synthesis results on some objects can be observed, such as
car and bed. Although OASIS [25] introduces semantic
discriminator to improve the visual quality of synthesized
image, it is still limited in avoiding unrealistic details and
obvious artifacts. In contrast, benefited from the retrieval-
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Table 1. Quantitative comparison on ADE20K [34], ADE20K-outdoor, Cityscapes [5] and COCO-Stuff [1]. For AC and mIOU, higher is
better, and for FID, lower is better. Our method achieves very competitive results on the four datasets.

Method
ADE20K ADE20K-outdoor Cityscapes COCO-Stuff

FID (↓) AC (↑) mIOU (↑) FID (↓) AC (↑) mIOU (↑) FID (↓) AC (↑) mIOU (↑) FID (↓) AC (↑) mIOU (↑)

CRN [3] 73.3 68.8 22.4 99.0 68.6 16.5 104.7 77.1 52.4 70.4 40.4 23.7
Pix2pixHD [29] 81.8 69.2 20.3 97.8 71.6 17.4 95.0 81.4 58.3 111.5 45.7 14.6
SIMS [23] n/a n/a n/a 67.7 74.7 13.1 49.7 75.5 47.2 n/a n/a n/a
SPADE [22] 33.9 79.9 38.5 63.3 82.9 30.8 71.8 81.9 62.3 22.6 67.9 37.4
CC-FPSE [19] 31.7 82.9 43.7 n/a n/a n/a 54.3 82.3 65.5 19.2 70.7 41.6
SESAME [21] 31.9 85.5 49.0 n/a n/a n/a 54.2 82.5 66.0 n/a n/a n/a
SC-GAN [30] 29.3 83.8 45.2 n/a n/a n/a 49.5 82.5 66.9 18.1 72.0 42.0
OASIS [25] 28.3 n/a 48.8 48.6 n/a 40.4 47.7 n/a 69.3 17.0 n/a 44.1
Ours 30.2 84.8 49.3 48.6 86.5 41.1 45.5 83.2 69.7 18.3 73.1 44.7

(b) distorted 𝐼௥, w/o GT(a) original 𝐼௥, w/o GT (e) original 𝐼௥, distorted GT(d) original 𝐼௥, original GT(c) w/o 𝐼௥, distorted GT
Figure 7. Ablation study on the data distortion method. (a)(b) When only retrieval-based guidance Ir is used in training, generator fails to
synthesize certain objects details marked in red rectangle; (c) Synthesized images also suffer from poor details only with the guidance of
distorted GT. (d) Using both Ir and original GT as guidance, inconsistent edge and illumination can still be observed. (e) Using both Ir

and distorted GT Ĩgt as guidance, our model synthesizes photo-realistic image with fine details. Please zoom for a better view.

based guidance, our model generates more photo-realistic
images with finer details such as edges, textures, color, and
less artifacts.

Moreover, we retrieve the segment image for each se-
mantic region separately, which allows us to edit the syn-
thesis images either globally or locally. As shown in Fig. 5,
given the same semantic map, we can achieve globally di-
verse synthesis results by changing all the retrieved seg-
ments of the whole image (left two columns). Moreover,
We can also fix most semantic regions and change the re-
trieved segments of the remaining objects to edit the results
locally (right three columns). More qualitative results are
provided in the Suppl.

4.3. Quantitative Results
We further quantitatively compare with the competing

methods [3, 19, 21–23, 25, 29, 30] on four datasets, and Ta-
ble 1 lists the results. From the table, our method performs
favorably against the competing methods on Cityscapes [5]
and ADE20K-outdoor datasets, and also is very competitive
on ADE20K [34] and COCO-Stuff [1] datasets, demonstrat-
ing the effectiveness of our method. Note that, SIMS [23]
also uses a retrieved image to guide semantic image synthe-
sis but is inferior to our method, partially due to that it is
more effective to use retrieval-based guidance for spatially
adaptive normalization other than use it as network input.
User Study. Following the previous works [21, 22, 30], we

Table 2. User study on Cityscapes. The numbers indicate the per-
centage of volunteers who favor the results of our method over
those of the competing methods or even the ground-truth.

Ours vs. SPADE Ours vs. CC-FPSE Ours vs. OASIS Ours vs. GT

87.8 80.2 85.4 16.8

conduct user study on Cityscapes dataset. Participants have
been informed their identities will not be recorded. Each
volunteer is given a semantic map and two corresponding
images containing one by our method and another one by
a randomly selected competing method (i.e., SPADE [22],
CC-FPSE [19], OASIS [25] or even the ground-truth im-
age), and is asked to vote for the image with better visual
quality. The orders of the two images are random to avoid
the effect caused by potential bias. There are totally 2,000
questions for 200 volunteers, and Table 2 lists the results.
Volunteers strongly favor (more than 80%) our results in
contrast to the competing methods. In comparison with the
ground-truth images, our results still have a chance of about
17% to be recognized as the better one, further indicating
our method is able to generate photo-realistic images.

4.4. Ablation Studies
We conduct ablation studies on Cityscapes to assess the

effect of RESAIL module and data distortion mechanism.
Effectiveness of RESAIL Module. To demonstrate the
effectiveness of our RESAIL module, we compare our
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Table 3. Ablation study on RESAIL module. Model+ denotes
using the retrieval-based guidance as input to the given module.
With the proposed RESAIL module and the retrieval-based guid-
ance, our method achieves better quantitative performance.

Variants Guidance Inject FID(↓) mIOU(↑) AC(↑)

SPADE w/o 58.7 62.2 81.9
Pix2pixHD+ Conv Layer 47.8 66.7 81.9

SPADE+ SPADE Module 53.4 68.6 82.8
SEAN+ SEAN Module 66.6 69.4 82.1

Ours RESAIL Module 45.5 69.7 83.2

Table 4. Effect of data distortion mechanism on ground-truth guid-
ance. Among all variants, using both Ir and distorted ground-truth
Ĩgt as guidance achieves better performance.

Ir Ground-truth FID (↓) mIOU (↑) AC (↑)

original w/o 47.7 66.3 82.5
distorted w/o 48.8 65.3 82.6

w/o distorted 49.0 64.9 82.1
original original 52.8 64.0 81.2
original distorted 45.5 69.7 83.2

method with 4 variants which vary on whether the retrieval-
based guidance used and how to use it: (i) SPADE denotes
the original SPADE module without exploiting the guid-
ance. (ii) Pix2pixHD+ denotes concatenating the guidance
into the conv layer of pix2pixHD model. (iii) SPADE+
denotes using the guidance as input to the SPADE mod-
ule. (iv) SEAN+ denotes using the guidance as input to the
SEAN module. (v) Ours denotes using the guidance as in-
put to the RESAIL module. More details about the archi-
tecture of each variant can be found in the Suppl. For a fair
comparison, we use the same backbone for all variants and
only change the normalization layer. Thus for Pix2pixHD+,
we use the decoder part as the generator.

Table 3 lists the quantitative comparison among the vari-
ants. From the table, directly incorporating the guidance
into the SPADE or conv layer improves the performance,
indicating that the retrieval-based guidance is beneficial to
image synthesis. As for SEAN, regarding the style map
is heavy in GPU memory-consuming, we reduce the di-
mension of style vector to 128 to conduct the experiments,
which may cause potential performance degradation but
not affect the fair comparison. With the RESAIL mod-
ule, our method achieves the best performance, clearly
demonstrating the effectiveness of our RESAIL module. As
shown in Fig. 6, without pixel level guidance information,
SPADE and SEAN+ generate blurry details. In compared to
Pix2pixHD+, our RESAIL generates more photo-realistic
results with finer details and consistent illumination. The
result shows that spatially adaptive normalization is a more
effective way to use retrieval-based guidance than simply
concatenating it with feature of conv layer.
Effectiveness of Distorted Ground-truth. We also con-
duct the ablation study to assess the effect of data distortion
mechanism on ground-truth (GT) images. Specifically, we

consider five variants. (i) Only the retrieval-based guidance
Ir is used as guidance during training. (ii) Only the dis-
torted Ir is used as guidance during training. (iii) Only the
distorted GT is used as guidance during training. (iv) Both
Ir and the original GT can be used as guidance during train-
ing. (v) Ours: both Ir and distorted GT Ĩgt can be used as
guidance during training.

Table 4 lists the quantitative results on Cityscapes. From
the table, performing data distortion on retrieval-based
guidance brings little gain or even adverse effect on se-
mantic image synthesis. This is because the retrieval-based
guidance is already distorted and further distorting it may
make it more unrealistic and is not beneficial to synthe-
sis performance. Also, using the original GT as guidance
cannot improve the quality of generated images, because
there exists obvious gap between original GT and retrieval-
based guidance. With the data distortion on the ground-
truth, we can reduce the gap between them and thus benefits
the model training. Fig. 7 shows the qualitative results. One
can see that, using both retrieval-based guidance and dis-
torted ground-truth as guidance during training, our method
produces more photo-realistic details and consistent color.

Additional ablation study on the segmentation loss is
provided in the Suppl, please check it for more details.

5. Discussion
In this paper, we proposed a novel feature normalization

method, termed as REtrieval-based Spatially AdaptIve nor-
maLization (RESAIL). With the retrieval-based guidance
and distorted ground-truth, the model can be trained with
perceptual supervision, and produces diverse and photo-
realistic synthesized images. Experimental results demon-
strate that our method performs favorably against the state-
of-the-art methods on several challenging datasets both
qualitatively and quantitatively.
Impact. This work presents a RESAIL module for seman-
tic image synthesis. Although we have not conducted the
experiments on human face synthesis tasks, it has the poten-
tial for being used to face synthesis and editing. From this
viewpoint, our work may be improperly used for deepfake
techniques which trigger potential negative social impacts.
Limitation. Albeit our method synthesizes photo-realistic
images and outperforms existing methods, the inference
speed is still a limitation. Retrieving operation in our
method is time consuming, which makes it unable to per-
form realtime inference. In the future, we will explore fea-
sible method to accelerate or avoid the retrieving process.
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Supplemental Materials

A. Additional Implementation Details
A.1. Retrieval-based Guidance Image

Given a semantic map M , we use it to retrieve and com-
posite a guidance image Ir for image synthesis.
Preprocess of Dataset. The training dataset Dtr is firstly
used to create a retrieval database consisting of a set of seg-
ments. Specifically, for each image I ∈ Dtr and its corre-
sponding semantic map M , we use the available instance-
level annotation to decompose I and M as a number of seg-
ments,

I,M = {(Ms
i , y

c
i , I

s
i )} , (a)

where Ms
i , yci and Isi denote the cropped binary mask of

the i-th object, its category and its corresponding RGB seg-
ment image, respectively. Besides, for background region
without instance-level annotation, we take the maximal con-
nected component as a single background object. Decom-
posing all the images in training dataset, we create a re-
trieval database, which is used in both training and testing
stage.
Retrieval Strategy. Given a semantic map M , we first de-
compose it into a number of segment masks {(Ms

i , y
c
i )}.

Then, we retrieve the most compatible segment from the
retrieval database for each segment mask. Specifically, for
segment mask Ms

i with category yci , we retrieve a segment
(Ms

j , y
c
j , I

s
j ) which has the same category (ycj = yci ) and

similar shape with Ms
i . To measure the similarity between

two segment masks (Ms
i and Ms

j ), we adopt the geometric
score [28] to measure both scale and shape consistency,

σscale

(
Ms

i ,M
s
j

)
=

{
0, t ≥ 0.5

1, t < 0.5
, (b)

σshape

(
Ms

i ,M
s
j

)
=

SSD
(
M̂s

i , M̂
s
j

)
max

(∥∥∥M̂s
i

∥∥∥
1
,
∥∥∥M̂s

j

∥∥∥
1

) , (c)

where t =
min(∥Ms

i ∥1
,∥Ms

j ∥1
)

max(∥Ms
i ∥1

,∥Ms
j ∥1

)
. M̂s

i and M̂s
j denote the re-

sized versions (i.e., 128×128) of Ms
i and Ms

j using nearest
neighbor interpolation, respectively. SSD (·) denotes the
sum square difference. The final consistency is calculated
as,

σ
(
Ms

i ,M
s
j

)
= σscale

(
Ms

i ,M
s
j

)
+ γσshape

(
Ms

i ,M
s
j

)
. (d)

where γ is the balance coefficient and we set γ = 1 in prac-
tice. Lower σ

(
Ms

i ,M
s
j

)
indicates more similarity between

two segment masks.

Composition of Guidance Image. Finally, we recom-
pose the retrieved segments as the guidance image. Let
(Ms

r , y
c
r, I

s
r ) denotes the retrieved segment for the given

segment mask Ms
i . As illustrated in Fig. A, Isr and the cor-

responding mask Ms
r are first resized to the size of Ms

i . The
resized mask and image are denoted as M̂s

r and Îsr . Then,
the resized image is pasted into the guidance image accord-
ing to the original position of Ms

i . To maintain integrity of
instance, we paste the segment image following the below
rules:

• Pixels of Îsr in both M̂s
r and Ms

i are preserved.
• If ycr belongs to background things categories, pixels

of Îsr in M̂s
r but not in Ms

i are zeroed out.
• If ycr belongs to foreground (i.e., instance object) and

pixels of Îsr in M̂s
r but not in Ms

i are located in the
background categories in M , they are preserved.

• If ycr belongs to foreground and pixels of Îsr in M̂s
r but

not in Ms
i are located in the foreground categories in

M , they are zeroed out.

We finally obtain the retrieval-based guidance image Ir

to guide the image synthesis.

A.2. Distortion of Ground-truth Image.

To distort the ground-truth image Igt, we first decom-
pose it into a set of segment images Igt = {Isi }. Then
we apply the distortion (i.e., color, shape and resolution) on
each segment image Isi .
Color. We employ the method proposed by [24] to transfer
the color of segment image Isi to a random segment image
Ist with the same category. Specifically, we first convert Isi
and Ist from RGB space into lαβ space. Then the color
transferred image Ĩsi in each channel of lαβ space is calcu-
lated by,

l̃i = (li − µ(li)) ·
σ(lt)

σ(li)
+ µ(lt)

α̃i = (αi − µ(αi)) ·
σ(αt)

σ(αi)
+ µ(αt)

β̃i = (βi − µ(βi)) ·
σ(βt)

σ(βi)
+ µ(βt)

(e)

where µ(·) and σ(·) denote the mean and standard deviation
of corresponding channel. Finally, we convert Ĩsi from lαβ
into RGB space to obtain the color distorted image.
Shape. To distort the shape of a segment image, we first
sample 10 points uniformly on the edge of the segment
image as source points, and shift three of them randomly
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Figure A. Process to paste a retrieved segment into the semantic map. We here take “Tree” labeled in cyan as an example.

to produce the target points. The source points and target
points are used to produce a dense flow utilizing thin plate
spline algorithm. Then we use the produced flow to warp
the segment image to obtain the shape distorted image.
Resolution. To distort the resolution of a segment image,
we downsample it with a random scale τ(0.5 < τ < 1),
and upsample it to the original size.

After distortion, distorted segment images from ground-
truth Igt recompose the distorted ground-truth Ĩgt to facil-
itate model training. The distortion results are shown in
Fig. B.

B. Additional Details of Training Architecture
Details of RESAIL module. The RESAIL module takes
both the guidance image (i.e., retrieval-based guidance Ir

or distorted ground-truth Ĩgt) and the semantic map M as
input and learns to modulate the activations. We here rep-
resent the input activations as h with a batch of N samples.
H , W and C denote the height, width and the number of
channels in h, and the modulated activations at site (n ∈
N, c ∈ C, y ∈ H,x ∈ W ) is represented as,

RESAIL(h, Ir,M) = γc,y,x (I
r,M)

hn,c,y,x − µc

σc

+ βc,y,x (I
r,M) ,

(f)

where µc and σc denote the mean and standard deviation of
the activation in channel c,

µc =
1

NHW

∑
n,y,x

hn,y,x

σc =

√√√√ 1

NHW

(∑
n,y,x

h2
n,y,x

)
− µ2

c

. (g)

γ(·) and β(·) have the same architectures and learn the pa-
rameters for modulating the scales and biases, respectively.
We here take γ(·) as an example, which consists of two
separated convolutional neural networks to produce coarse
and fine-grained guidance for modulation. The one network

γs(·) takes the semantic map M to learn the coarse modula-
tion parameters. The other network γr(·) takes the retrieved
image Ir to learn the pixel-level fine-grained modulation
parameters, and we also take the semantic map M to mod-
ulate the intermediate features with AdaIN blocks.
γc,y,x (Ir,M) = αγγ

s
c,y,x (M) + (1− αγ) γ

r
c,y,x (Ir,M)

βc,y,x (Ir,M) = αββ
s
c,y,x (M) +

(
1− αβ

)
βr
c,y,x (Ir,M)

, (h)

where the 0 < αβ , αγ < 1 are learnable scalars.
Discriminator. In practice, we adopt two multi-scale dis-
criminators proposed by [21] to facilitate our model train-
ing. As shown in Fig. C, the discriminator consists of two
pathways and processes the RGB image and the semantic
labels respectively; then the final features are merged by
element-wise addition and element-wise multiplication.

C. Additional Ablation Studies
Comparison with SIMS. Also introducing an image syn-
thesis mechanism based on reference, SIMS [23] simply
takes the retrieved image as network input, resulting in low
mIOU and blurs shown as Fig. D and Table 1. While our
method leverages the retrieved images to provide pixel level
fine-grained guidance via spatially adaptive normalization,
making it more effective in synthesizing photo-realistic im-
ages.
Variants of RESAIL. We compare our RESAIL module
with 4 variants and in each comparison experiment we em-
ploy the same generator architecture while only replacing
the RESAIL ResBlk with other variants. We show the dif-
ferent ResBlks in Fig. E. In SPADE, we just employ the
module proposed by [22]. In SPADE+, semantic map con-
catenating with the guidance image is convolved to produce
the modulation parameters β and γ. In Pix2pixHD+, we
concatenate the feature with the semantic map and the guid-
ance image following with convolution layer, and we dis-
card the encoder part of Pix2pixHD [29]. In SEAN+, we
extract per region style vectors from the guidance image
with a style encoder network and input the style vector and
semantic map into the SEAN [35] module. Limited by GPU
memory, dimension of style vector is set to 128.
Effectiveness of Lseg . To prompt the model to synthesize
images aligning well with the semantic layout, we introduce
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Figure C. Discriminator network.

Table A. Ablation study of Lseg in Cityscapes dataset. It shows
that Lseg facilitates the model learning.

Lseg FID(↓) mIOU(↑) AC(↑)
✗ 46.8 66.3 82.7
✓ 45.5 69.7 83.2

a pretrained segmentation network C to classify each pixel
of the generated image and optimize the segmentation loss
Lseg . The designed segmentation network C follows [25],
which consists of 12 ResBlks based on a U-Net architec-
ture as shown in Fig. F. We report the results of training
our model with and without Lseg on Cityscapes [5] in Ta-
ble A. From the table, we can see segmentation loss Lseg

improves the learning process. Albeit Lseg helps segmenta-
tion based metrics, it may introduce inconsistent edge tran-
sitions among instances, occurring in [25] which introduces
a discriminator based on a segmentation network shown as

Table B. FID w.r.t non-similarity threshold.

Threshold 0.15 0.25 0.35 0.45 0.55 0.58
FID 45.49 46.38 48.18 48.3 50.56 51.04

Fig. G. However, with other losses (e.g., GAN loss and per-
ceptual loss) prompting model training, this kind of artifacts
are suppressed and no obvious transitions are found in our
results with Lseg .
Effect of Shape Non-similarity Threshold. Computed as
Eq. d, non-similarity σ is adopted to measure the shape
consistency between two segment masks. We have tested
the FID results by adopting different non-similarity thresh-
olds. From Table B, higher threshold (i.e., using more
non-similar guidance) leads to worse guidance, resulting in
worse FID.

D. Additional Visual Results
To demonstrate the effectiveness of our method on syn-

thesizing the photo-realistic images, we show more visual
results in this section. Fig. H ∼ J show the comparisons on
Cityscapes [5] and as shown in figures, our synthesized im-
ages are more photo-realistic with fine details. Fig. K and
Fig. M show more results on ADE20K [34]. Comparisons
on COCO-Stuff [1] can be found in Fig. L. The guidance
image and its corresponding generated image are shown as
Fig. N and Fig. O.
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SIMS OursSemantic Map Ground-truth

Figure D. Comparison with SIMS. SIMS suffers from low mIOU (marked in green rectangle) and blurs (marked in red rectangle) of some
objects.
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Figure E. Variants of RESAIL ResBlk. (a) SPADE employs the SPADE module; (b) Pix2pixHD+ denotes concatenating the guidance into
the conv layer of pix2pixHD model. (c) SPADE+ denotes using the guidance as input to the SPADE module. (d) SEAN+ denotes using the
guidance as input to the SEAN module.
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Figure F. Segmentation network. (a) The network is designed based on U-Net. (b) Each downsampling or upsampling operation employs
a ResBlk.
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Figure G. Effect of segmentation loss Lseg . Red rectangles mark the affected instances. OASIS suffers from inconsistent edge transitions
whose discriminator based on a segmentation network. With the help of other losses (e.g., GAN loss and perceptual loss), no obvious edge
transitions are found in our results with Lseg .
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Figure H. Comparison results on Cityscapes.
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Figure I. Comparison results on Cityscapes.
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Figure J. Comparison results on Cityscapes.
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Figure K. Comparison results on ADE20K.
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Figure L. Comparison results on COCO-Stuff.
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Figure M. Comparison results on ADE20K.
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Figure N. Synthesis results on ADE20K.
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Figure O. Synthesis results on Cityscapes.
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Ground-truth Synthesis Ground-truth Synthesis

Figure P. Synthesis results on ADE20K(top) and Cityscapes(bottom).
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