
Feature Statistics Mixing Regularization for Generative Adversarial Networks

Junho Kim1 Yunjey Choi1 Youngjung Uh2†

1NAVER AI Lab 2Yonsei University

Abstract

In generative adversarial networks, improving discrimi-
nators is one of the key components for generation perfor-
mance. As image classifiers are biased toward texture and
debiasing improves accuracy, we investigate 1) if the dis-
criminators are biased, and 2) if debiasing the discrimina-
tors will improve generation performance. Indeed, we find
empirical evidence that the discriminators are sensitive to
the style (e.g., texture and color) of images. As a remedy,
we propose feature statistics mixing regularization (FSMR)
that encourages the discriminator’s prediction to be invari-
ant to the styles of input images. Specifically, we generate
a mixed feature of an original and a reference image in
the discriminator’s feature space and we apply regulariza-
tion so that the prediction for the mixed feature is consis-
tent with the prediction for the original image. We conduct
extensive experiments to demonstrate that our regulariza-
tion leads to reduced sensitivity to style and consistently
improves the performance of various GAN architectures
on nine datasets. In addition, adding FSMR to recently-
proposed augmentation-based GAN methods further im-
proves image quality. Our code is available at https:
//github.com/naver-ai/FSMR.

1. Introduction

Generative adversarial networks (GANs) [8] have
achieved significant development over the past several
years, enabling many computer vision and graphics appli-
cations [4, 5, 14, 22, 23, 25, 31, 44]. On top of the care-
fully designed architectures [3,18, 20, 21, 30, 32, 40], GAN-
specific data augmentation and regularization techniques
have been keys for improvements. Regularization tech-
niques [9,15–17,28,29,41,43] stabilize the training dynam-
ics by penalizing steep changes in the discriminator’s output
within a local region of the input. On the other hand, data
augmentation techniques [19, 42] prevent the discriminator
from overfitting as commonly adopted in classification do-

†Corresponding author.

mains. Note that both efforts aim to guide the discrimina-
tor not to fixate on particular subsets of observations and to
generalize over the entire data distribution.

Texture has been shown to provide a strong hint for clas-
sifiers [6,7,10]. If such a hint is sufficient enough to achieve
high accuracy, the models tend not to learn the complexity
of the intended task [2]. As the GAN discriminators are in-
herently classifiers, we presume that they also tend to rely
on textures to classify real and fake images. Accordingly,
the generators would focus on synthesizing textures which
are regarded as real by the biased discriminator. In this pa-
per, we answer the two questions: 1) are discriminators sen-
sitive to style (e.g., texture and color)? and 2) if yes, will
debiasing the discriminators improve the generation perfor-
mance?

To answer the first question, we define style distance as
shown in Figure 1a. An ideal discriminator would produce
small style distance because the two images have the same
content. As we do not have a unit of measurement, we com-
pute relative distance: the style distance divided by the con-
tent distance. In other words, we measure the sensitivity to
style as multiples of the distance between images with dif-
ferent content. Surprisingly, Figure 1b shows that all base-
lines have noticeable values in relative distance.

To answer the second question, we debias the discrim-
inators and measure improvements in generative perfor-
mance. A straightforward approach for debiasing is to sup-
press the difference in the discriminator’s output with re-
spect to the style changes of the input image. Indeed, we
observe that imposing a consistency loss [41,43] on the dis-
criminator between the original image and its stylized ver-
sion improves the generator as mimicking contents becomes
easier than mimicking style to fool the discriminator.

However, this approach leads to other difficulties: the cri-
teria for choosing style images are unclear, and stylizing
all training images with various style references requires a
huge computational burden and an external style dataset. To
efficiently address the style bias issue, we propose feature
statistics mixing regularization (FSMR) which encourages
the discriminator’s prediction to be invariant to the styles of
input images by mixing feature statistics within the discrim-

1

ar
X

iv
:2

11
2.

04
12

0v
2

 [
cs

.C
V

]
 2

5
M

ar
 2

02
2

https://github.com/naver-ai/FSMR
https://github.com/naver-ai/FSMR

inator. Specifically, we generate mixed features by combin-
ing original and reference features in the discriminator’s in-
termediate layers and impose consistency between the pre-
dictions for the original and the mixed features.

In the experiments, we show that FSMR indeed induces
the discriminator to have reduced sensitivity to style (Sec-
tion 4.1). We then provide thorough comparisons to demon-
strate that FSMR consistently improves various GAN meth-
ods on benchmark datasets (Section 4.2). Our method can
be easily applied to any setting without burdensome prepa-
ration. Our implementation and models will be publicly
available online for the research community. Our contribu-
tions can be summarized as follows:

• To the best of our knowledge, our work is the first style
bias analysis for the discriminator of GANs.

• We define the relative distance metric to measure the
sensitivity to the styles (Section 2).

• We propose feature statistics mixing regularization
(FSMR), which makes the discriminator’s prediction
to be robust to style (Section 3).

• FSMR does not use external style images and outper-
forms the straightforward solution with external style
images (Section 4.1).

• FSMR improves five baselines on all standard and
small datasets regarding FID and relative distance
(Section 4.2, 4.3).

2. Style-bias in GANs
Our work is motivated by the recent finding that CNNs

are sensitive to style rather than content, i.e., ImageNet-
trained CNNs are likely to make a style-biased decision
when the style cue and content cue have conflict [7]. To
quantitatively measure how sensitive a discriminator is to
style, we compute style distance, content distance, and then
relative distance. Afterward, we describe a straightforward
baseline solution to reduce the discriminator’s distance to
style.

2.1. Style distance and content distance

We define a quantitative measure for how sensitive a dis-
criminator is sensitive to style. First, given a set of training
images, we utilize a style transfer method to synthesize dif-
ferently stylized images of the same content. The styles are
randomly chosen from WikiArt [1]. Figure 1a shows some
example stylized images from AFHQ [5]. We define style
distance ds between images with different styles and the
same content. The content distance dc is defined vice versa:

ds(c, s1, s2)︸ ︷︷ ︸
style distance

= d(T (c, s1), T (c, s2)), (1)

(a) Style distance and content distance

(b) Relative distance

Figure 1. (a) The style transfer method T (c, s) transfers the style
of s on the content of c. We define style distance as the output
difference due to style variations. Content distance is defined vice
versa. (b) Relative distance across various GAN methods. Relative
distance indicates how sensitive a discriminator is to style changes
(Eq. 3). See Section 2 for details.

dc(s, c1, c2)︸ ︷︷ ︸
content distance

= d(T (c1, s), T (c2, s)), (2)

where T (c, s) transfers the style of the reference image s
∈ RC×H×W to the content image c ∈ RC×H×W , and d
measures cosine distance in the last feature vectors of the
discriminator. In practice, we use adaptive instance normal-
ization (AdaIN) [13] as T . Figure 1 illustrates the process
of calculating the content and style distances in Eq. (1) and
(2).

2

Figure 2. Overview of feature statistics mixing regularization (Section 3.2). Within the forward pass in the discriminator, we perturb
features by applying AdaIN with a different sample. In deeper layers, the perturbations are applied recursively. A scalar α ∼ Uniform(0, 1)
moderates their strength. Then we enforce similarity between the original output and the perturbed one.

As we do not have a unit of measurement, we compute
relative distance ρ, i.e., the style distance divided by the
content distance:

ρ︸︷︷︸
relative distance

= E
c1,c2∈C,
s1,s2∈S

[
ds(c1, s1, s2)

dc(s1, c1, c2)

]
, (3)

where C and S denote the training dataset and an external
style dataset, respectively. The larger the ρ value, the more
sensitive the discriminator is to style when classifying real
and fake images. We will use the relative distance ρ for fur-
ther analysis from here on. Our goal is to reduce the style
distance so that the discriminators consider contents more
important and produce richer gradients to the generators.

The relative distances of ImageNet-pretrained ResNet50
and ResNet50 pretrained for classifying Stylized ImageNet
[7] supports validity of the metric. As the relative distance
of the latter is less than the former and the latter is proven
to be less biased toward style, we argue that the discrimi-
nators with lower relative distance are less sensitive to style
(figures are deferred to Section 4.2).

2.2. Baseline: On-the-fly stylization

A well-known technique for preventing the classifiers
from being biased toward styles is to augment the images
with their style-transferred versions, especially using the

WikiArt dataset [1] as style references [7]. It works because
the style transfer does not alter the semantics of the origi-
nal images or the anticipated output of the network. On the
other hand, in GAN training, style transfer drives the im-
ages out of the original data distribution, thus it changes the
anticipated output of the discriminator [19]. There are two
workarounds for such a pitfall: 1) applying stochastic aug-
mentations for both real and fake data [19, 42] and 2) pe-
nalizing the output difference caused by the augmentation
instead of feeding the augmented images to the discrimina-
tor [41, 43]. As our goal is to make the discriminator less
sensitive to style changes, we take the second approach as
a straightforward baseline, for example, imposing consis-
tency on the discriminator between the original images c
and their randomly stylized images T (c, s) by

Lconsistency = Ec,s

[
(D(c)−D(T (c, s)))2

]
, (4)

where D(�) denotes the logit from the discriminator. How-
ever, it raises other questions and difficulties: the criteria for
choosing the style images are unclear, and stylizing each
image on-the-fly requires additional costs and an external
dataset. Another option is to prepare a stylized dataset in-
stead of on-the-fly stylization but it further requires pro-
hibitively large storage. To combat this, we propose an effi-
cient and generally effective method, feature mixing statis-
tics regularization, whose details are described in the next

3

section.

3. Proposed method

We first describe the traditional style transfer algo-
rithm, AdaIN, as a preliminary. Then, we discuss how our
proposed method, feature statistics mixing regularization
(FSMR), incorporates AdaIN to induce the discriminator to
be less sensitive to style.

3.1. Preliminary: AdaIN

Instance normalization (IN) [35] performs a form of
style removal by normalizing feature statistics. Adaptive in-
stance normalization (AdaIN) [13] extends IN to remove the
existing style from the content image and transfer a given
style. Specifically, AdaIN transforms content feature maps
x into feature maps whose channel-wise mean and variance
are the same as those of style feature maps y:

AdaIN(x,y) = σ(y)

(
x− µ(x)
σ(x)

)
+ µ(y), (5)

where x,y ∈ RC×H×W are features obtained by a pre-
trained encoder, and µ(·) and σ(·) denote their mean and
standard deviation their spatial dimensions, calculated for
each channel, respectively. Then, through a properly trained
decoder, the transformed features become a stylized image1.
Much work has adopted AdaIN within the generator for im-
proving the generation performance [5, 14, 20, 22, 23, 25].
On the contrary, our proposed method (FSMR) employs it
within the discriminator for efficient regularization, as de-
scribed below.

3.2. Feature statistics mixing regularization

Our goal is to make the discriminator do not heavily rely
on the styles of the input images, without suffering from
the difficulties of the on-the-fly stylization (Section 2.2).
Hence, we propose feature statistics mixing regularization
(FSMR), which does not require any external dataset and
can be efficiently implemented as per-layer operations in
the discriminator. FSMR mixes the mean and standard de-
viation of the intermediate feature maps in the discrimina-
tor using another training sample and penalizes discrepancy
between the original output and the mixed one.

Specifically, we define feature statistics mixing (FSM)
for feature maps x with respect to feature maps y to be
AdaIN followed by linear interpolation:

FSM(x,y) = αx+ (1− α)AdaIN(x,y), (6)

1AdaIN may denote the full stylization process but it denotes the oper-
ation on the feature maps (Eq. 5) in this paper.

Algorithm 1 FSM Pseudocode, Tensorflow-like

N: batch size, H: height, W: width, C: channels
def FSM(x, y, eps=1e-5):

x_mu, x_var = tf.nn.moments(x, axes=[1,2])
y_mu, y_var = tf.nn.moments(y, axes=[1,2])

normalize
x_norm = (x - mu) / tf.sqrt(var + eps)

de-normalize
x_fsm = x_norm * tf.sqrt(y_var + eps) + y_mu

combine
alpha = tf.random.uniform(shape=[])

x_mix = alpha * x + (1 - alpha) * x_fsm

return x_mix # NxHxWxC

where α ∼ Uniform(0, 1) controls the intensity of feature
perturbation. We suppose that varying αwill let the discrim-
inator learn from various strengths of regularization.

Denoting an i-th layer of the discriminator as fi, a con-
tent image as c, and a style reference image as s which
is randomly chosen from the current mini-batch samples,
we define the mixed feature maps x̃ and ỹ through feed-
forward operations with FSM:

x̃1 = x1 = f1(c),

ỹ1 = y1 = f1(s),

x̃i+1 = fi+1(FSM(x̃i, ỹi)),

ỹi+1 = fi+1(FSM(ỹi, x̃i)).

(7)

Then the final output logit of the mixed feed-forward pass
through the discriminator with n convolutional layers be-
comes:

DFSM(c, s) = Linear(x̃n). (8)

Given the original output D(c) and the mixed output
DFSM(c, s), we penalize their discrepancy with a loss:

LFSMR = Ec,s∼pdata

[
(D(c)−DFSM(c, s))2

]
. (9)

Figure 2 illustrates the full diagram of FSMR. This loss
is added to the adversarial loss [8] when updating the dis-
criminator parameters. It regularizes the discriminator to
produce consistent output under different statistics of the
features varying through the layers. Our design of LFSMR
is general-purpose and thereby can be combined with other
methods [19, 20, 42]. As shown in Algorithm 1, FSM can
be implemented with only a few lines of code. Also, we
provide the Tensorflow-like pseudo-code of FSMR in Ap-
pendix C.

3.3. Visualizing the effect of FSM

To visually inspect the effect of FSM in the discrimi-
nator, we train a decoder (same architecture as the one for
AdaIN [13]) which reconstructs the original image from the
32× 32 feature maps of the original discriminator.

4

(a) Style (b) Content (c) Stylization by AdaIN [13] (d) Visualization of FSM

Figure 3. Visualization of the effect of FSM (Section 3.3). (a) Example style images. (b) Example content images. (c) AdaIN largely
distorts fine details. (d) Reconstruction of FSMed features preserves them.

In Figure 3, the content images go through the discrim-
inator with FSM on all layers with respect to the style im-
ages to produce stylized (i.e., FSMed) intermediate features.
Then the learned decoder synthesizes the result images from
the FSMed features.

The FSMed images have similar global styles to the style
images but contain semantics of the content images. It has a
similar effect to AdaIN but better preserves the fine details
of the content. We suggest that it is the key for the discrim-
inator to be able to provide gradients toward more realistic
images for the generator leading to higher quality images
than the on-the-fly stylization baseline (Section 4.1).

4. Experiments

We conduct extensive experiments on six datasets of
CIFAR-10 [26], FFHQ [20], AFHQ [5], CelebA-HQ [18],
LSUN Church [37], and MetFaces [19] with five GAN
methods such as DCGAN [32], bCRGAN [43], StyleGAN2
[21], DiffAugment [42], and ADA [19]. We choose the
datasets and baseline methods following the recent experi-
mental setups [19,42]. We use the relative distance ρ (Eq. 3),
Fréchet inception distance (FID) [11], and inception score
(IS) [33] as evaluation metrics. When we compute FID, we
use all training samples and the same number of fake sam-
ples. All the baseline methods are trained using the official
implementations provided by the authors. See Appendix A
for more details. We next conduct thorough experiments to
demonstrate the superiority of our method over the straight-
forward solution and the baselines.

4.1. Comparison with the on-the-fly stylization

In this section, we compare our method with the on-the-
fly stylization, i.e., generating stylized images via AdaIN
during training and applying consistency regularization
(Section 2.2). To perform this, we collect 100 style images
from WikiArt [1] and randomly sample one for stylizing
each image during training. Note that, unlike the on-the-
fly stylization, FSMR does not rely on external style im-

ages. We conduct experiments on five benchmark datasets:
CIFAR-10, CelebA-HQ, FFHQ, AFHQ, and LSUN Church.

Table 1 compares effect of regularization with on-the-fly
stylization and FSMR in FID. While the former improves
FID compared to the baselines to some extent, improve-
ments due to FSMR are larger in all cases. For comparison
with additional networks and datasets, see Appendix F.

To measure the discriminator’s sensitivity to style, we
compute the relative distance ρ (Eq. 3) for each method.
Figure 4 shows the relative distance on CIFAR-10, FFHQ,
and AFHQ. As one can easily expect, utilizing the stylized
dataset reduces the discriminator’s sensitivity toward style.
It is worth noting that FSMR not only consistently reduces
the sensitivity but also outperforms the competitor in all
cases. This is a very meaningful result because FSMR does
not use any external stylized dataset but it uses only the
original images during training. We also observe that the
lower relative distances agree with the lower FIDs within
the same environment.

We compare the time and memory costs in Table 1.
FSMR requires 3.0∼7.4% extra training time, but the on-
the-fly method requires 17.2∼26.8% extra training time for
additional feedforward passes in image stylization. In ad-
dition, the on-the-fly method requires 70.0∼87.5% extra
GPU memory to hold pretrained networks and features for
image stylization, but FSMR only adds negligible (∼2%)
GPU memory. To avoid extra costs for the on-the-fly styl-
ization during training, we can prepare the stylized datasets
before training (i.e., different approach but has the same ef-
fect as the on-the-fly stylization). However, the one-to-many
stylization in advance requires heavy computation and pro-
hibitively large storage as shown in Table 2. For example,
to construct the stylized dataset for 1024×1024 FFHQ with
100 style references, we need to process and store more than
7.0M (70k × 100) images (8.93TB).

As an ablation study, we push toward harsher regular-
ization: using randomly shifted feature maps instead of
FSM. We observe that using arbitrary mean and standard
deviation in AdaIN (Eq. 5) significantly hampers adversar-

5

Figure 4. The relative distance of the discriminators on CIFAR-10, FFHQ, and AFHQ. We observe a positive correlation with FID in
each case. See Appendix F for more results on other baselines and datasets.

Method
Standard dataset Costs

CIFAR-10 FFHQ AFHQ CelebA-HQ LSUN Church Time (Hours) Memory (GB)

DCGAN 15.89±0.12 7.82±0.10 17.27±0.13 6.71±0.09 17.33±0.11 25.4 (1.5†) 5 (4†)
DCGAN w/ on-the-fly 15.88±0.11 7.33±0.17 14.22±0.15 5.41±0.10 26.05±0.14 31.5 (1.8†) 8.5 (7.5†)
DCGAN w/ FSMR 14.98±0.09 6.76±0.08 13.19±0.09 5.23±0.10 13.84±0.10 26.2 (1.6†) 5.1 (4†)

bCRGAN 12.46±0.09 6.43±0.08 9.35±0.10 4.31±0.09 13.20±0.10 26.1 (1.6†) 5 (4†)
bCRGAN w/ on-the-fly 12.43±0.10 5.20±0.09 8.63±0.12 3.47±0.09 10.51±0.10 33.1 (1.9†) 8.5 (7.5†)
bCRGAN w/ FSMR 11.17±0.07 4.68±0.08 8.33±0.08 3.43±0.09 9.09±0.07 27.7 (1.7†) 5.1 (4†)

Table 1. FID comparison on DCGAN variants with FSMR and the baseline on-the-fly stylization. The bold numbers indicate the best
FID for each baseline. We report the mean FID over 3 training runs together with standard deviations and the additional costs. All image
resolutions are set to 128×128 due to the backbone architecture except CIFAR-10 (32×32). Time and memory are measured in 128×128
images, and † indicates what is measured in 32× 32 images. Time means a full training time.

CIFAR-10 CelebA-HQ FFHQ AFHQ LSUN Church

Time 8 10 30 5 40

Table 2. The time to create the stylized dataset for each standard
dataset, measured in hours.

ial training between a generator and a discriminator, i.e.,
the training diverges. On the other hand, FSMR using in-
domain samples shows the anticipated effect.

4.2. Standard datasets

We evaluate the effectiveness of FSMR on three bench-
mark datasets, all of which have more than 10k training im-
ages: CIFAR-10 (50k), FFHQ (70k), and AFHQ (16k). Ta-
ble 3 (left) shows that FSMR consistently improves Style-
GAN2 even with existing augmentation techniques [19,42].
We emphasize that FSMR enhances baselines by a large gap
on AFHQ, in which case the discriminator might be easily
biased toward color and texture of the animals.

Figure 5 shows the relative distances on CIFAR-10,

FFHQ, and AFHQ for StyleGAN2 variants. FSMR reduces
the relative distances in all cases and they agree with the im-
provements in FID. We also provide the relative distances
of ResNet50 networks pretrained on ImageNet and Stylized
ImageNet as references in each dataset (Section 2.1). As the
lower relative distances agree with the higher classification
performances, the lower relative distances of the discrimi-
nator agree with the higher generative performances.

In addition, Table 4 demonstrates that applying FSMR
on StyleGAN2 variants further improves both FID and IS
for both unconditional and class-conditional generation on
CIFAR-10. For qualitative results, see Figure 6 and Ap-
pendix F.

4.3. Small datasets.

GANs are known to be notoriously difficult to train on
small datasets due to limited coverage of the data manifold.
Being able to train GANs on small datasets would lead to a
variety of application domains, making a rich synthesis ex-
perience for the users. We tried our method with five small
datasets that consist of a limited number of training images
such as MetFaces (1k), AFHQ Dog (5k), AFHQ Cat (5k).

6

Method Standard dataset Small dataset

CIFAR-10 FFHQ AFHQ MetFaces AFHQ Dog AFHQ Cat AFHQ Wild

StyleGAN2 3.89±0.07 5.62±0.10 11.37±0.03 51.88±0.44 19.65±0.07 8.37±0.06 4.17±0.06

+ FSMR 3.76±0.03 3.74±0.03 8.59±0.03 45.47±0.42 18.08±0.07 6.69±0.04 3.96±0.03

StyleGAN2-ADA 3.23±0.06 4.05±0.07 7.73±0.11 29.17±0.08 13.56±0.10 6.64±0.09 3.74±0.14

+ FSMR 2.90±0.08 3.91±0.06 6.12±0.10 27.81±0.11 11.76±0.14 5.71±0.10 3.24±0.16

StyleGAN2-DiffAug 3.23±0.08 5.35±0.09 7.52±0.08 32.96±0.08 16.92±0.06 6.39±0.05 4.39±0.07

+ FSMR 2.93±0.05 4.99±0.08 6.53±0.05 29.98±0.15 14.55±0.18 6.29±0.07 4.28±0.04

Table 3. FID comparison on StyleGAN2 variants. The bold numbers indicate the best FID for each baseline. We report the mean FID
over 3 training runs together with standard deviations. FSMR improves the baselines in all cases.

Figure 5. The relative distance of the discriminators on CIFAR-10, FFHQ, and AFHQ for StyleGAN2 variants. The higher ρ value, the
more sensitive the discriminator is to style when classifying real and fake. We report the reference values for the relative distances using
ResNet50 trained on ImageNet (red line) and ResNet50 trained on Stylized ImageNet (blue line) [7]. As the lower relative distances agree
with the higher classification performances, the lower relative distances of the discriminator agree with the higher generative performances.

Method
Unconditional Conditional

FID ↓ IS ↑ FID ↓ IS ↑

StyleGAN2 3.89 9.36 3.52 9.77
+ FSMR 3.76 9.58 3.35 10.05

StyleGAN2-ADA 3.23 9.47 2.76 9.98
+ FSMR 2.90 9.68 2.63 10.03

StyleGAN2-DiffAug 3.23 9.63 3.10 9.84
+ FSMR 2.93 9.81 2.87 10.02

Table 4. FID and inception score comparison on CIFAR-10
across StyleGAN2 variants. Bold face indicates the best scores for
each baseline. We report the mean scores over three training runs.

AFHQ Wild (5k). As shown in Table 3 (right), we can ob-
serve that FSMR improves FID stably for all the baseline
models, even if the number of data is small. See Figure 6
and Appendix F for qualitative results.

5. Related Work
Improving discriminators. While generative adversarial
networks [8] have been developing regarding their network
architectures [20, 21, 28, 32], regularizing the discriminator
has been simultaneously considered as an important tech-
nique for stabilizing their adversarial training. Examples in-
clude instance noise [15], gradient penalties [9, 28], spec-
tral normalization [29], contrastive learning [16, 17], and
consistency regularization [41, 43]. They implicitly or ex-
plicitly enforce smooth changes in the outputs within some
perturbation of the inputs. Recent methods employ data
augmentation techniques to prevent discriminator overfit-
ting [19,42]. While they explicitly augment the images, our
method implicitly augments the feature maps in the discrim-
inator. In addition, while they use standard transformations
which are used in training classifiers, our method regular-
izes the discriminator to produce small changes when the
style of the input image is changed and it effectively pre-
vents discriminator from being biased toward style.

Bias toward style. Convolutional neural networks are bi-
ased toward style (texture) when they are trained for classi-

7

FFHQ METFACES AFHQ CAT, DOG, WILD, 2562 CIFAR-10
70k img, 2562 1336 img, 2562 5653 img 5239 img 5238 img 50k, 10 cls, 322

Figure 6. Examples of generated images for several datasets trained using FSMR. Please note that we do not use transfer learning on
MetFaces as opposed to ADA. See Appendix F for more uncurated results.

fication [6, 7, 10]. The straightforward solution for reduc-
ing the bias is randomizing textures of the samples by a
style transfer algorithm [7]. It is a kind of data augmenta-
tion technique in that the style transfer prevents classifiers
from overfitting to styles as geometric or color transforma-
tions prevent classifiers from overfitting to certain positions
or colors. As simply perturbing the data distribution in GAN
training results in perturbed fake distribution [19], we intro-
duce an extra forward pass with an implicitly stylized fea-
ture and impose consistency in the output with respect to
the original forward pass (Eq. 10). While the linear interpo-
lation of our mixing resembles mixup [39], we do not inter-
polate target outputs but only soften the changes in feature
statistics.

Style mixing regularization [20] may look similar to
FSMR in that it also mixes two styles. It mixes styles in the
generator and encourages the generator to produce mixed
images that will be used in the adversarial training for both
the generator and the discriminator. Its goal is to divide
the role of layers and it has little effect on performance
(4.42→4.40, FFHQ, StyleGAN, 1024x1024 resolution). On
the other hand, FSMR implicitly mixes styles in the dis-
criminator and suppresses sensitivity to style by imposing
consistency regularization to the discriminator. FSMR has a
great influence on performance improvement (5.52→3.72,
FFHQ, StyleGAN2, 256x256 resolution).

6. Limitation and Discussion

As shown in various experiments, we have found that
the discriminators have a bias for style, which enables nu-
merical representation through the relative distance metric.
However, we have not found out the optimal value that how
much relative distance should be reduced for each model.
We observed through the reference value in Figure 5, that
even though we could not find the optimal value, the rela-
tionship where the relative distance decreases, the less bias
to style reduces. We have proposed FSMR, which reduces
the bias to style using only internal training datasets, rather
than using external datasets, and proved that FSMR is very
simple yet effective. In future work, it would be worthwhile
to search the optimal value for the relative distances and to
unify the relative distances among different models.

7. Conclusion

We observed that the discriminators are biased toward
style. To quantitatively measure the amount of bias, we
proposed relative distance, i.e., style distance divided by
the content distance. While reducing the style bias with a
straightforward consistency regularization with style trans-
fer method induces ambiguity and difficulties, our feature
statistics mixing regularization (FSMR) provides a simple
and effective solution. Importantly, FSMR does not explic-
itly stylize the images but perturbs the intermediate features

8

in the discriminator. We visualize the effect of FSMR and
quantitatively analyze its behavior regarding relative sensi-
tivity. The experiments demonstrated that our method con-
sistently improves various network architectures, even in
conjunction with the latest techniques.

Acknowledgements The authors thank NAVER AI Lab
researchers and Jun-Yan Zhu for constructive discussion.
All experiments were conducted on NAVER Smart Machine
Learning (NSML) platform [24, 34]. This work was partly
supported by an IITP grant (No.2021-0-00155) and an NRF
grant (NRF-2021R1G1A1095637). Both grants are funded
by the Korean government (MSIT).

References
[1] Wikiart. https://www.kaggle.com/c/painter-

by-numbers. 2, 3, 5
[2] Hyojin Bahng, Sanghyuk Chun, Sangdoo Yun, Jaegul Choo,

and Seong Joon Oh. Learning de-biased representations with
biased representations. In ICML, 2020. 1

[3] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis.
In ICLR, 2019. 1

[4] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha,
Sunghun Kim, and Jaegul Choo. Stargan: Unified genera-
tive adversarial networks for multi-domain image-to-image
translation. In CVPR, 2018. 1

[5] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha.
Stargan v2: Diverse image synthesis for multiple domains.
In CVPR, 2020. 1, 2, 4, 5

[6] Leon A Gatys, Alexander S Ecker, and Matthias Bethge.
Texture synthesis using convolutional neural networks. In
NeurIPS, 2015. 1, 8

[7] Robert Geirhos, Patricia Rubisch, Claudio Michaelis,
Matthias Bethge, Felix A Wichmann, and Wieland Brendel.
Imagenet-trained cnns are biased towards texture; increasing
shape bias improves accuracy and robustness. In ICLR, 2019.
1, 2, 3, 7, 8

[8] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial networks. In
NeurIPS, 2014. 1, 4, 7

[9] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent
Dumoulin, and Aaron Courville. Improved training of
wasserstein gans. In NeurIPS, 2017. 1, 7

[10] Katherine L Hermann, Ting Chen, and Simon Kornblith. The
origins and prevalence of texture bias in convolutional neural
networks. In NeurIPS, 2020. 1, 8

[11] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. In NeurIPS, 2017. 5, 11

[12] Minui Hong, Jinwoo Choi, and Gunhee Kim. Stylemix: Sep-
arating content and style for enhanced data augmentation. In
CVPR, 2021. 12

[13] Xun Huang and Serge Belongie. Arbitrary style transfer in
real-time with adaptive instance normalization. In ICCV,
2017. 2, 4, 5, 12

[14] Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz.
Multimodal unsupervised image-to-image translation. In
ECCV, 2018. 1, 4

[15] Simon Jenni and Paolo Favaro. On stabilizing generative
adversarial training with noise. In CVPR, 2019. 1, 7

[16] Jongheon Jeong and Jinwoo Shin. Training gans with
stronger augmentations via contrastive discriminator. In
ICLR, 2021. 1, 7

[17] Minguk Kang and Jaesik Park. Contragan: Contrastive learn-
ing for conditional image generation. In NeurIPS, 2020. 1,
7

9

https://www.kaggle.com/c/painter-by-numbers
https://www.kaggle.com/c/painter-by-numbers

[18] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation. In ICLR, 2018. 1, 5

[19] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine,
Jaakko Lehtinen, and Timo Aila. Training generative ad-
versarial networks with limited data. In NeurIPS, 2020. 1, 3,
4, 5, 6, 7, 8

[20] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
CVPR, 2019. 1, 4, 5, 7, 8

[21] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improving
the image quality of stylegan. In CVPR, 2020. 1, 5, 7

[22] Hyunsu Kim, Yunjey Choi, Junho Kim, Sungjoo Yoo, and
Youngjung Uh. Exploiting spatial dimensions of latent in
gan for real-time image editing. In CVPR, 2021. 1, 4

[23] Hyunsu Kim, Ho Young Jhoo, Eunhyeok Park, and Sungjoo
Yoo. Tag2pix: Line art colorization using text tag with secat
and changing loss. In ICCV, 2019. 1, 4

[24] Hanjoo Kim, Minkyu Kim, Dongjoo Seo, Jinwoong Kim,
Heungseok Park, Soeun Park, Hyunwoo Jo, KyungHyun
Kim, Youngil Yang, Youngkwan Kim, et al. Nsml: Meet the
mlaas platform with a real-world case study. arXiv preprint
arXiv:1810.09957, 2018. 9

[25] Junho Kim, Minjae Kim, Hyeonwoo Kang, and Kwang Hee
Lee. U-gat-it: Unsupervised generative attentional net-
works with adaptive layer-instance normalization for image-
to-image translation. In ICLR, 2020. 1, 4

[26] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 5

[27] Boyi Li, Felix Wu, Ser-Nam Lim, Serge Belongie, and Kil-
ian Q Weinberger. On feature normalization and data aug-
mentation. In CVPR, 2021. 12

[28] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin.
Which training methods for gans do actually converge? In
ICML, 2018. 1, 7

[29] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida. Spectral normalization for generative ad-
versarial networks. In ICLR, 2018. 1, 7

[30] Takeru Miyato and Masanori Koyama. cgans with projection
discriminator. In ICLR, 2018. 1

[31] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan
Zhu. Semantic image synthesis with spatially-adaptive nor-
malization. In CVPR, 2019. 1

[32] Alec Radford, Luke Metz, and Soumith Chintala. Unsuper-
vised representation learning with deep convolutional gener-
ative adversarial networks. In ICLR, 2016. 1, 5, 7

[33] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, and Xi Chen. Improved techniques
for training gans. In NeurIPS, 2016. 5, 11

[34] Nako Sung, Minkyu Kim, Hyunwoo Jo, Youngil Yang, Jing-
woong Kim, Leonard Lausen, Youngkwan Kim, Gayoung
Lee, Donghyun Kwak, Jung-Woo Ha, et al. Nsml: A ma-
chine learning platform that enables you to focus on your
models. arXiv preprint arXiv:1712.05902, 2017. 9

[35] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-
stance normalization: The missing ingredient for fast styliza-
tion. arXiv preprint arXiv:1607.08022, 2016. 4

[36] Vikas Verma, Alex Lamb, Christopher Beckham, Amir Na-
jafi, Ioannis Mitliagkas, David Lopez-Paz, and Yoshua Ben-
gio. Manifold mixup: Better representations by interpolating
hidden states. In ICML, 2019. 11

[37] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianx-
iong Xiao. Lsun: Construction of a large-scale image dataset
using deep learning with humans in the loop. arXiv preprint
arXiv:1506.03365, 2015. 5

[38] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-
larization strategy to train strong classifiers with localizable
features. In ICCV, 2019. 11

[39] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. In ICLR, 2018. 8, 11

[40] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augus-
tus Odena. Self-attention generative adversarial networks. In
ICML, 2019. 1

[41] Han Zhang, Zizhao Zhang, Augustus Odena, and Honglak
Lee. Consistency regularization for generative adversarial
networks. In ICLR, 2020. 1, 3, 7

[42] Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song
Han. Differentiable augmentation for data-efficient gan
training. In NeurIPS, 2020. 1, 3, 4, 5, 6, 7

[43] Zhengli Zhao, Sameer Singh, Honglak Lee, Zizhao Zhang,
Augustus Odena, and Han Zhang. Improved consistency reg-
ularization for gans. In AAAI, 2021. 1, 3, 5, 7

[44] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In ICCV, 2016. 1

10

A. Implementation Details
Figure 7 presents all examples of style images which

are used in computing relative distance and running the
baseline on-the-fly stylization. In the subsections, we pro-
vide implementation details for DCGAN variants and Style-
GAN2 variants. For further details, please refer to our code
at https://github.com/naver-ai/FSMR.

A.1. DCGAN variants Experiments

Augmentations for DCGAN, bCRGAN include image
flipping and random cropping. Consistency regularization
coefficients for bCRGAN are λreal = λfake = 10. We
use non-saturating logistic loss with R1 regularization, and
Adam optimizer with β1 = 0.5, β2 = 0.999, ε = 10−8,
and learning rate=0.0001 for both models. We ran our ex-
periments on one Tesla V100 GPU, using Tensorflow 2.1.0,
CUDA 10.1, and cuDNN 7.6.4. We apply FSMR for both
real and fake samples and the total loss is

Ltotal = Ladv + λLFSMR, (10)

where λ = 10. We performed all training runs using 1 GPU,
continued the training for 20k iterations, and used a mini-
batch size of 32.

A.2. StyleGAN2 variants Experiments

For StyleGAN2, ADA2, and DiffAug3, we use the offi-
cial Tensorflow implementations. We kept most of the de-
tails unchanged, including network architectures, weight
demodulation, path length regularization, lazy regulariza-
tion, style mixing regularization, bilinear filtering in all up-
/downsampling layers, equalized learning rate for all train-
able parameters, minibatch standard deviation layer at the
end of the discriminator, exponential moving average of
generator weights, non-saturating logistic loss with R1 reg-
ularization, and Adam optimizer with β1 = 0, β2 = 0.99,
and ε = 10−8. We ran our experiments on eight Tesla V100
GPUs, using Tensorflow 1.14.0, CUDA 10.0, and cuDNN
7.6.3. We apply FSMR only to the real samples because it
leads to slightly larger gain. The weights λ for LFSMR are
0.05 for FFHQ and 1 for the other datasets. We performed
all training runs using 4 GPUs, continued the training for
25M iterations, and used minibatch size of 32, except for
CIFAR-10, where we used 2 GPUs, 100M iterations, and a
minibatch size of 64.

B. Evaluation metrics
We measure Fréchet Inception Distance (FID) [11] and

Inception Score (IS) [33] using the official Inception v3

2https://github.com/NVlabs/stylegan2-ada
3https : / / github . com / mit - han - lab / data -

efficient-gans

Algorithm 2 FSMR Pseudocode, Tensorflow-like

N: batch size, H: height, W: width, C: channels
def FSM(x, y, alpha, eps=1e-5):

x_mu, x_var = tf.nn.moments(x, axes=[1,2],
keepdims=True) # Nx1x1xC

y_mu, y_var = tf.nn.moments(y, axes=[1,2],
keepdims=True) # Nx1x1xC

normalize
x_norm = (x - mu) / tf.sqrt(var + eps)

de-normalize
x_fsm = x_norm * tf.sqrt(y_var + eps) + y_mu

combine
x_mix = alpha * x + (1 - alpha) * x_fsm

return x_mix # NxHxWxC

def discriminator(img, use_fsmr=False):
layers: conv, bn, actv, ..., fc ->

discriminator layers

x = img # NxHxWxC
indices = tf.range(tf.shape(x)[0])
shuffle_indices = tf.random.shuffle(indices)
alpha = tf.random.uniform(shape=[], minval=0.0,

maxval=1.0)

for layer in layers:
x = layer(x)
if use_fsmr and layer.name == ’conv’:

y = tf.gather(x, shuffle_indices)
x = FSM(x, y, alpha)

return x # Nx1

def FSMR(real_img, fake_img, use_fsmr=True):
real_logit = discriminator(real_img) # Nx1
fake_logit = discriminator(fake_img) # Nx1

if use_fsmr:
real_logit_mix = discriminator(real_img,

use_fsmr) # Nx1
fake_logit_mix = discriminator(fake_img,

use_fsmr) # Nx1
d_fsmr_loss = l2_loss(real_logit,

real_logit_mix)
d_fsmr_loss += l2_loss(fake_logit,

fake_logit_mix) # optional
d_fsmr_loss *= 10 # weight for fsmr

else:
d_fsmr_loss = 0

return d_fsmr_loss

model in Tensorflow. When we compute FID and IS, we
sample the same number of images to the number of real
images in the training set.

C. Pseudo-code

We provide the Tensorflow-like pseudo-code of FSMR
in Algorithm 2. FSMR is simple to fit easily into any model.

D. Comparison with previous mixing methods.

In Table 5, we show the comparison results from the pre-
vious mixing methods. First of all, the difference between
the previous methods and FSMR is as follows. CutMix [38]
and Mixup [39] apply augmentations on images, not on the
feature maps. Manifold-Mixup [36] performs linear inter-

11

https://github.com/naver-ai/FSMR
https://github.com/NVlabs/stylegan2-ada
https://github.com/mit-han-lab/data-efficient-gans
https://github.com/mit-han-lab/data-efficient-gans

polation on the feature map without implicit style trans-
fer. StyleMix [12] applies AdaIN on images with an extra
encoder for augmentation, not for consistency. MoEx [27]
shares only the first component with ours: reducing style
bias requires not only feature statistics mixing (e.g. AdaIN
[13], MoEx), but also the consistency loss after feature
statistics mixing. When we have conducted the experiment,
CutMix and Manifold-Mixup are applied as follows: Cut-
Mix in feature maps and Manifold-Mixup with consistency
regularization. None of them outperforms ours because they
do not reduce style bias.

CIFAR-10 FFHQ AFHQ

ADA w/ FSMR 2.90 3.91 6.12

ADA w/ Mixup 3.48 4.40 6.67

ADA w/ CutMix 3.45 4.36 6.51

Table 5. Comparison from the previous mixing methods.

E. Ablation on the style dataset.
Table 6 shows that the improvements by FSMR is larger

than the improvements by using internal images as style ref-
erences. The numbers (a) / (b) / (c) report FIDs for

(a) on-the-fly with the training images
(b) on-the-fly with WikiArt
(c) FSMR.

FSMR outperforms both on-the-fly settings. Hence, we ar-
gue that the difference does not come from using the same
data distribution but from FSMR.

CIFAR-10 FFHQ AFHQ

DCGAN 16.02 / 15.88 / 14.98 7.52 / 7.33 / 6.76 14.87 / 14.22 / 13.19

bCRGAN 12.58 / 12.43 / 11.17 5.74 / 5.20 / 4.68 9.02 / 8.63 / 8.33

Table 6. Comparison to on-the-fly stylization with the training
images.

F. Additional results
In Figure 8, we show the relative distance on several

datasets except the ones in the main paper. We observe that
FSMR reduces the relative distance of the discriminator,
i.e., the discriminator relies less on style.

Figure 9 illustrate an additional visualization of the effect
of FSM on FFHQ, AFHQ, and LSUN Church.

In Figure 10, and 11, we show generated images for
several datasets from the baseline with FSMR. The im-
ages were selected at random, i.e., we did not perform any
cherry-picking. We observe that FSMR yields excellent re-
sults in all cases.

12

Figure 7. Example style images. We present all examples of style images that we used in the comparison experiments.

13

Figure 8. The relative distance of discriminator results for several datasets.

14

(a) Style (b) Content (d) Visualization of FSM

Figure 9. Additional visualization of the effect of FSM. (a) Style images. (b) Content images. (c) Reconstruction of FSMed features
preserves the detailed shapes.

15

Figure 10. Some example images and FIDs of competitors on CIFAR-10, FFHQ, AFHQ, and MetFaces.
16

FFHQ, FID: 3.76 MetFaces, FID: 45.47 AFHQ, FID: 8.59
St

yl
eG

A
N

2
+

FS
M

R

FFHQ, FID: 3.91 MetFaces, FID: 27.81 AFHQ, FID: 6.12

A
D

A
+

FS
M

R

FFHQ, FID: 4.99 MetFaces, FID: 29.98 AFHQ, FID: 6.53

D
iff

A
ug

+
FS

M
R

Figure 11. Uncurated random samples from the models trained with FSMR in three datasets.
17

	1 . Introduction
	2 . Style-bias in GANs
	2.1 . Style distance and content distance
	2.2 . Baseline: On-the-fly stylization

	3 . Proposed method
	3.1 . Preliminary: AdaIN
	3.2 . Feature statistics mixing regularization
	3.3 . Visualizing the effect of FSM

	4 . Experiments
	4.1 . Comparison with the on-the-fly stylization
	4.2 . Standard datasets
	4.3 . Small datasets.

	5 . Related Work
	6 . Limitation and Discussion
	7 . Conclusion
	A . Implementation Details
	A.1 . DCGAN variants Experiments
	A.2 . StyleGAN2 variants Experiments

	B . Evaluation metrics
	C . Pseudo-code
	D . Comparison with previous mixing methods.
	E . Ablation on the style dataset.
	F . Additional results

