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Abstract

Metrics for evaluating generative models aim to measure
the discrepancy between real and generated images. The
often-used Fréchet Inception Distance (FID) metric, for ex-
ample, extracts “high-level” features using a deep network
from the two sets. However, we find that the differences in

“low-level” preprocessing, specifically image resizing and
compression, can induce large variations and have unfore-
seen consequences. For instance, when resizing an image,
e.g., with a bilinear or bicubic kernel, signal processing
principles mandate adjusting prefilter width depending on
the downsampling factor, to antialias to the appropriate
bandwidth. However, commonly-used implementations use
a fixed-width prefilter, resulting in aliasing artifacts. Such
aliasing leads to corruptions in the feature extraction down-
stream. Next, lossy compression, such as JPEG, is commonly
used to reduce the file size of an image. Although designed
to minimally degrade the perceptual quality of an image, the
operation also produces variations downstream. Further-
more, we show that if compression is used on real training
images, FID can actually improve if the generated images
are also subsequently compressed. This paper shows that
choices in low-level image processing have been an under-
appreciated aspect of generative modeling. We identify and
characterize variations in generative modeling development
pipelines, provide recommendations based on signal pro-
cessing principles, and release a reference implementation
to facilitate future comparisons.

1. Introduction

With the proliferation of generative modeling techniques,
such as Generative Adversarial Networks (GANs) [28], ac-
curately discerning which methods are performing better
has become a critical aspect of the field. For visual data,
metrics such as Inception Score (IS) [64], Kernel Inception
Distance (KID) [5], and the ubiquitously-used Fréchet In-
ception Distance (FID) [30] have become standard practice
for developing and adopting models. Under the hood, these
methods evaluate the discrepancy between generated and
natural images, in a deep feature space, to capture relevant
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Figure 1. Downsampling a circle. We resize an input image (left)
by a factor of 8, using different image processing libraries. The
Lanczos, bicubic, and bilinear implementations by PIL (top row)
adjust the antialiasing filter width by the downsampling factor
(marked as ). Other implementations (including those used for
PyTorch-FID and TensorFlow-FID) use fixed filter widths, intro-
ducing aliasing artifacts (marked as ) and resembling naive near-
est subsampling. Aliasing artifacts induce inconsistencies in the
calculation of downstream metrics such as Fréchet Inception Dis-
tance [30], KID [5], IS [64], and PPL [37]. Note that antialias
flag is available in TensorFlow 2, but is set to False (default value)
for the FID calculation.

features of the two distributions. After all, at its core, gener-
ative modeling involves learning and mimicking high-order,
complex statistics of visual data.

However, we find that low-level, seemingly innocuous
operations, can induce surprisingly large discrepancies in
high-level statistics. For example, consider Figure 1. Given
the same input image, different image processing libraries
produce drastically different results. Specifically, the im-
plementations using OpenCV, TensorFlow and PyTorch li-
braries with default flags, contain severe aliasing artifacts.
Similarly, the simple act of saving images in a JPEG oper-
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Figure 2. Interpolation Filters. We show the adaptive filters by
PIL (top) and non-adaptive filter from PyTorch (bottom). The FID
implementations in PyTorch and TensorFlow use a fixed-width bi-
linear interpolation, independent of resizing ratio. In contrast, the
proposed Clean-FID uses an implementation that follows standard
signal processing principles and adaptively stretches the filter to pre-
vent aliasing. The horizontal axes represent the spatial coordinates
and the vertical axes represents the kernel intensity.

ation with the default parameters, either when building the
training dataset or collection of generated images, adds quan-
tization and low-level statistical differences to the underlying
data. The low-level statistical differences induced by these
differences cause meaningful variations when used for eval-
uation protocols. As the Fréchet Inception Distance (FID)
metric [30] is the most ubiquitous [8, 30, 37, 40, 61], it is the
focus of our experiments. We offer a standard benchmark,
clean-fid (github.com/GaParmar/clean-fid), and
concrete suggestions on resizing and quantization procedures
to enable clean comparisons in future evaluation protocols.

First, we investigate the implications of image resizing.
When downsampling, signal processing techniques recom-
mend “prefiltering” the input, to prevent high-frequency ele-
ments from aliasing into the output. When the downsampling
factor is larger, the prefilter kernel should be correspondingly
stretched. However, as shown in Figure 2, the resizing func-
tion used by the FID implementations in TensorFlow and
PyTorch do not prefilter the image, resulting in aliasing arti-
facts shown in Figure 1. Resizing can occur in two locations
– during data preprocessing (training with lower resolution)
or at evaluation time (resizing to 299 resolution to com-
pute the FID metric). In both cases, inconsistent resizing
functions induce variations downstream. If used for data
preprocessing, the training data distribution itself is changed.
When used for the evaluation metric, small variations in re-
sizing can cause changes in subsequent feature extraction.
We quantify the effects of these inconsistencies and offer
standard recommendations. Specifically, we propose to use
a stronger bicubic filter [39]; more importantly, we propose
to adjust prefiltering width based on the resizing factors, as

guided by signal processing principles.
Secondly, we investigate the implication of image com-

pression. While the JPEG protocol is a lossy compression
scheme, designed to preserve perceptual similarity to the
original [73], it can perturb an image enough to corrupt
downstream feature extraction. This affects performance
drastically and can create mismatches when comparing meth-
ods. Perhaps more surprisingly, when training images are
saved with JPEG compression, modern GANs are unable to
fully mimic the induced artifacts, and large FID improve-
ments can actually be artificially achieved by tweaking the
JPEG compression ratios when storing the generated images.
We quantify the surprising effects of this compression oper-
ation, and again offer a concrete, standardized protocol to
avoid inconsistencies and hindrances to proper evaluation.

In conclusion, we characterize the surprising importance
of low-level image processing steps, resizing and quantiza-
tion, when training and evaluating generative models, such
as GANs. We focus our experiments on the widely adopted
FID metric, and show additional results on the KID met-
ric [5] as well as IS [64] and Perceptual Path Length (PPL)
metrics [37] (in the supplement). Importantly, any metric,
present or future, that derives statistics from images undergo-
ing these processing steps, will be affected by these factors.
More details and results can be found on our website.

2. Related Work
Deep generative models. A wide range of image and
video synthesis applications [45, 54, 67, 83] have been en-
abled, as a result of tremendous progress in deep generative
models such as GANs [9, 28, 34, 37, 59], VAEs [41, 55, 61],
autoregressive models [52], flow-based models [18, 40], and
energy-based models [21, 50, 63]. It is often relatively easier
to evaluate individual model’s performance on downstream
computer vision and graphics tasks, as they have a clear
target for a given input. However, evaluating unconditional
generative models remains an open problem. It is still an
important goal, as most generative models are not tailored to
any downstream task.
Evaluating generative models. The community has intro-
duced many evaluation protocols. One idea is to conduct
user studies on cloud-sourcing platforms for either assess-
ing the samples’ image quality [17, 64, 82] or identifying
duplicate images [2]. Due to the subtle differences in user
study protocols (e.g., UI design, fees, date/time), it is not
easy to replicate results across different papers. Large-scale
user studies can also be expensive, prohibiting its usage
when evaluating hundreds of model variants and checkpoints
during the development stage. Several methods propose
evaluating generative models from a self-supervised feature
learning perspective, by repurposing the learned discrimina-
tors [59] or accompanying encoders [19] for a downstream
classification task. However, the representation power of the
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Figure 3. Overview of the steps involved in FID. Generative modeling and evaluation require undergo subtleties in image pre-processing.
Top: First, the image dataset may be downsampled before training (e.g., 1024→256 for FFHQ), requiring a resize (ψdata) and possible
compression (Q). Bottom: Generated images may be saved as an unsigned 8-bit integer, resulting in a quantization and possible further
compression (Q̂). FID aims to measure how well a generative model G(z) mimics the training distribution. The calculation resizes real and
generated images to 299 resolution (ψFID and ψ̂FID, respectively), extracts deep features using the Inception network [69], fits Gaussians, and
takes the Fréchet distance between two distributions. We study the effects of resizing the training images ψdata in Section 4.3, resizing to
299×299 ψFID and ψ̂FID in Section 4.1 and the quantizations/image compressions Q̂ and Q in Section 4.2.

discriminator or encoder does not directly reflect the gener-
ators’ sample quality and diversity. In addition, not every
generative model is trained with a discriminator or encoder.

To overcome the previous issues, an area of focus is
developing automatic metrics that directly assess the sam-
ples of generative models. Various metrics been proposed,
criticized, and modified. Commonly-used ones include
log-likelihood [28, 41], density estimate with Parzen win-
dow [28], Inception Score [64], Perceptual Path Length [37],
Fréchet Inception Distance (FID) [30], Classification Ac-
curacy Score and its early variants [60, 64], Classifier Two-
sample Tests [44, 47], precision and recall [42, 62], Kernel
Inception Distance (KID) [5], among others. Each metric
has associated pros and cons [6, 72] and none are perfect.

Among them, Fréchet Inception Distance (FID) has be-
come the most widely-used metrics, as it can model intra-
class diversity better than Inception Score. FID is also
easy and fast to compute without training additional classi-
fiers [60], and has been shown to be consistent with human
perception [30]. As a result, it has been used in recent GANs
papers [9,37,77] as well as large-scale evaluation study [48],
despite facing criticism about the fact that FID is a biased
estimator and sensitive to the number of samples used in the
evaluation [5, 14]. Our goal here is not to study which one is
a better metric. Instead, we focus our study on the popular
FID metric and how subtle details and aliased image resizing
functions can affect the final scores. Note that the resizing
and quantization we study in are applicable to any evaluation
metric that contains such operations.

Antialiasing and robustness. The study of resampling
signals is central in signal processing [53], image process-

ing [27], and computer graphics [23]. In particular, when
downsampling a signal, one must consider the Nyquist sam-
pling criterion [51] and antialias to prevent high-frequency
information from aliasing into the output. Without proper
antialiasing, in the worst case, an adversary can embed a
completely different image in the original, resulting in a
“scaling attack” [58, 75]. In convolutional network design,
antialiasing has taken form in average pooling [43] and Gaus-
sian filtering [49]. While it was replaced by operations
such as max-pooling, based on empirical performance [65],
recent works have demonstrated that antialiasing can be
compatible and improve performance in convolutional net-
works [79,85], transformers [57], NeRFs [4], and GANs [36].
Despite these advances, generative methods continue to be
detectable [10, 74], and discriminative networks continue
to be sensitive to small perturbations, such as shifts [3, 22]
and JPEG compression [29]. Achieving robustness to such
perturbations remains an open problem [71], and the prepro-
cessing steps, such as image resizing, used before feature
extraction remain consequential. We study the effect of such
steps in a generative modeling pipeline and propose a stan-
dardization following signal processing principles, in order
to facilitate easy and fair comparisons.

3. Preliminaries

In this section, we discuss several low-level image pro-
cessing steps using different popular libraries. We find that
many of these details can have a large effect on the FID score
being computed. Figure 3 details the step-by-step process
for both dataset preparation and model evaluations.
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3.1. Generative Modeling and Evaluation Pipeline
The Fréchet Inception Distance (FID) score aims to mea-

sure the gap between two data distributions [30], such as
between a training set and samples from a generator.

Dataset pre-processing. We denote the original real im-
age distribution as x ∼ pdata(x), where x ∈ ZH×W×3. Note
that images are saved as 8-bit integers, represented by Z.
Training and developing large-scale GANs at the original
resolution [9,37] is often prohibitively expensive, sometimes
requiring training hundreds of models during development.
As such, developing on lower-resolution versions of the
original dataset is a common practice [46, 78, 81], such as
1024→256 on FFHQ or 256→ 128 on ImageNet.

As shown in the top branch of Figure 3, to prepare a lower-
resolution training set, one must downsample the training
set, denoted by ψdata. Note that downsampling requires an
antialiasing step according to standard textbooks [23, 53, 70]
that converts integers into a floating point number, Z→ R.
A quantization step is added afterwards to cast back to Z.
This data preparation step introduces a new data distribution
of low-res real images: x ∼ pdata(x), where x ∈ ZH×W×3.

Evaluating a generator with FID. A generator G that
learns to map a latent code z ∈ N (0, I) to output images
G(z) ∈ RH×W×3 is trained on the lower resolution dataset.
A common evaluation method is passing both real and gener-
ated images through a feature extractor F , fitting a Gaussian
distribution, and measuring the Fréchet distance between
the two distributions. Deep network activations are used as
the statistics of interest, as they have been shown to corre-
spond well with human perceptual judgments [80] and are
often used as training objectives [20, 26, 33]. The feature
extractor F used for this task is an InceptionV3 model [69].
Because this model is trained on 299× 299× 3 ImageNet
image crops [16], the training and generated images are
resized denoted by functions ψFID and ψ̂FID, respectively,
before being processed. As these images may be saved in de-
velopment pipelines, different image compressions may be
applied. These operations are represented by Q for reference
images x and by Q̂ for synthesized images G(z).

f = F(ψFID(Q(ψdata(x)))), (1)

f̂ = F(ψ̂FID(Q̂(G(z)))). (2)

After the images are appropriately resized, and the features
are extracted, the mean (µ, µ̂) and covariance matrix (Σ,
Σ̂) of the corresponding set of features f and f̂ are used to
compute the Fréchet distance shown in the equation below.

FID = ||µ− µ̂||22 + Tr(Σ + Σ̂− 2(ΣΣ̂)1/2), (3)

The Tr operation calculates the trace of the matrix.The dif-
ferent choices for the resizing functions (ψdata, ψFID, ψ̂FID)
and quantization functions (Q, Q̂) adds potential sources of
inconsistencies in generative modeling pipelines.
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Figure 4. Reconstruction after downsampling and upsampling.
To illustrate the differences between resizing functions, we down-
sample images with the different functions and upsample with PIL-
Lanczos, and compute similarity to the original with PSNR. The
implementation that adjusts prefilter size to downsampling factor
(PIL) reconstructs the original more accurately than the implemen-
tations that used a fixed filter size (PyTorch). This is especially
apparent for larger resizing ratios (64×), where performance is
closer to naive nearest subsampling.

3.2. Image Resizing
Depending on the dataset and training size, the resizing

operations (ψFID, ψ̂FID) in Figure 3 can either be downsam-
pling or upsampling. Downsampling is the primary focus of
this investigation, as it involves throwing away information.
Methods for downsampling is a common study in the fields
of signal and image processing [27, 53].

Antialiasing by prefiltering. The most naive approach is
to simply subsample (taking every Nth element if performing
downsampling by an integer factor N), sometimes referred
to as nearest. This corresponds to filtering the input image
with Kronecker delta function, as only a single value is
drawn. Such an approach leads to aliasing, as high-frequency
elements of the input alias to the output.

A central principle in image processing, signal process-
ing, graphics, and vision [24, 25, 27, 53, 70] is to blur or
“prefilter” before subsampling, as a means of removing high-
frequency information (thus preventing its misrepresentation
downstream). For linear filters, this corresponds to a “depth-
wise convolution”, using deep learning parlance [31,68]. We
explain two important ways in which prefiltering implemen-
tations can vary.

Filter size adaptation to downsampling factor. First, ac-
cording to signal processing principles, the size of the filter
should be adjusted, in accordance with the downsampling
factor. Widening the low-pass filter in the spatial domain
corresponds to reducing its bandwidth and filtering more
aggressively in frequency space. As a larger downsampling
factor means a lower bandwidth can be represented on the
output signal, widening the filter accordingly is necessary

4
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Figure 5. Differences in Inception features induced by inconsistent resizing. We resize full resolution 1024× 1024 FFHQ [37] image
(left) to 299× 299 using PIL-bicubic (top), Tensorflow-bilinear (used by TF-FID) (middle), and Pytorch-bilinear (used by PyTorch-FID)
(bottom). The resizing functions using current FID implementations (middle and bottom rows) introduce artifacts; for example, the hair and
glasses appear noisier and aliased, as compared to the top row. We observe similar behavior on other commonly-used datasets - AFHQ-Cats
(512× 512) and MetFaces (1024× 1024). Furthermore, these resizing implementations are inconsistent with each other, inducing different
activation maps when passed through the Inception-V3 network [69]. We propose to resolve this inconsistency and also reduce the aliasing,
by standardizing bicubic downsampling as the preprocessing function for a “Clean-FID” (using filtering that adjusts to the downsampling
factor, adhering to signal processing principles).

to prevent aliasing. However, in many common implemen-
tations, this is not implemented (or is not used by default);
instead, a filter of fixed, non-adaptive size is used.

Choice of filters. Secondly, there is a choice of different
convolutional filters. The idealized low-pass filter is a sinc,
requiring infinite support. As such, approximate filters with
different subtle tradeoffs in runtime and behavior are used
instead. The box, also known as area filter, corresponds to
a rectangular filter, computing the average of values within
a neighborhood. The bilinear filter is a triangular filter,
bicubic [39] is a stronger cubic function, and the lanczos
filter is an enveloped sinc. All perform a weighted average
and have stronger antialiasing, closer to the idealized sinc.
See Appendix 6.1 for additional details about the different
interpolation filters.

Practical implications of implementation variations.
We investigate the inconsistencies that can arise, when these
two factors are varied, and show a toy example in Figure 1 in
downsampling a circle. While the choice of filter is largely
constant across libraries (lanczos, bicubic, bilinear are shown
in each column), the choice of whether the filter adapts to
the downsampling factor is not. While the PIL library adapts
the filter (top row), other libraries do not by default, lead-
ing to aliased results. In particular, FID implementations of
TensorFlow-FID and PyTorch-FID, use bilinear downsam-
pling implementations that exhibit aliasing, and thus are the
focus of our study.

An implication of aliasing is a suboptimal representation
of the original image. In Figure 4, we show the result of
downsampling and upsampling an image, and comparing it
to the original with PSNR (averaged over 300 FFHQ images).
The methods with non-adaptive filters achieve a worse re-
construction than a method that adapts the filter. This effect
is more significantly accentuated with larger downsampling
factors, where high-frequency aliasing dominates when us-
ing non-adaptive filters. Figure 5 shows how the Inception
features are affected by aliased resizing functions for various
datasets.

Recommendation. Above, we have established that the
implementations of FID are inconsistent and aliased. Ideally,
the community can (a) use a consistent pipeline to facilitate
fair comparisons across papers, and (b) follows signal pro-
cessing principles and antialiases, in order to best represent
the underlying data it is trying to characterize. We pro-
pose to use an adaptive filter (and thus produce consistently
antialiased results). Second, we propose to use a bicubic, in-
stead of bilinear filter, which offers stronger reconstruction.
While such an implementation is currently found in PIL,
future implementations that are computationally equivalent
would be of use).

3.3. Quantization and Image Compression
8-bit Quantization. While images are represented by 8-
bit integers Z, operations such as resizing and data augmenta-
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Figure 6. Effects of JPEG compression on an image. We show
a sample image from the FFHQ dataset [37], saved with lossless
PNG and different JPEG compression ratios. The FID scores under
the images are calculated between FFHQ images saved using the
corresponding JPEG format and the PNG format. PSNR is com-
puted with 1000 images. While the images are perceptually similar,
this induces changes in the Inception-V3 activations, resulting in
large FID scores.

tion, as well as the raw generator output will provide floating
point numbers R. Post-processing the results introduces
more subtleties and affects standard metrics such as FID.
Most simply, an image can be quantized by clipping the
output between [0, 255] and rounding to produce integers.
This is a lossy step and only done when images need to be
saved. Additionally, we observe that performing this step
has a minor effect on the FID score (< 0.01).

Image compression. Saving the image as a raw matrix of
values is data-intensive. However, an image contains redun-
dant information that can be exploited. For example, the
PNG format compresses an image losslessly. To further save
storage, images are commonly saved using the JPEG codec.
While JPEG is a lossy compression technique, it aims to
make changes that the human visual system is less sensitive
to, namely reducing information in higher frequencies and
chroma (color) components [73]. JPEG converts an image
into a YCbCr space, subsamples the chroma components, di-
vides images into 8×8 blocks, computes the Discrete Cosine
Transform (DCT), and performs quantization. The quan-
tization step facilitates a trade-off between the fidelity of
the original image and the amount of the storage saved. In
the PIL implementation [15], this is done using a “quality”
option (0-100), which linearly scales the quantization tables
(which controls which frequencies are quantized to what
granularity). Note that setting the quality flag to 100 is not a
lossless operation. Even when the quantization tables are not
scaled, the DCT coefficients are quantized to integer values
and the chroma components are subsampled.

Image compression changes deep network activations.
In Figure 6, we show a real image sampled from the FFHQ
dataset [37] at a resolution of 256, saved with lossless PNG

and lossy JPEG (quality flags set to 100, 90, and 75). Despite
being perceptually indistinguishable (with high PSNR values
of ≥ 39), the FID scores increase. The PIL default of 75
results in a high score (21), for example. Note that this FID
score is far higher than the score from a powerful generative
model, StyleGAN2 [38] (around 3). Also, variations across
recent methods are typically within 1 FID on FFHQ. We fur-
ther investigate the implications of using JPEG compression
in various parts of the pipeline in experiments below.

4. Experiments
In Section 3, we outlined the various image processing

steps involved in generative modeling pipelines and eval-
uation. In this section, we introduce sources of variation
at these steps and empirically quantify their impacts. As
depicted in Figure 3, the variations in the FID score arises
from three distinct steps: resizing in the FID evaluation step
(ψFID, ψ̂FID), resizing in the data preprocessing step (ψdata),
and quantizing of images (Q, Q̂). We investigate each of
these steps in Section 4.1, Section 4.2, and Section 4.3 re-
spectively.

4.1. Variation due to FID Resizing

Here we investigate the effects of different resizing meth-
ods (ψFID, ψ̂FID) used in the FID calculation step.

Variation induced by resizing functions on real images.
We start with two sets of full-resolution 1024 × 1024 face
images - from the FFHQ dataset, and from a pre-trained
StyleGAN2 generator. Each of the sets of images is re-
sized from 1024→299 using different methods. In Table 1
(left), we compare the set of real images resized with the
antialiased resizing operation (PIL bicubic) to the same set
of real images, resized using other aliased functions that use
a fixed width prefiltering kernel. As we compare the same
set of images, we anticipate all FID and KID scores to be
close to 0 and the PSNR values to be very high. However, as
shown in Figures 1, 2, and 5, only a subset of the commonly
used resizing operators adjust the filter width and antialias
the images. These differences in resizing operations cause
drastic changes in the Inception-V3 [69] activation maps.

Filters that adapt their size and antialias are more consis-
tent, even with different filter types – PIL-bilinear has FID
0.64 as compared to PIL-bicubic. On the other hand, imple-
mentations that ignore the downsampling factor (PyTorch
and TensorFlow) show much larger deviation (FID 4.3), with
scores nearing naive nearest (FID 7.4), that does not filter at
all. This indicates that whether the filter adapts to the down-
sampling filter can change the modeled data distribution by
non-trivial amounts.

Variation induced by resizing functions on generated im-
ages. After studying the effects on real images, we evaluate
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how different resizing function ψ̂FID choices affect the FID
score when used in a full generative modeling pipeline. Here,
we evaluate a pretrained StyleGAN2 generator [38] trained
on FFHQ (1024), MetFaces (1024), and AFHQ (512) dataset
images, and calculate FID with 50,000 images. In Table 1
(right), we consider the asymmetric case, where features for
the real images and generated images use different resizing
functions. This case arises when features for real images
are pre-computed and shared by one group of authors, while
generated features may be calculated on the fly with a dif-
ferent library. Here, we observe that using the same resizing
function as the reference dataset (PIL-bicubic) achieves the
lowest performance. Using a different resize function, such
as PIL-bilinear increases the score to 4. Using an aliased
function increases the score drastically to 7, close to naive
subsampling (> 10).

Next, in Table 2, we show a comparison when the same
resizing function is used for the real dataset images and the
StyleGAN2 generated images. Interestingly, we observe
that the aliased resizing functions result in lower FID scores
across multiple commonly used datasets - FFHQ (1024),
MetFaces [35] (1024), and AFHQ [12] (512). This indicates
that using the antialiased function as preprocessing makes
the downstream FID calculation more sensitive at measuring
the discrepancies between distributions.

4.2. Variation due to Dataset Resizing

Previously, we considered the scenario when the dataset
was not downsampled. However, as discussed in Section 1
and illustrated in Figure 3, dataset downsampling is needed
when training a model on a low-resolution version of the
original dataset [35, 78, 81] (e.g., 256 for FFHQ or 128 for
ImageNet). Before, the target distribution was fixed, and dif-
ferences were purely introduced during post-hoc metric eval-
uation. Now, the situation is much more intricate. Different
resizing choices will result in different training distributions
entirely.

In Table 3, we train three different StyleGAN2 [38]
(config-e) models, following the official PyTorch implemen-
tation* for 25k iterations. We resize FFHQ [37] to 256
using Naive Nearest, PIL–bicubic, PyTorch–bilinear, and
TensorFlow–bilinear. We use the same PIL–bicubic function
(ψFID, ψ̂FID) for FID evaluation; note that here, it is upsam-
pling (256→ 299). Qualitatively, using an aliased downsam-
pling function produces a training distribution with visual
artifacts for the generative model to mimic, likely different
than the natural visual data we wish to model. Quantitatively,
interestingly, we observe that that the aliased pre-processing
results in lower FID values. As the antialiased function better
preserves signal in the original images, we hypothesize that
retaining more information from the original input actually
produces a more difficult distribution to model.

*https://github.com/NVlabs/stylegan2-ada

PIL–bicubic(Real Images) vs.

Resize function
Resize(Real Images) Resize(StyleGAN2)

FID
↓

KID PSNR FID
↓

KID
×103 ↓×103 ↓ [db] ↑

PIL–bicubic ( ) 0 0 ∞ 2.98 0.51
PIL–bilinear ( ) 0.64 0.61 45.7 4.03 1.52
TensorFlow–bilinear ( ) 4.34 4.32 37.66 7.45 5.12
PyTorch–bilinear ( ) 4.36 4.31 37.66 7.45 5.15
Naive nearest ( ) 7.43 7.54 35.16 10.67 8.47

Table 1. Deviations induced by varying resizing implementa-
tions. We measure the discrepancy between real images down-
sampled with PIL-bicubic (1024→ 299) vs. other downsampling
functions (ψ̂FID) on the left. If all downsampling functions were
equivalent, the neural metrics (FID & KID) should be 0 and PSNR
∞. PIL–bilinear and bicubic adjust antialiasing to the downsam-
pling factor ( ) and produce relatively low neural metric scores
and high PSNRs. Functions using fixed width filters ( ) produce
higher discrepancies. Naive nearest does not antialias at all. A
similar trend holds on synthetic StyleGAN2 [38] images.

Resize function
Resize(Dataset Images) vs. Resize(StyleGAN2)

FFHQ MetFaces AFHQ-Cats AFHQ-Dogs
FID ↓ FID ↓ FID ↓ FID ↓

PIL–bicubic ( ) 2.98 65.32 5.13 20.16
PIL–bilinear ( ) 2.99 64.31 5.01 19.60
TensorFlow–bilinear ( ) 2.75 57.45 4.93 19.45
PyTorch–bilinear ( ) 2.75 57.46 4.94 19.46
Naive nearest ( ) 2.68 55.09 4.80 18.25

Table 2. Resizing functions affect FID scores. Here, both resizing
functions on real and synthetic images (ψFID, ψ̂FID) are the same as
each other. If all resizing functions were consistent, all rows would
be equal. Interestingly, the downsampling methods that alias result
in lower scores; the lowest score is achieved by naive nearest sub-
sampling. Methods that adjust the prefilter size to downsampling
factor (implemented by PIL) better preserve information of the
original images. This indicates that antialiasing enables subsequent
FID to more sensitive to differences in the distributions.

Dataset preprocessing FID ↓ on FFHQ
PIL-bicubic

Naive Nearest ( ) 4.82 ± 0.09
PyTorch–bilinear ( ) 5.13 ± 0.20
TensorFlow–bilinear ( ) 5.08 ± 0.16
PIL–bicubic ( ) 6.21 ± 0.23

Table 3. Dataset resizing. We downsample the FFHQ dataset
using different resize functions ψdata from 1024 to 256. We train
StyleGAN2 [38] (Config-E) models, using the identical training
procedure and report FID of the result. The score is computed
across three different training runs for each of the setting. The
scores show large variation, indicating the resizing function can
greatly affect the training distribution. Using a preprocessing func-
tion that antialiases (marked by ) preserves more information
from the original images and interestingly results in a higher score.

4.3. Variation due to Quantization/Compression
JPEG during evaluation. In Figure 7, we test the effect
of quantization applied to real FFHQ images at different
resolutions on the FID (left) and KID (right) metrics. For
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Figure 7. Effects of JPEG compression on evaluation metrics.
The FFHQ dataset images are resized from 1024 to different

resolutions (512 and 256) using PIL-bicubic and compressed using
the JPEG format, with different compression ratios. Subsequently,
we plot the FID (left) and KID (right) between the compressed
images and uncompressed images, at the same resolution, as a
function of JPEG compression. The effect of JPEG compression is
increasingly more severe for smaller images.
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Figure 8. Effects of image quantization/compression. We plot
FID as a function of JPEG compression, applied to StyleGAN2
images [38], trained on LSUN Churches [76] (left) and FFHQ [37]
(right) at a resolution of 256 × 256. The blue dashed line shows
FID when the generated images are quantized to 8-bit unsigned
integers (PNG). Interestingly, when training with JPEG-75 dataset
images (left), applying lossy compression artifically improves the
FID score by a large margin (4.00→3.48).

each resolution, the real dataset images are correspondingly
downsampled using PIL–bicubic, and the scores are com-
puted between the resized uncompressed PNG images and
the resized JPEG-compressed images. Figure 7 shows that
the effect of the JPEG compression on both metrics. The
effect is more pronounced for lower resolutions, where the
artifacts remain after the subsequent resampling step.

JPEG on training images. In both comparisons above,
each method was compared with the FFHQ dataset images,
which were collected as uncompressed PNG files. Any ad-
ditional compression only monotonically increases the FID
score (Figure 8 right). This is expected, as information is
being removed from the generator.

However, this does not apply to other datasets which
were collected as JPEG images. To study this effect, we
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Figure 9. FID inconsistencies when evaluating models and
checkpoints. We compare the FID scores induced by different
resizing functions. (Left) We show different intermediate check-
points while training a MUNIT model [32] on the horse2zebra
dataset [84]. (Right) We compare methods trained on FFHQ-2k.
The non-monotonic relationship demonstrates the sensitivity of the
FID metric to the resizing function. As a consequence, different
checkpoints or methods may be selected, depending on if an aliased
or an anti-aliased resizing function is chosen.

train a StyleGAN2 model [38] on the LSUN outdoor Church
dataset [76], which saved as JPEG-75 images during data
collection. In Figure 8 (left), we plot the FID of the trained
generator as a function of JPEG compression. Surprisingly,
we observe that the FID score for the StyleGAN2 model
actually improves when slight JPEG compression is added.
This indicates that interestingly, though the model is able to
capture complex variations in the dataset, it is unable to fully
model the low-level statistics induced by JPEG compression.
Interestingly, the best FID score (3.48) is obtained when the
generated images are compressed with JPEG quality 87 (not
the full 75), indicating the model is able to replicate some
of the artifacts, but not all. The FID score for the generated
images stores as PNG files is 4.00. Furthermore, this indi-
cates that the metric is sensitive to low-level statistics, and
a large gain in the metric could be achieved simply through
manual post-processing. Following these observations, we
recommend that researchers curate and store training images
as PNG formats for the future image synthesis datasets.

4.4. Consequences in model selection

In this section, we show that using an aliased, as opposed
to antialiased implementation can result in different con-
clusions, both when comparing across different methods
and when choosing a “best” model checkpoint. In particu-
lar, in Figure 9 (left) we evaluate the different intermediate
checkpoints when training an image-to-image translation
model [32] on the horse2zebra dataset. In Figure 9 (right) we
evaluate the StyleGAN2 [38] models with different data aug-
mentation trained to generate 256× 256 FFHQ images [37]
in a few shot setting (2000 training images). Note that using
an aliased resizing implementation for computing the FID
metric and choosing the best model can lead to a different
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best model getting selected.

5. Recommendations
We have shown surprisingly large sensitivities to seem-

ingly inconsequential implementation details when evaluat-
ing generative models. The resize operation and the image
quantization/compression are especially impactful. Based
on our observations, we discuss some best practices when
training and evaluating a generative model. We recommend
using implementations that adapt the filter size to the down-
sampling factor, following signal processing principles, at
each of the resizing steps (ψdata, ψFID, and ψ̂FID) involved.
There are many details one needs to keep track of when com-
puting the FID score. Any inconsistency in the steps leads to
results that are no longer comparable to other methods. To fa-
cilitate an easy comparison, avoid inconsistent comparisons,
and encourage the usage of critical operations that are cor-
rectly implemented, we provide an easy-to-use library, clean-
fid, at github.com/GaParmar/clean-fid and pre-
computed statistics of Inception features for commonly used
datasets.
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6. Appendix
6.1. Interpolation Filters

Figure 10 shows the image downsampling procedure. When
the resizing ratio is an integer, downsampling can be implemented
as a discrete convolution with an interpolation kernel, followed
by subsampling. As discussed in Section 3.2, the kernel needs
to be widened according to the resizing ratio to prevent aliasing
in the resized image. All of the commonly used interpolation
filters are separable, meaning the two-dimensional interpolation
K(x, y) over an image can be decomposed into one-dimensional
interpolations u(s) along each dimension. Here, x, y represent the
spatial coordinates for the two-dimensional case and s represents
the spatial coordinates for the one-dimension case.

K(x, y) = u(x) u(y)

Next we describe each of the different interpolation functions in
one-dimension.

Nearest Neighbor Interpolation. The simplest form of im-
age interpolation is the nearest neighbor interpolation which only
considers the value of the neighboring point. This is equivalent to
interpolating with the function shown below.

u(s) =

{
1 |s| < 0.5

0 otherwise
(4)

Bilinear Interpolation. The bilinear image interpolation cor-
responds to interpolating using the triangle filter defined below.

u(s) = max(1− |s|, 0) (5)

Lanczos Interpolation. The Lanczos image interpolation is
the normalized sinc functions windowed by the Lanczos window
w(s).

u(s) = w(s)sinc(s) (6)

w(s) =

{
sinc(s/n) |s| < n

0 otherwise
(7)

n is typically 2 or 3.

Bicubic Interpolation. The bicubic interpolation [39] uses the
interpolation kernel u(s).

u(s) =


(α+ 2)|s|3 − (α+ 3)|s|2 + 1 |s| < 1

α|s|3 − 5α|s|2 + 8α|s| − 4α 1 < |s| < 2

0 |s| > 2

(8)

The common choices for the free parameter α are
−0.5,−0.75,−1.0.

Filter scaling. As shown in Figure 2 and discussed in Sec-
tion 3.2, whether to adapt the kernel width to the downsampling
factor has a large qualitative and quantitative effect on the down-
sampled image. The continuous filter u(s) is sampled at a set of
discrete locations and yield a discrete filter and normalized to sum
to 1. The difference between adaptive and non-adaptive filters arise
at which locations are sampled.

original
signal

kernel

*
resized 
signal↓ r

K(x, y)

Figure 10. Steps in Resizing. We illustrate the downsampling
procedure for integer resizing factors. First the input original signal
is discretely convolved with the interpolation kernel K(x, y). In
order to antialias or prefilter the input signal, the interpolation
kernel should be stretched, according to the downsampling ratio r.
Next, the convolved signal is subsampled to obtain the final resized
signal.

For an adaptive filter, u(s) is sampled at s ∈
{...,− 3

2r
,− 1

2r
, 1
2r
, 3
2r
, ...} for even downsampling factors

and s ∈ {...,− 2
r
,− 1

r
, 0, 1

r
, 2
r
, ...} for odd factors. The filter width

widens with larger downsampling factor r.
For a non-adaptive filter, s ∈ {...,− 3

2
,− 1

2
, 1
2
, 3
2
, ...} for even

factors and s ∈ {...,−2,−1, 0, 1, 2, ...} for odd factors. Notice
the sampling locations do not scale as a function of downsampling
factor r.

From here, one can observe why a non-adaptive filter behaves
similarly to nearest. For even factors, plugging in the sampling
locations yields a 2-tap filter {..., 0, 1

2
, 1
2
, 0, ...}. For odd factors,

yields delta function {..., 0, 0, 1, 0, 0, ...} for all filters. In contrast,
for an adaptive filter, a r = 2 bilinear downsample yields a 4-tap
{ 1
8
, 3
8
, 3
8
, 1
8
} filter, r = 4 yields an 8-tap filter, etc.

6.2. JPEG Compression.
In Sections 3.3 and 4.3 in the main paper, we discuss the com-

pression of images and the effects on evaluation metrics such as
FID and KID. Next, we detail the JPEG compression protocol in
Figure 11, and outline the three steps that result in a loss of infor-
mation. Motivated by the observation that the human vision is less
sensitive to color components, the first lossy step is the subsam-
pling of color channels Cr, Cb after the color space transformation.
Next, the image channels are divided into smaller 8× 8 blocks and
the Discrete Cosine Transformation (DCT) is computed. The DCT
coefficients are subsequently divided by the quantization table to
suppress the higher frequencies and rounded to integers. The quan-
tization table is determined by the user specified ”quality” option
(0-100) and controls the tradeoff between the storage space and
image information retained. When the quality option is set to 100,
the color subsampling and integer rounding are the primary sources
of information loss.

6.3. Library Implementation Details.
The library implementations used for the comparisons are de-

tailed below.

• Pillow Image Library (PIL) v8.0.1 [15]: We use the stan-
dard Image.resize function; the library provides consis-
tently antialiased results across filters.

• OpenCV v4.5.5 [7]: We use the standard cv2.resize
function.
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Figure 11. Steps in JPEG Compression. We illustrate the different steps involved in JPEG compression of images. First, the initial image
is converted from the RGB color space to the YCrCb space. Next, the luminance channel and the subsampled color components are divided
into 8×8 blocks. The DCT coefficients of each block are subsequently quantized and encoded. The lossy steps of the process are highlighted
in red.

• TensorFlow (TF) v2.0 [1]: For the comparisons in this
section we use the flags used by the original TensorFlow
implementation of FID. The TensorFlow library has changed
substantially through the versions. In this work we use the
new TensorFlow version 2.0. Note that the newer version of
the library has an optional flag antialias. However this
option is set to False by default and not used in the current
FID implementations.

• PyTorch v1.9 [56]: We use the differentiable function
F.interpolate on data tensors.† This resizing method
has been used by popular PyTorch implementations of FID
[66].

• MXNet v1.8 [11]: The resizing method provided in the
MXNet framework is a wrapper around the OpenCV [7]
implementation.

• Keras v2.6.0 [13]: The library is built on top of the Ten-
sorFlow [1] framework and shares the implementation for
resizing images.

6.4. Additional resizing example
In Figure 1 in the main paper, we showed an example resizing

a sparse circle. We observe that when the bicubic, lanczos, and
bilinear filters do not adjust their filter widths to the downsampling
factor, aliasing patterns occur. This occurs in several libraries,
including the settings used in PyTorch and TensorFlow for FID
calculation.

Here, in Figure 12, we show an image with varying frequency
content, in order to further illustrate the behavior of different down-
sampling filters and implementations. The input is of size 200 and
is downsampled by 5× to resolution 400. The input image is of
concentric circles, with low frequency in the middle and increasing
frequency towards the outside.

When the image is heavily downsampled, the high frequencies
on the outside cannot be represented by a low resolution. As seen
in the bottom left of Figure 12, naive subsampling results in heavy
aliasing, with a grid of additional circles being hallucinated in the
output. A well-filtered downsampling result would instead retain
the circle in the middle, while filtering out the high-frequency
content into gray. This is observed in implementations where the
filter is adjusted based on the downsampling factor – namely the PIL

†A separate function, torchvision.transforms.Resize, is a
wrapper around the PIL library and is often used in the data pre-processing
step.

implementations of bicubic, lanczos, and bilinear and Tensorflow
with antialias flag set as TRUE. As before, using a fixed-width filter,
as in the other rows, results in heavy aliasing.

In addition, we also show the area filter. Here, we observe a
mixed results. Because implementations of the area filter do adjust
to the downsampling factor across all libraries, the aliasing is not
as apparent as in naive subsampling, or the fixed-width implemen-
tations of bicubic, lanczos, and bilinear. However, as described
in L417 in the main paper, this particular filter corresponds to a
box, or rectangular filter, which does not have strong antialiasing
properties as the other filters. As a result, there are significantly
more artifacts (additional hallucinated concentric circles) compared
to the stronger filters (bicubic, lanczos, and bilinear) which adjust
the filter widths.

In conclusion, this shows that in practical implementations, the
variations in whether the filter width and the actual filter type both
have an effect on the aliasing artifacts on the output.
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Figure 12. Downsampling an image. We downsample an image containing multiple frequencies from an input size of 200×200 to 40×40.
(We encourage viewing this figure without zooming-out on a digital display.)
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