
Generating High Fidelity Data from Low-density Regions using Diffusion Models

Vikash Sehwag† Caner Hazirbas‡ Albert Gordo‡ Firat Ozgenel‡ Cristian Canton Ferrer†
† Princeton University, ‡ Meta AI

vvikash@princeton.edu, {hazirbas, agordo, firatozgenel, ccanton}@fb.com

(i) High density

(ii) Low density

(a) Real (b) BigGAN-deep (c) DDPM (d) DDPM (Ours)
Figure 1. Real vs synthetic data. We compare synthetic images from different generative models with real images from the low-
density (1.a.i) and high-density (1.a.ii) neighborhoods of the data manifold, respectively. In 1.b we show uniformly sampled images
from BigGAN [4] and in 1.c we display images generated using the conventional uniform sampling process from the diffusion model
(DDPM [10, 17]). While diffusion model achieves much higher diversity than GANs, uniform sampling from them rarely generates sam-
ples from low-density neighborhoods. (1.d) Our framework guides the sampling process in diffusion models to low-density regions and
generates novel high fidelity instances from these regions.1

Abstract

Our work focuses on addressing sample deficiency from
low-density regions of data manifold in common image
datasets. We leverage diffusion process based generative
models to synthesize novel images from low-density re-
gions. We observe that uniform sampling from diffusion
models predominantly samples from high-density regions of
the data manifold. Therefore, we modify the sampling pro-
cess to guide it towards low-density regions while simulta-
neously maintaining the fidelity of synthetic data. We rigor-
ously demonstrate that our process successfully generates
novel high fidelity samples from low-density regions. We
further examine generated samples and show that the model
does not memorize low-density data and indeed learns to
generate novel samples from low-density regions.

1ImageNet [8, 29] has no explicit category for humans, though one
might be present in some images. Thus generative models might generate
synthetic images that include a human. We further conduct a rigorous anal-
ysis to validate whether the network has memorized any such information
from training samples.

1. Introduction

Most common image datasets have a long-tailed distribu-
tion of sample density2, where the majority of samples lie in
high-density neighborhoods of the data manifold. Samples
from low-density regions often comprise novel attributes
(Figure 1a) and have higher entropy than high-density sam-
ples [1]. However, due to their lower likelihood, curating
even a small amount of such samples requires a dedicated
effort [16].

Our goal is to leverage generative models to generate
synthetic images from low-density neighborhoods. A nat-
ural requirement for this task is that the model should gen-
eralize to low-density regions. While generative adversarial
networks (GANs) excel at generating high-fidelity samples,
they have poor coverage, thus struggle to generate high-
fidelity samples from low-density regions [4] (Figure 1b).
In contrast, autoregressive models have a high coverage but

2We refer to the long-tail w.r.t. sample density for each class. It is
different from the long-tailed distribution over classes [24], i.e., when some
classes are heavily underrepresented than others.

fail to generate high fidelity images [7]. We use diffusion-
based models due to their ability to achieve high fidelity and
high coverage of the distribution, simultaneously [17, 26].

In training diffusion models, the goal is to approximate
data distribution, which is often long-tailed. Diffusion mod-
els excel at this task, as we observe that the density distri-
bution of uniformly sampled instances from the diffusion
model is very similar to real data.

Thus uniform sampling from these models leads to an
imitation of real data density distribution, i.e., a long-tailed
density distribution, where it generates samples from high-
density regions with a much higher probability than from
low-density regions (figure 1c). To alleviate this issue, we
first modify the sampling process to include an additional
guidance signal to steer it towards low-density neighbor-
hoods. However, at higher magnitudes of this signal, the
generative process is steered off the manifold, thus generat-
ing low fidelity samples. We circumvent this challenge by
including a second guidance signal which incentives diffu-
sion models to generate samples that are close to the real
data manifold.

Since a very limited number of training samples are
available from low-density regions, it is natural to ask
whether diffusion models are generalizing in the low-
density regions or simply memorizing the training data. Af-
ter all, recent works have uncovered such memorization
in language-based generative models [5, 6]. We conduct
an extensive analysis to justify that diffusion models do
not show signs of memorizing training samples from low-
density neighborhoods and indeed learn to interpolate in
these regions. We make the following key contributions.

• We propose an improved sampling process for dif-
fusion models that can generate samples from low-
density neighborhoods of the training data manifold.

• We validate the success of our approach using three
different metrics for neighborhood density and provide
extensive comparisons with the baseline sampling pro-
cess in diffusion models.

• We show that our sampling process successfully gen-
erates novel samples, which aren’t simply memorized
training samples, from low-density regions. This ob-
servation from our sampling process also uncover that
despite a limited number of training images available
from low-density regions, diffusion models success-
fully generalize in low-density regions.

2. Related work

Diffusion-based probabilistic models [10, 17, 26] and its
closely related variants [38, 39] are likelihood-based mod-
els that learns data distribution by learning the reverse pro-
cess of the forward diffusion process. Following latest ad-

vances [10], diffusion models achieve state-of-the-art per-
formance, outperforming other classes of generative mod-
els, such as Generative adversarial networks (GANs), VQ-
VAE [28], and Autoregressive models [7] on various met-
rics in image fidelity and diversity [10, 26]. Some of the
key factors behind their success are the innovation on the
architecture of the diffusion models [10, 17], simplified for-
mulation for the training objective [17], and use of cascaded
diffusion processes [10, 18, 26].

Sampling from diffusion models is quite slow since it re-
quires an iterative denoising operation. Reducing this over-
head by developing fast sampling techniques is a topic of
tremendous research interest [19, 21, 37, 42]. Orthogonal
to this direction, our interest is in sampling data from low-
density neighborhoods. We further show that our sampling
approach can be easily integrated with fast sampling tech-
niques.

To measure neighborhood density around a sample, we
use the Gaussian model of training data in the embedding
space of a pre-trained classifier. Modeling images in em-
bedding space is a common approach, particularly due to
their alignment with human perception [45], in numerous
vision applications, such as outlier detection [32] and in-
stance selection [9].

Across generative models, given a distribution learned
by the model, there have been previous attempts in sampling
from a targeted data distribution. Discriminator rejection
sampling (DRS) and its successors [2, 11] consider rejec-
tion sampling using the discriminator in a generative adver-
sarial network (GAN). Similarly, Razavi et al. [28] exploits
a pre-trained classifier to reject samples that are classified
with low confidence. Most often the goal is to filter out
low fidelity samples, thus improving the quality of synthetic
data. In contrast, our goal is to generate high fidelity sam-
ples from low-density regions of the data manifold. These
samples are rarely generated by the model under uniform
sampling, thus sampling them using a naive classifier-based
rejection sampling approach leads to high-cost overheads.
We instead opt to modify the generative process of diffu-
sion models to guide it towards low-density neighborhoods
of the data manifold.

The most closely related work to ours is from Li et
al. [23], which smoothes class embeddings of a BigGAN
model to generate diverse images. In contrast, we focus
on diffusion-based generative models. We also demonstrate
the limitation of their approach with diffusion models in
Appendix A.6.

3. Low-density sampling from diffusion models
In this section, we first provide an overview of the sam-

pling process in diffusion-based generative models. Next,
we describe our modification in the sampling process for
low-density sampling.

3.1. Overview of diffusion models

Denoising diffusion probabilistic models (DDPM) [17]
model the data distribution by learning the reverse process
(generative process) for a forward diffusion process. The
forward process is often a Markov chain with Gaussian
transitions, i.e., q(xt|xt−1) := N (xt;

√
1− βtxt−1, βtI).

Given a large number of timesteps (T), this diffusion pro-
cess sufficiently destroys the information in input samples
(x0) such that p(xT) := N (xt;0, I).

Reverse or generative process is also assumed to be a
Markov process with Gaussian transitions that learns the
inverse mapping, i.e., p(xt−1|xt), at each time step. This
process is usually modeled with a deep neural network, pa-
rameterized by θ, that learns the Gaussian transition such
that pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)).

pθ(x0) = p(xT)

T∏
t=1

pθ(xt−1|xt) (1)

The model is trained by maximizing the variational lower
bounds on the negative log likelihood over the training data.

In order to sample synthetic data from diffusion models,
we first sample a latent vector xT ∼ N (0, I) and iteratively
denoise it using the following procedure in reverse process.

xt−1 = µθ(xt, t) +Σ
1/2
θ (xt, t)z, z ∼ N (0, I) (2)

We refer to this approach as baseline sampling process.

3.2. Generating synthetic images from low-density
regions on the data manifold

In this section, we present our approach to generating
samples from low-density regions of data manifold using
diffusion-based models.

3.2.1 Identifying low-density regions on data manifold

Given a data distribution q(x), low-density regions or
neighborhoods are part of the data manifold that have sig-
nificantly lower sample density than the others. To develop
techniques to sample from these regions, the first step is to
characterize them.

Limitation of likelihood estimates from the diffusion
model. A natural choice to characterize manifold den-
sity is to use the likelihood estimate from the diffusion
model itself (Equation 1). After all, we expect the likeli-
hood of getting a sample from high-density regions being
higher than the low-density regions. However, due to its
intractability for diffusion-based models, the likelihood es-
timates from the model are only an approximation of exact
likelihood [17, 36]. We find that these likelihood estimates
are not a reliable predictor of manifold density as they fail
to align with multiple commonly used metrics or with hu-
man judgment (Appendix A.2). This trend aligns with a

similar limitation of likelihood estimates in autoregressive
models [25].

We shift our focus to discriminative models since they
are well-known to learn meaningful embeddings that align
with human perception for images [45]. We measure the
manifold density by estimating the likelihood of data in the
embedding space. Let (g ◦ f)(.) be a discriminative model,
where f extracts embeddings for the input image and g is
the head classifier, most often a linear model. We model
embeddings of each class using a Gaussian model and es-
timate the log-likelihood of a given image (xi) with class
label yi from this model. We refer to the negative log-
likelihood as Hardness score (H).

H(x, y) =
1

2

[
(f(x)− µy)

T
Σ−1

y (f(x)− µy)

+ ln(det(Σy)) + k ln(2π)
] (3)

µy and Σy refer to sample mean and sample covariance
for embeddings of class y and k is the dimension of embed-
ding space. We provide further analysis in Appendix A.3
to justify that the decrease in manifold density leads to an
increase in hardness score.

To sample from low-density regions, our approach is to
guide the diffusion model to generate samples with high
hardness scores, i.e., equivalent to achieving low likelihood
in the correct class. We maximize the following contrastive
guiding loss for this task.

Lg1(xi, yi) = log

 exp(H(xi, yi)/τ)∑C
j=1 exp(H(xj , j)/τ)

 (4)

where τ is the temperature and C is the total number of
classes.

This formalization of guiding loss function is fairly
similar to cross-entropy loss on output softmax probabili-
ties, i.e., (g ◦ f)(.). Thus we also consider an equivalent
loss function where instead of hardness score, we minimize
the output softmax probability in the correct class.
Incorporating guiding loss in sampling process. The next
step is to guide the sampling process to low-density regions
by minimizing the log-likelihood of generated samples at
each time step. We modify the sampling process as follows.

xt−1 = µθ(xt, t) + Σ
1/2
θ (xt, t) z

+ αΣθ(xt, t)∇∗Lg1(xt, y)
(5)

where z ∼ N (0, I), ∇∗ refers to normalized gradients, and
α is a scaling hyperparameter. We normalize gradients to
disentangle the choice of scaling hyperparameter, α, from
the diffusion process time steps, t (Appendix A.4). This
formulation of sampling process is similar to Dhariwal et
al. [10], with the modification that our loss function is de-
signed to guide towards low-density regions and that we use
normalized gradients.

3.2.2 Maintaining fidelity when minimizing likelihood

We find that the sampling process in Equation 5 is highly
successful at smaller values of α. However, with higher val-
ues of α, the guidance term dominates the Gaussian transi-
tion term from the diffusion model and steers the sampling
process off data-manifold, thus generating very low fidelity
images (as illustrated in Figure 2). Its effect is exacerbated
by model distribution often not being a good approximation
of data distribution in low-density regions, in particular, due
to the reason that a very limited number of training samples
are available from low-density regions.

Figure 2. An illustration demonstrating that small α values
successfully guide the sampling process to low-density regions
(lighter colors) on the data manifold. However, at large values of
α, using additional guidance (by using a non-zero β) from the bi-
nary discriminator (Eq. 7) helps in staying close to data manifold.
We provide a demonstration of it in figure 3.

We include another term in the sampling process to com-
pel it to stay close to the data manifold. In particular, we
train a binary discriminator, with hardness score H ′, that
distinguishes between synthetic and real samples. While
sampling, we enforce synthetic images to stay close to the
real data manifold by maximizing the following loss value.

Lg2(xi) = −log

 exp(H ′(xi, 1)/τ)∑1
j=0 exp(H

′(xj , j)/τ)

 (6)

Here class zero and one represents synthetic and real im-
ages, respectively. In low-density regions, where model dis-
tribution is likely a poor approximation of real data distri-
bution, this objective forces the diffusion model to generate
samples that are closest to the real data manifold. Our final
sampling process is following.

xt−1 = µθ(xt, t) +Σ
1/2
θ (xt, t) z

+ αΣθ(xt, t)∇∗Lg1(xt, y)

+ βΣθ(xt, t)∇∗Lg2(xt)

(7)

where z ∼ N (0, I), ∇∗ refers to normalized gradients,
and α, β are scaling hyperparameters. To further demon-
strate the combined effect of α and β, we provide synthetic
images with a grid search over both hyperparameters in Fig-
ure 3. We also detail our final approach in Algorithm 1.

Algorithm 1: Sampling from low-density regions.
Input : Class label (y), α, β
Function : Normalize (u) : return u/∥u∥
xT ∼ N (0, I)
for i← T to 1 do

if t > 1 then
z ∼ N (0, I), s← I

else
z← 0, s← 0

end
u1 = αΣθ(xt, t)Normalize

(
∇Lg1 (xt, y)

)
u2 = βΣθ(xt, t)Normalize

(
∇Lg2 (xt)

)
xt−1 = µθ(xt, t) +Σ

1/2
θ (xt, t) z+ s(u1 + u2)

end
return x0

4. Experimental results

Experimental setup. We use a U-Net-based architec-
ture with adaptive group normalization for the diffusion
model [10]. We consider the encoder from U-Net for the
classifier architecture. Both classifier and diffusion model
are conditioned on the diffusion process timestep. We con-
sider T = 1000 for the diffusion process. When sampling,
we use 250 timesteps, as it speeds up the sampling process
while incurring negligible cost in the image quality.

We consider two commonly used image datasets:
CIFAR-10 [22] and ImageNet [8]. When training the bi-
nary discriminator, H ′, we first uniformly sample synthetic
images equal to the size of the training dataset, i.e., 50K

β

α

Figure 3. Controlling hardness and fidelity. Effect of increasing
α (y-axis) and β (x-axis) on synthetic images. Increasing α forces
the model to sample from low-density regions while β forces the
sampling process to stay close to real data manifold. Salient im-
pact of β includes improving foreground semantics to correctly
represent the class and preserving background information.

images for the CIFAR-10 dataset and 1.2M images for the
ImageNet dataset. We conduct a hyperparameter search for
α and β between 0.01 and 1.0. In most analyses, we sam-
ple 50K synthetic images for ImageNet and 10K synthetic
images for the CIFAR-10 dataset, i.e., equal to the size of
validation set for each dataset. We provide additional ex-
perimental details in Appendix A.1.

When sampling we optimize the likelihood estimate, i.e.,
hardness score, calculated in the embedding space of the
U-Net encoder model. To measure generalization to other
representation spaces, we consider multiple other models
to calculate hardness scores post sample generation. We
present results with the ResNet-50 model in the main paper
and the rest in the Appendix B.1.

4.1. Generating synthetic data using proposed α-β
guided sampling process

Validating the effect of hyperparameter α and β. Our
sampling process is designed such that we can sample im-
ages from the low-density regions by increasing α and im-
proving the fidelity of these images using β. Our first goal
is to validate the desired effect of both hyperparameters.

While using β = 0, we first increase α value from 0
to 1.0 and measure the hardness score of sampled images
at each value (Figure 4a). Our results demonstrate that in-
creasing α shifts the hardness score distribution to the right,
i.e., higher probability of sampling images that have lower
estimated likelihood.

Next we fix α = 0.5 and increase β from zero to two.
We use precision [30] to measure the fidelity of synthetic
images. It broadly measures the fraction of images that are
realistic or equivalently, the coverage of synthetic data by
the support of training data distribution. Our results show
that increasing β does improve the realism of generated syn-
thetic images (Figure 4b).

Finally, we analyze the joint effect of parameters α and
β. We perform a grid search over both α and β and gener-
ate images for each pair of values. To avoid the impact of
stochasticity, we use the same seed for all runs of the sam-
pling process. We present the sampled images in Figure 3.

These visualizations validate our argument that solely in-
creasing α to very high values degrades image fidelity. This
is because a higher value of α encourages sampling of low-
likelihood images. However, the model can satisfy this con-

0.0 0.1 0.25 1.0

100 150 200 250 300
Hardness score

0.00

0.007

0.015

D
en

si
ty

(a) α increases the hardness
score.

0.0 0.25 0.5 0.75 1.0 2.0

60

65

70

Pr
ec

isi
on

(b) β improves the fidelity

Figure 4. Validating effect of hyperparameters. Quantitative
results validating the desired effect of hyperparameters α and β.

straint by simply generating a poor-quality image. Increas-
ing β addresses this issue, in particular on high values of α,
where it restores the key attributes of the image thus effec-
tively moving it closer to the data manifold. We find that a
1 : 1 ratio between α and β strikes a modest trade-off be-
tween sample hardness and fidelity and use α = β = 0.5
for further experiments.
Comparing our sampling process with the baseline sam-
pling process. We compare the synthetic images gener-
ated from the baseline and our sampling approach in Fig-
ure 5, 6. We use identical experimental setup, including
seeds for random number generators, for both sampling pro-
cesses thus leaving guidance terms to be the only factor im-
pacting final images. Images from our approach are visually
distinguishable from the baseline approach since the diffu-
sion model introduces significant changes in the foreground
object semantics and background to satisfy the constraints
on hardness and fidelity. We provide additional visualiza-
tions in Appendix B.3.

4.2. Quantitative comparison of neighborhood den-
sity

To validate that our sampling process does generate data
from low-density regions, we quantitatively compare the
manifold density in the neighborhood of synthetic images
with different baselines.
Metrics to measure neighborhood density. We use hard-
ness score as the first validation metric since we maximize
it in the sampling process. However, our sampling process
might maximize hardness score without actually moving
the sampling process to low-density regions. Thus we con-
sider two additional metrics, namely Average nearest neigh-
bor (AvgkNN) and local outlier factor (LOF) [3] to further
validate the success of our approach. AvgkNN measures
density using proximity to nearest neighbors. We choose
five nearest neighbors, which is a common choice [9]. In
contrast, the local outlier factor improves on the nearest-
neighbor distance metric to compare density around a given
sample to density around its neighbors. Higher values of the
local outlier factor indicate the sample lies in a much lower
density region than its neighbors. We calculate all distances
in the feature space of a ResNet50 network which is pre-
trained on the ImageNet dataset. We ablate on the choice
of feature extractor in Appendix B.1 and show that our con-
clusions don’t change with this choice. For this analysis,
we sample 50K synthetic images using recommended val-
ues of α and β from Section 4.1. We compare our approach
with three baselines 1) BigGAN-deep 2) Real images from
the ImageNet validation set and 3) synthetic images gener-
ated using baseline sampling from the DDPM model. We
present our results in Figure 7.
All three metrics validate the success of our approach.
Under all three metrics, our sampling process has a higher

(a) Water tower (b) Academic robe (c) Tiger beetle

Figure 5. Comparing samples from proposed and baseline sampling process. We compare synthetic images from our proposed
sampling approach (top) with the baseline sampling process (bottom) on the ImageNet dataset. We use identical random seed for both
stochastic sampling processes. Therefore, generation of each pair of images among the two approaches starts from the identical latent
vectors and the only difference is the additional guidance terms in our approach.

(a) Automobile (b) Truck

Figure 6. Comparison on CIFAR-10 dataset. We compare synthetic images from the baseline sampling process (left) with our proposed
sampling approach (right) on the CIFAR-10 dataset. We use the identical seed for random number generators for both processes.

probability of generating synthetic images from low-density
neighborhoods. It also validates the claims that the sam-
ple density in real data itself follows a long-tail distribution
and an unmodified sampling process, i.e., baseline sampling
process, from diffusion models closely approximates this
distribution. In comparison, BigGAN samples are predom-
inantly from low-density regions. Among the three met-
rics, the difference between our approach and baseline is
most significant in AvgkNN distance. When ablating on the
choice of the guidance loss function, we find that under suf-
ficient hyper-parameter ablation, one can obtain equivalent
results when optimizing likelihood in embedding space or
softmax probabilities after the logit layer (Appendix A.5).

Equivalent reduction in computational cost. Assume

that we want to sample images from low-density neighbor-
hoods, i.e., the hardness score of each synthetic sample is
greater than a threshold. A naive rejection sampling-based
approach is to sample images uniformly at random and re-
ject images that do not satisfy the criterion. However, due
Table 1. Reduction in sampling cost. Comparing the sample
generation time of our method with uniform sampling. Each entry
represents the time taken (in days) to generate 5K 256× 256 res-
olution synthetic images from the corresponding hardness score
range on a single A100 GPU.

Score-range 200− 240 240− 280 280− 320

Baseline 1.99 5.74 16.79
Ours 1.88 (×1.1) 2.03 (×2.8) 2.78 (×6.0)

150 200 250 300
Hardness score

0.000

0.005

0.010

0.015

De
ns

ity
BigGAN
Real

DDPM (baseline)
DDPM (ours)

(a) Hardness score

0.00 0.25 0.50 0.75 1.00
Average kNN distance

0

1

2

3

De
ns

ity

BigGAN
Real

DDPM (baseline)
DDPM (ours)

(b) AvgkNN distance

0.9 1.0 1.1 1.2
LOF

0

5

10

De
ns

ity

BigGAN
Real

DDPM (baseline)
DDPM (ours)

(c) Local outlier factor

Figure 7. Comparing neighborhood density. We measure the density in the neighborhood of a given set of instances using three different
metrics. All three metrics share a common trend: while baseline sampling generates synthetic samples that have similar density distribution
as real data, our sampling process generates samples from low density neighborhoods with higher probability.

to the long-tail nature of sample density, the likelihood of
a sample being from low-density regions is low, thus we
would need to reject many samples to curate desired sam-
ples. Due to the iterative nature of the sampling process,
generating synthetic data from diffusion models is com-
putationally expensive, thus making rejection sampling a
highly computationally costly approach (Table 1). Our ap-
proach does not depend on rejection sampling, thus it is up
to 2− 6× faster than the former approach (Table 1).

5. Is our sampling process generating memo-
rized samples from training data?

Since a limited number of samples are available from
low-density regions in our long-tailed datasets, the genera-
tive model might memorize these samples and fails to gen-
erate novel samples from these regions. Therefore we con-
duct a rigorous analysis to identify whether our sampling
process is exploiting any memorization that might be hap-
pening in diffusion models.
Analyzing nearest-neighbor distance. We argue that if
training data is being memorized, synthetic images will be

Figure 8. Is low-density synthetic data being memorized? Pairs
of synthetic and real images with smallest euclidean distance in
the feature space. In each pair, left and right image correspond to
synthetic and real image, respectively. Our search space for these
examples includes all pairs of 50K synthetic images and 1.2M real
images. While the synthetic images share multiple attributes with
the nearest real image, they are not identical to the real images.

Figure 9. Is low-density synthetic data novel? For each synthetic
image, we analyze the class label of five nearest neighbors from
real data. While each synthetic image has high fidelity and cor-
rectly represents the class, it often lies closer to samples of other
classes in feature space. Even when the class label is not different,
the synthetic image differs significantly from closest real samples.

substantially similar to training data. We measure this simi-
larity by euclidean distance in the embedding space of well
trained image classifiers. Thus, if a synthetic image is sim-
ply memorized from training data, its nearest-neighbor dis-
tance from real data will be very small.

We sample 50K images using our sampling approach and
measure their nearest neighbor distance from 1.2M real im-
ages in the training set of the ImageNet dataset. We com-
pare these values with the nearest neighbor distance for real
data in the validation set. If our approach has memorized
training samples, its nearest neighbor distance should be
much smaller than real samples. However, the average dis-
tance for our samples is 0.42, much higher than 0.29 for real
samples. It supports our hypothesis that our sampling pro-
cess is not simply generating memorized training samples.

Analyzing synthetic-real data pairs for signs of memo-
rization. Moving beyond comparing distribution statistics,
now we analyze individual samples for signs of memoriza-
tion. In particular, our goal is to manually analyze synthetic
images and their closest neighbors for signs of memoriza-
tion. Even more, we want to analyze pairs that would have
the highest likelihood of being memorized, i.e., synthetic
samples which are closest to real data. Across all 60B pairs
(50K×1.2M) of synthetic and real images, we manually an-
alyze the top-500 pairs with the smallest pairwise distance.

We observe that while images in these pairs share mul-
tiple attributes, such as object shape, texture, and identity,
they are not being memorized. Instead, they are some se-
mantic variation of the real images, highlighting that the
diffusion model learned the data manifold instead of mem-
orizing these samples. We present the top twelve pairs in
figure 8 and the rest of them in Appendix B.2.
Novel samples from low-density regions. To validate that
our sampling process is indeed generating novel images
from low-density regions, we also consider the class label
of its nearest neighbors from real data. In multiple cases, we
find that the nearest neighbors have different class label than
the synthetic sample. We provide few such examples in Fig-
ure 9. This phenomenon likely arises due to poorly learned
representation by the embedding extractor in low-density
regions, primarily due to the scarcity of training samples in
these regions.

6. Discussion
We present an improved version of the sampling pro-

cess in diffusion-based generative models that enables sam-
pling from low-density neighborhoods of the data manifold.
We achieve this by guiding the sampling process using two
additional classifiers at each timestep. Our sampling pro-
cess successfully generates novel samples from low-density
regions. Our work also identifies another compelling ad-
vantage of diffusion models. Despite being trained on a
small number of samples from low-density regions, diffu-
sion models successfully interpolate in these regions, i.e.,
don’t memorize the training data from these regions.

We analyze the impact of our guiding loss by juxtapos-
ing samples from baseline and our sampling process (Fig-
ure 5, 6). These results demonstrate that the generative
model exploits novel transformations in response to guiding
loss objectives. We further analyze this effect, by progres-
sively increasing α while keeping all other parameters fixed
(Figure 10). Higher values of α forces the model to gener-
ate low-likelihood samples. We find that the network some-
times exploits transformations such as photometric changes,
zoom, viewpoint, and switching the background to reduce
the likelihood of synthetic samples.

The sampling process in diffusion models iterates for
hundreds of steps to generate a single sample. This chal-

Figure 10. Progressive sampling. We incrementally increase α
across different runs of the sampling process. It highlights how
the guiding loss progressively moves the synthetic images to low
density regions.
lenge is often solved using a fast sampling process, which
trades off sample quality for speed [19, 37]. To demonstrate
that our approach can also integrate with fast sampling tech-
niques, we integrate our modified sampling process with the
fast sampling approach from Song et al. [37]. We find no
strikingly different trade-off between fidelity and sampling
steps for the baseline and our approach (Appendix A.7). At
a very low number of sampling steps, such as ten, both ap-
proaches struggle to generate high-quality images. How-
ever, with increasing the number of timesteps, the fidelity
of both baseline and our approach quickly improves.

7. Limitations and broader impact
We guide the sampling process by navigating the data

manifold through the feature space of image classifiers.
While proximity in feature space of deep neural networks
aligns with human perception [45], deep neural networks
are also well known to be biased towards certain attributes,
such as texture [12] and background [34, 44]. Our sam-
pling process can exploit these biases, such as by simply
removing the background, to induce a large change in the
likelihood in feature space. We also conduct an examina-
tion to investigate signs of memorization and whether our
sampling process is exploiting them. While we didn’t ob-
serve any memorization on the ImageNet dataset, diffusion
models might memorize samples on even more complex
and non-curated datasets than ImageNet. In event of such
memorization, our sampling process might exploit it.

Deep neural networks often struggle to generalize to
novel and rarely observed samples from the distribution [16,
20]. We believe that our work can further assist in improv-
ing the distributional robustness of these networks. Our
sampling process also reveals that diffusion models suc-
cessfully generalize to low-density regions of data manifold
which further strengthens the argument that these models
hold the potential to provide tremendous benefits in repre-
sentation learning [13, 33].

Acknowledgements
We would like to thank Michal Drozdzal for all the in-

sightful discussions on the project. This work was done
during a summer research internship at Meta AI.

References
[1] Chirag Agarwal, Daniel D’souza, and Sara Hooker.

Estimating example difficulty using variance of gra-
dients. arXiv preprint arXiv:2008.11600, 2020. 1

[2] Samaneh Azadi, Catherine Olsson, Trevor Darrell,
Ian Goodfellow, and Augustus Odena. Discrimina-
tor rejection sampling. In International Conference
on Learning Representations, 2018. 2

[3] Markus M Breunig, Hans-Peter Kriegel, Raymond T
Ng, and Jörg Sander. Lof: identifying density-based
local outliers. In Proceedings of the 2000 ACM
SIGMOD international conference on Management of
data, pages 93–104, 2000. 5

[4] Andrew Brock, Jeff Donahue, and Karen Simonyan.
Large scale gan training for high fidelity natural image
synthesis. In International Conference on Learning
Representations, 2019. 1

[5] Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej
Kos, and Dawn Song. The secret sharer: Evalu-
ating and testing unintended memorization in neural
networks. In 28th {USENIX} Security Symposium
({USENIX} Security 19), pages 267–284, 2019. 2

[6] Nicholas Carlini, Florian Tramèr, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine Lee,
Adam Roberts, Tom Brown, Dawn Song, Úlfar Er-
lingsson, Alina Oprea, and Colin Raffel. Extracting
training data from large language models. In 30th
USENIX Security Symposium (USENIX Security 21),
Aug. 2021. 2

[7] Rewon Child, Scott Gray, Alec Radford, and Ilya
Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.
2

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai
Li, and Li Fei-Fei. Imagenet: A large-scale hierar-
chical image database. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2009. 1, 4

[9] Terrance DeVries, Michal Drozdzal, and Graham W
Taylor. Instance selection for gans. Conference and
Workshop on Neural Information Processing Systems,
33:13285–13296, 2020. 2, 5

[10] Prafulla Dhariwal and Alex Nichol. Diffusion mod-
els beat gans on image synthesis. Conference and
Workshop on Neural Information Processing Systems,
2021. 1, 2, 3, 4, 11, 13

[11] Xin Ding, Z Jane Wang, and William J Welch. Sub-
sampling generative adversarial networks: Density ra-
tio estimation in feature space with softplus loss. IEEE
Transactions on Signal Processing, 2020. 2

[12] Robert Geirhos, Patricia Rubisch, Claudio Michaelis,
Matthias Bethge, Felix A. Wichmann, and Wieland
Brendel. Imagenet-trained CNNs are biased towards
texture; increasing shape bias improves accuracy and

robustness. In International Conference on Learning
Representations, 2019. 8

[13] Sven Gowal, Sylvestre-Alvise Rebuffi, Olivia Wiles,
Florian Stimberg, Dan Andrei Calian, and Timothy
Mann. Improving robustness using generated data.
arXiv preprint arXiv:2110.09468, 2021. 8

[14] Matej Grcić, Ivan Grubišić, and Siniša Šegvić.
Densely connected normalizing flows. Advances in
Neural Information Processing Systems, 34, 2021. 11

[15] Dan Hendrycks, Steven Basart, Norman Mu, Saurav
Kadavath, Frank Wang, Evan Dorundo, Rahul Desai,
Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song,
Jacob Steinhardt, and Justin Gilmer. The many faces
of robustness: A critical analysis of out-of-distribution
generalization. ICCV, 2021. 11

[16] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob
Steinhardt, and Dawn Song. Natural adversarial ex-
amples. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2021. 1, 8, 11

[17] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denois-
ing diffusion probabilistic models. In Conference and
Workshop on Neural Information Processing Systems,
2020. 1, 2, 3

[18] Jonathan Ho, Chitwan Saharia, William Chan, David J
Fleet, Mohammad Norouzi, and Tim Salimans. Cas-
caded diffusion models for high fidelity image gener-
ation. arXiv preprint arXiv:2106.15282, 2021. 2

[19] Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-
Taillefer, Tal Kachman, and Ioannis Mitliagkas. Gotta
go fast when generating data with score-based models.
arXiv preprint arXiv:2105.14080, 2021. 2, 8

[20] Pang Wei Koh, Shiori Sagawa, Sang Michael Xie,
Marvin Zhang, Akshay Balsubramani, Weihua Hu,
Michihiro Yasunaga, Richard Lanas Phillips, Irena
Gao, Tony Lee, et al. Wilds: A benchmark of in-
the-wild distribution shifts. In International Confer-
ence on Machine Learning, pages 5637–5664. PMLR,
2021. 8

[21] Zhifeng Kong and Wei Ping. On fast sampling
of diffusion probabilistic models. arXiv preprint
arXiv:2106.00132, 2021. 2

[22] Alex Krizhevsky. Learning multiple layers of fea-
tures from tiny images. Technical report, University
of Toronto, 2009. 4

[23] Qi Li, Long Mai, Michael A Alcorn, and Anh
Nguyen. A cost-effective method for improving and
re-purposing large, pre-trained gans by fine-tuning
their class-embeddings. In Proceedings of the Asian
Conference on Computer Vision, 2020. 2, 13

[24] Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun
Wang, Boqing Gong, and Stella X Yu. Large-
scale long-tailed recognition in an open world. In
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 2019. 1

[25] Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh,
Dilan Gorur, and Balaji Lakshminarayanan. Do deep
generative models know what they don’t know? In In-
ternational Conference on Learning Representations,
2018. 3, 11

[26] Alexander Quinn Nichol and Prafulla Dhariwal. Im-
proved denoising diffusion probabilistic models. In
International Conference on Machine Learning, 2021.
2

[27] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: An imper-
ative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems
32. 2019. 11

[28] Ali Razavi, Aaron van den Oord, and Oriol Vinyals.
Generating diverse high-fidelity images with vq-vae-
2. In Conference and Workshop on Neural Information
Processing Systems, pages 14866–14876, 2019. 2

[29] Olga Russakovsky, Jia Deng, Hao Su, Jonathan
Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg, and Li Fei-Fei. ImageNet Large
Scale Visual Recognition Challenge. International
Journal of Computer Vision, 2015. 1

[30] Mehdi SM Sajjadi, Olivier Bachem, Mario Lucic,
Olivier Bousquet, and Sylvain Gelly. Assessing gen-
erative models via precision and recall. In NeurIPS,
2018. 5

[31] Tim Salimans, Andrej Karpathy, Xi Chen, and
Diederik P Kingma. Pixelcnn++: Improving the
pixelcnn with discretized logistic mixture likeli-
hood and other modifications. arXiv preprint
arXiv:1701.05517, 2017. 11

[32] Vikash Sehwag, Mung Chiang, and Prateek Mittal.
Ssd: A unified framework for self-supervised outlier
detection. In International Conference on Learning
Representations, 2020. 2

[33] Vikash Sehwag, Saeed Mahloujifar, Tinashe Hand-
ina, Sihui Dai, Chong Xiang, Mung Chiang, and Pra-
teek Mittal. Robust learning meets generative mod-
els: Can proxy distributions improve adversarial ro-
bustness? arXiv preprint arXiv:2104.09425, 2021. 8

[34] Vikash Sehwag, Rajvardhan Oak, Mung Chiang, and
Prateek Mittal. Time for a background check! uncov-
ering the impact of background features on deep neu-
ral networks. arXiv preprint arXiv:2006.14077, 2020.
8

[35] Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recogni-

tion. arXiv preprint arXiv:1409.1556, 2014. 13
[36] Jascha Sohl-Dickstein, Eric Weiss, Niru Mah-

eswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In In-
ternational Conference on Machine Learning, pages
2256–2265. PMLR, 2015. 3

[37] Jiaming Song, Chenlin Meng, and Stefano Ermon.
Denoising diffusion implicit models. In International
Conference on Learning Representations, 2020. 2, 8,
13, 14

[38] Yang Song and Stefano Ermon. Generative model-
ing by estimating gradients of the data distribution. In
Conference and Workshop on Neural Information Pro-
cessing Systems, 2019. 2

[39] Yang Song and Stefano Ermon. Improved techniques
for training score-based generative models. In Confer-
ence and Workshop on Neural Information Processing
Systems, 2020. 2

[40] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. Rethinking the in-
ception architecture for computer vision. In Proceed-
ings of the IEEE conference on computer vision and
pattern recognition, pages 2818–2826, 2016. 13

[41] Haohan Wang, Songwei Ge, Zachary Lipton, and
Eric P Xing. Learning robust global representations by
penalizing local predictive power. In Advances in Neu-
ral Information Processing Systems, pages 10506–
10518, 2019. 11

[42] Daniel Watson, Jonathan Ho, Mohammad Norouzi,
and William Chan. Learning to efficiently sample
from diffusion probabilistic models. arXiv preprint
arXiv:2106.03802, 2021. 2

[43] Ross Wightman. Pytorch image models. https://
github.com/rwightman/pytorch-image-
models, 2019. 11

[44] Kai Yuanqing Xiao, Logan Engstrom, Andrew Ilyas,
and Aleksander Madry. Noise or signal: The role of
image backgrounds in object recognition. In Interna-
tional Conference on Learning Representations, 2021.
8

[45] Richard Zhang, Phillip Isola, Alexei A Efros, Eli
Shechtman, and Oliver Wang. The unreasonable ef-
fectiveness of deep features as a perceptual metric. In
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 586–595, 2018. 2, 3, 8

[46] Yue Zhao, Zain Nasrullah, and Zheng Li. Pyod: A
python toolbox for scalable outlier detection. Journal
of Machine Learning Research, 20(96):1–7, 2019. 11

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

A. Experimental setup and common design
choices

A.1. Additional details on experimental setup

We conduct all our analyses with images of the default
resolution, i.e., 224 or 299, on ImageNet models. Here we
generate high-resolution images using the cascaded diffu-
sion approach from Dhariwal et al. [10]. We first generate
64×64 size images using the first diffusion model and then
upscale them to 256× 256 resolution using the second dif-
fusion model.

For feature extraction purposes, we use pretrained net-
works from the Timm [43] library. We extract features from
the last convolutional layer for all networks. We consider
five neighbors for AvgkNN computation and twenty neigh-
bors for the local outlier factor. We use the implementation
from PyOD [46] to calculate the local outlier factor. In our
sampling process, we compute the hardness score at each
time step. To calculate the hardness score, we first extract
training data features at each timestep. Since the reverse
process starts from white noise, we find that features from
deep neural networks have extremely small variance at the
start of reverse process. This makes the hardness score, thus
gradients of the guidance loss, quite unstable at the start
of the reverse process. We circumvent this issue by using
an identity precision matrix. We use PyTorch [27] with an
Nvidia A100 GPU cluster for our experiments.

A.2. Limitations of likelihood estimate from the dif-
fusion model

It is straightforward to obtain an estimate of the likeli-
hood of a given sample using the diffusion model. When
choosing a metric to identify low-density regions, it is nat-
ural to ask whether the likelihood estimates from diffusion
models can serve as this metric. To answer this question we
calculate the negative log-likelihood (NLL) of real images
from the validation set of the ImageNet dataset. We com-
pare NLL with two commonly used metrics to measure the
density of neighborhoods (Figure 11). We find that NLL
shows poor correlation with both metrics, suggesting that it
is not an effective predictor of neighborhood density.
Limitation of exact likelihood scores. While diffusion
models only provide an approximate likelihood score, one
can obtain exact likelihood score from autoregressive or
flow-based models [14, 31]. We find that the aforemen-
tioned limitation of likelihood scores also also extend to ex-
act likelihood values. We use DenseFlow [14], which pro-
vides state-of-the-art likelihood evaluation on ImageNet.

Surprisingly, the model assigns very high likelihood val-
ues to our low-density images (Table 2), even higher than
highly photorealistic BigGAN images. We find that this ob-
servation is not limited to our synthetic samples, but a more
fundamental characteristic of likelihood scores. To high-

1 2 3 4 5
NLL

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e

kN
N

di
st

an
ce

1 2 3 4 5
NLL

1.0

1.2

1.4

1.6

1.8

Lo
ca

l o
ut

lie
r f

ac
to

r

Figure 11. Is NLL an effective measure of neighborhood den-
sity? We compare the negative log-likelihood (NLL) estimates
from the diffusion model with other commonly used metrics to
measure data density. We find that NLL is poorly correlated with
both of these metrics. Since NLL is computationally expensive
to calculate for each image, we use 2K random images from the
validation set of the ImageNet dataset for this analysis.

light it, we consider low-density real images that are poorly
represented in training dataset, such such as sketches [41],
renditions [15], and near-distribution images (ImageNet-
O [16]).

Similar to our low-density samples, DenseFlow assigns
very high likelihood scores to all three novel variations of
data (Table 2). Such variations (e.g., sketches) are rarely
present in training data. Despite that, the model assigns
a high likelihood to them. We also provide a qualitative
comparison in Figure 12. Our observation is similar to
the failure of exact likelihood scores on out-of-distribution
data [25].

Table 2. Quantitative evaluation. State-of-the-art negative log-
likelihood (NLL) evaluation using DenseFlow [14]. Lower value
implies higher likelihood.

Dataset Real BigGAN
DDPM

(baseline)
DDPM
(ours)

Rendition Sketch ImageNet-O

NLL 3.4 3.1 3.3 2.8 2.5 1.2 2.9

Figure 12. Qualitative comparison. Top row (baseline sampling)
vs Bottom row (our sampling). Flow-based model surprisingly as-
signs much higher likelihood to our novel instances (lower value
is higher).

A.3. Higher hardness score implies lower neighbor-
hood density

In our sampling process, we maximize the hardness
score of synthetic data. We argued that hardness score is
a proxy to neighborhood density, thus maximizing it forces
the model to generate low density samples. We provided the

(a) Visualizing images across the hardness scores axis for each class. Ha refers to the ath percentile of hardness score. Classes are: goldfinch, water tower,
container ship, hourglass, monarch butterfly, tiger beetle, zebra, and tennis ball.

(b) Correlation of hardness score with other metrics.

Figure 13. Validating the effectiveness of hardness score. To validate whether hardness score is a good proxy for neighborhood density,
we first visualize images with increasing hardness scores and next show that it correlates with commonly used metrics to measure data
density.

validation of its success in Figure 7. Now we delve deeper
into why hardness score acts as a proxy to neighborhood
density.

First we visualize real images across the spectrum of
hardness score. Give a class index in the ImageNet vali-
dation set, we visualize its samples with lowest, moderate,

and highest hardness scores (Figure 13a). From these im-
ages, it is evident that the difficulty of individual instances
increases with hardness scores. We also look into the cor-
relation of hardness score with other known density metrics
(Figure 13b). We find that hardness score also have a posi-
tive correlation with other metrics.

0.00

0.007

0.015

D
en

si
ty

feature space
t = 1.0

0.0 0.1 0.25 1.0

softmax probs
t = 1.0

0.0 0.01 0.025 0.1

contrastive
t = 1.0

0.0 0.025 0.05 0.1

t = 0.5 t = 0.5 t = 0.5

100 150 200 250 300
Hardness score

t = 0.1

100 150 200 250 300
Hardness score

t = 0.1

100 150 200 250 300
Hardness score

t = 0.1

0.00

0.007

0.015

D
en

si
ty

0.00

0.007

0.015

D
en

si
ty

Figure 14. Choice of loss function. Loss function in feature space
vs. in logits space.

A.4. Motivation to normalize gradients

Slightly different from the classifier guidance approach
in Dhariwal et al. [10], we normalize classifier gradients
before using them in the sampling process. We do so since
it makes the scale of hyperparameters (α and β) indepen-
dent of the magnitude of gradients of guiding losses (Lg1

and Lg2). In particular, we observed that the magnitude of
gradients in the diffusion process is often quite small, thus
needing a very high scaling parameter. In addition, the mag-
nitude of gradients also fluctuates with timesteps of the sam-
pling process, thus potentially requiring a different scaling
parameter at different timesteps. We normalize gradients to
have unit ℓ∞ norm, which ensures a consistent magnitude
of gradients across timesteps. Thus normalization isolates
the choice of scaling hyperparameters from gradients mag-
nitude, making this choice much simpler.

A.5. Effect of different guiding loss functions

In our sampling process, our objective is to push syn-
thetic images away from high-density neighborhoods. We
achieve it by using a softmax-based loss function in the fea-
ture space of a pre-trained classifier. However, an equivalent
loss function can be derived using softmax probabilities at
the logit layer. Though both loss functions require a differ-
ent scale of hyperparameters, they achieve similar results
under properly calibrated scales (Figure 14). We make use
of feature space because multiple additional metrics to mea-
sure density, such as kNN distance and local outlier factor,
can be also easily calculated in the feature space.

A.6. Limitation of class embeddings smoothing

Previously, Li et al. [23] showed that one can manipulate
class-embeddings of a pre-trained BigGAN model to im-
prove the diversity of generated images. When approaching

the task of low-density sampling, it is natural to test whether
it can be achieved by simply controlling class embeddings.
To test the effect of class-embeddings, we smooth class em-
beddings for a diffusion model on the ImageNet dataset.
The network is trained with one-hot encoded class embed-
dings. When sampling, we smooth the embeddings by re-
ducing the correct class probability to ymax and distribute
the rest of the probability mass equally over all remaining
classes. We find that the quality of synthetic images de-
grade very quickly with a reduction in ymax (Figure 15).
Given this detrimental effect of smoothing in class embed-
dings, we chose to modify the sampling process itself, since
the latter provides a much better control and quality of syn-
thetic images.

A.7. Integration with fast sampling techniques

In the main paper, we discussed that with fast sampling
approaches, our approach enjoys a similar trade-off as base-
line sampling process. To support this claim, we provide a
comparison of synthetic images sampled using DDIM [37]
sampling process from both baseline and our sampling pro-
cess in figure 16. We integrate the guiding loss in the
DDIM sampling process in a similar manner as Dhariwal et
al. [10].

B. Experimental results
B.1. Neighborhood density with different feature

extractors

We use a ResNet-50 classifier, which is pretrained on
ImageNet dataset, as feature extractor. Though this is very
common choice of deep neural network, we further inves-
tigate whether our claims are robust to the choice of the
feature extractors. To test it, we consider two more deep
neural networks, namely Inception-V3 [40] and VGG [35].
We measure the neighborhood density in the feature space
of both classifier and show that both classifier further vali-
date the success of our approach (Figure 17).

B.2. Additional nearest neighbor pairs for visual-
ization

To analyze whether the diffusion model is simply mem-
orizing training data, we visualize the nearest neighbors of
each synthetic image from the real images. We synthe-
size the synthetic images using our sampling process. To
complement the top-16 synthetic and real images with the
smallest pairwise distance in Figure 8, we present the next
64 pairs in Figure 18. In each pair, the left and right im-
ages corresponds to the synthetic and real image, respec-
tively. For completeness, we also analyze nearest neigh-
bors in pixel space (Figure 19). As expected, euclidean dis-
tance in pixel space doesn’t correspond to semantic simi-
larity between images and it is often highly biased toward

y m
ax

 =
 1

.0
y m

ax
 =

 0
.9

0
y m

ax
 =

 0
.8

0
y m

ax
 =

 0
.7

Figure 15. Smoothing of class embeddings. Demonstrating how smoothing of class embeddings leads to poor quality synthetic images
with diffusion models.

(a) T = 10 (b) T = 20 (c) T = 50

Figure 16. Fast sampling. We integrate our guiding objective in
the fast DDIM sampling process [37]. Top two rows correspond
to the baseline DDIM sampling approach while bottom two corre-
spond to our approach. We use the identical starting latent vectors
for both approaches and across the three choices of the number of
sampling steps.

background similarities between synthetic and real images.

B.3. Comparing our samples with baseline sam-
pling process

We present additional images to compare the baseline
and our sampling process in figure 20 and 21.

0.00 0.25 0.50 0.75
Average kNN distance

0

2

4

De
ns

ity

BigGAN
Real

DDPM (baseline)
DDPM (ours)

0.9 1.0 1.1 1.2
LOF

0

5

10

15

De
ns

ity

BigGAN
Real

DDPM (baseline)
DDPM (ours)

(a) Inception-v3

0.00 0.25 0.50 0.75 1.00
Average kNN distance

0

1

2

3

4

De
ns

ity

BigGAN
Real

DDPM (baseline)
DDPM (ours)

0.9 1.0 1.1 1.2
LOF

0

5

10

De
ns

ity

BigGAN
Real

DDPM (baseline)
DDPM (ours)

(b) VGG19

Figure 17. Comparing neighborhood density across different choices of feature extractors. We use two additional feature extractors,
namely Inception-v3 and VGG19.

Figure 18. Nearest neighbour pairs of real and synthetic data with lowest pairwise distance. In each pair, the left and right image correspond
to the synthetic and real image, respectively.

Figure 19. Nearest neighbour pairs of real and synthetic data with lowest pairwise distance in pixel space. In each pair, the left and right
image correspond to the synthetic and real image, respectively.

Figure 20. Synthetic images from the baseline sampling process (left) and our approach (right) for each class on the CIFAR-10 dataset.
We use identical random seed for both approaches.

(a) ImageNet (class 0 and 7) (b) ImageNet (class 73) and CIFAR-10 (c) ImageNet (class 73) and CIFAR-10

Figure 21. Synthetic images from the baseline sampling process (bottom) and our approach (top) for few classes on the ImageNet dataset.
We use identical random seed for both approaches.

	1 . Introduction
	2 . Related work
	3 . Low-density sampling from diffusion models
	3.1 . Overview of diffusion models
	3.2 . Generating synthetic images from low-density regions on the data manifold
	3.2.1 Identifying low-density regions on data manifold
	3.2.2 Maintaining fidelity when minimizing likelihood

	4 . Experimental results
	4.1 . Generating synthetic data using proposed - guided sampling process
	4.2 . Quantitative comparison of neighborhood density

	5 . Is our sampling process generating memorized samples from training data?
	6 . Discussion
	7 . Limitations and broader impact
	A . Experimental setup and common design choices
	A.1 . Additional details on experimental setup
	A.2 . Limitations of likelihood estimate from the diffusion model
	A.3 . Higher hardness score implies lower neighborhood density
	A.4 . Motivation to normalize gradients
	A.5 . Effect of different guiding loss functions
	A.6 . Limitation of class embeddings smoothing
	A.7 . Integration with fast sampling techniques

	B . Experimental results
	B.1 . Neighborhood density with different feature extractors
	B.2 . Additional nearest neighbor pairs for visualization
	B.3 . Comparing our samples with baseline sampling process

