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Abstract

Partially-supervised instance segmentation is a task
which requests segmenting objects from novel categories via
learning on limited base categories with annotated masks
thus eliminating demands of heavy annotation burden. The
key to addressing this task is to build an effective class-
agnostic mask segmentation model. Unlike previous meth-
ods that learn such models only on base categories, in this
paper, we propose a new method, named ContrastMask,
which learns a mask segmentation model on both base
and novel categories under a unified pixel-level contrastive
learning framework. In this framework, annotated masks of
base categories and pseudo masks of novel categories serve
as a prior for contrastive learning, where features from the
mask regions (foreground) are pulled together, and are con-
trasted against those from the background, and vice versa.
Through this framework, feature discrimination between
foreground and background is largely improved, facilitating
learning of the class-agnostic mask segmentation model.
Exhaustive experiments on the COCO dataset demonstrate
the superiority of our method, which outperforms previous
state-of-the-arts.

1. Introduction

Instance segmentation is one of the most fundamental
tasks in computer vision, which requests pixel-level predic-
tion on holistic images and identifies each individual ob-
ject. Many works [8, 13, 18,20,27,32,40,43] have boosted
instance segmentation performance by relying on a large
amount of available pixel-level annotated data. However,
performing pixel-level annotation (mask annotation) is sig-
nificantly burdensome, which hinders the further develop-
ment of instance segmentation on massive novel categories.

Since box-level annotations are much cheaper and eas-
ier to obtain than mask annotations [12], a common way
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Figure 1. Visualization results of Mask R-CNN [ 18], OPMask [2]
and the proposed ContrastMask on novel categories.

to address the aforementioned issue is to perform partially-
supervised instance segmentation [15,19,23,46]. This in-
stance segmentation task was first proposed in the paper
“Learning to Segment Every Thing” [19], where object cat-
egories are divided into two splits: base and novel. Both
of them have box-level annotations, while only base cat-
egories have additional mask annotations. Then the goal
of this task is by taking advantage of the data of base cat-
egories with mask annotations to generalize instance seg-
mentation models to novel categories. The main obstacle to
achieve favorable instance segmentation performance under
the partially-supervised setting is how to distinguish fore-
ground and background within each box for an arbitrary
category via learning on the data with limited annotations.
Previous methods [2, 15, 19, 23, 30, 31, 46] addressed
this task via learning a class-agnostic mask segmentation
model to separate foreground and background, by capturing
class-agnostic cues, such as shape bases [23] and appear-



ance commonalities [15]. However, these methods learn
the class-agnostic mask segmentation model only on base
categories, ignoring a large amount of training data from
novel categories, and consequently lack a bridge to trans-
fer the segmentation capability of the mask segmentation
model on base categories to novel categories.

To build this bridge, in this paper, we propose Con-
trastMask, a new partially-supervised instance segmenta-
tion method, which learns a class-agnostic mask segmen-
tation model on both base and novel categories under a
unified pixel-level contrastive learning framework. In this
framework, we design a new query-sharing pixel-level con-
trastive loss to fully exploit data from all categories. To
this end, annotated masks of base categories or pseudo
masks of novel categories computed by Class Activation
Map (CAM) [2,45] serve as a region prior, which indicates
not only the foreground and background separation, but
also shared queries, positive keys and negative keys. Con-
cretely, given a training image batch containing both base
categories and novel categories, we establish two shared
queries: a foreground query and a background query, which
are obtained by averaging features within and outside the
mask regions, including both the annotated and the pseudo
masks, respectively. Then, we perform a special sampling
strategy to select proper keys. By introducing the proposed
loss, we expect to pull keys within/outside the mask regions
towards the foreground/background shared query and con-
trast it against keys outside/within the mask regions. Fi-
nally, features learned by our pixel-level contrastive learn-
ing framework are fused into a class-agnostic mask head to
perform mask segmentation.

Compared with previous methods, ContrastMask enjoys
several benefits: 1) It fully exploits training data, making
those from novel categories also contribute to the optimiza-
tion process of the segmentation model; 2) More impor-
tantly, it builds a bridge to transfer the segmentation capa-
bility on base categories to novel categories by the unified
pixel-level contrastive learning framework, especially the
shared queries for both base and novel categories, which
consistently improves feature discrimination between fore-
ground and background for both base and novel categories.
A visualization result of comparison with other methods is
shown in Fig. 1.

Without bells and whistles, ContrastMask surpasses all
previous state-of-the-art partially-supervised instances seg-
mentation methods on the COCO dataset [26], by large mar-
gins. Notably, with the ResNeXt-101-FPN [25,41] as the
backbone, our method achieves 39.8 mAP for mask seg-
mentation on novel categories.

2. Related Work

Instance Segmentation. Instance segmentation is a task
that combines both object detection and semantic segmen-

tation, i.e., each pixel is assigned to a specific category and
an individual instance simultaneously. Mask R-CNN [ 18]
produced a mask for each detected bounding box by extend-
ing Faster R-CNN with a mask head. PANet [27] improved
segmentation performance by building bottom-up path aug-
mentations and lateral connections across features of mul-
tiple levels. HTC [8] presented interleaved execution and
mask information flow and achieved considerable perfor-
mance. DSC [13] formed a bi-directional relationship be-
tween detection and segmentation tasks, and achieved state-
of-the-art performance. BMask [ 1] established a paral-
lel head to predict the boundary of objects, which can be
fused into the mask head to refine segmentation results. BC-
Net [21] adopted bilayer GCN and self-attention to regress
the object contour and instance masks, respectively. In addi-
tion to these two-stage methods, one-stage methods, such as
CondlInst [32], BlendMask [7], SOLO [36], SOLOvV2 [37],
YOLACT [5], and FCIS [24], obtained comparable perfor-
mance with favorable inference speed.

Pixel-level contrastive learning. Very recently, several
works [1,6,29,38,39,42,44] have been proposed to perform
pixel-level contrastive learning to remedy the misalignment
between the classification task and the dense prediction
task. However, these methods and ours differ in both ob-
jective and design philosophy: Their objective is to learn
general dense representations for per-pixel multi-class cate-
gorization, so they perform pixel-level instance discrimina-
tion by sampling keys from two different augmented views;
While ours is to improve the foreground and background
discrimination, so we perform pixel-level instance discrim-
ination by sampling keys from foreground and background
areas within one image.

Partially-supervised instance segmentation. As the
pioneer method of partially-supervised instance segmenta-
tion, Mask® R-CNN [19] designed a parameterized trans-
formation function between the bounding box head and the
mask head in Mask R-CNN [18], which enables segmenting
novel categories based on the assumption that the bounding
box head encodes the embeddings of all categories. Shape-
Mask [23] learned shape priors from limited data with mask
annotations, and expected these shape priors can general-
ize to novel objects. ShapeProp [40] exploited box su-
pervision to learn salient regions and propagated these re-
gions to the whole box proposals via an efficient message
passing module which can generate a more accurate shape
prior. CPMask [15] achieved promising performance by
parsing shape commonality and appearance commonality
among different categories. It claimed that sharing these
commonalities can promote the generalization ability for
mask prediction in a class-agnostic manner. OPMask [2]
employed object mask prior (OMP) to provide general con-
cepts of foreground for mask head learning, and thus the
network can concentrate on the primary objects in a region.
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Figure 2. The whole architecture of ContrastMask, which is built
on the Mask R-CNN [ 18], with an extra contrastive learning head.
“Sn” denotes that size of the feature map is n xn. X and Y are an
intput Rol feature map and its enhanced feature map, respectively.

Very recently, Deep-MAC [4] explored the impact of mask
head architectures to segmentation performance on novel
categories. It adopted much heavier architectures, such as
Hourglass-52 [28], for mask heads, and achieved outstand-
ing performance. However, a lightweight mask head is al-
ways more popular in practice.

All these methods optimize their mask segmentation
models only on base categories, ignoring a large amount of
data from novel categories, and thus lack a bridge to trans-
fer the segmentation capability on base categories to novel
categories. We address this issue by introducing a unified
contrastive learning framework for dense mask prediction,
in which both base and novel categories contribute to mask
segmentation model learning.

3. ContrastMask

We first depict the whole flowchart of the proposed Con-
trastMask. Then, we show how the unified pixel-level con-
trastive learning framework is instantiated to enhance fea-
ture discrimination between foreground and background on
both base and novel categories. Finally, we introduce the
loss functions to learn our partially-supervised instance seg-
mentation model.

3.1. Overview

As shown in Fig. 2, our method, ContrastMask, is built
on the classic two-stage Mask R-CNN [18] architecture
with an extra “contrastive learning” head, termed as CL
Head, which performs unified pixel-level contrastive learn-
ing on both base and novel categories. The CL Head takes
an Rol feature map and a CAM generated by the box head
as input. It is supervised by our proposed pixel-level con-
trastive loss ( Sec. 3.3) and outputs an enhanced feature map
for the mask head. Finally, the mask head predicts a class-

agnostic segmentation map by taking a fused feature map
as input. Next, we describe the details of each component
of our method.

3.2. Contrastive Learning Head (CL Head)

The goal of the CL Head is to increase feature dis-
crimination between foreground and background and de-
crease feature dissimilarity within each region (background
or foreground) for both base and novel categories, so that it
can facilitate mask head learning. We achieve this by learn-
ing it with a new pixel-level contrastive loss.

As illustrated in Fig. 3, the architecture of the contrastive
learning head (CL Head) is inspired by SimCLR [10],
which is composed of a lightweight encoder f(-) and a pro-
jector g(-) for contrastive learning. The encoder f(-) con-
tains eight 3 x 3 Conv-ReLU layers and the projector g(-)
is a three-layer MLP, where the last layer is not followed by
a ReLU function.

Given an Rol feature map X € R *Wx*C extracted by
RolAlign [18], where C, H and W represent channel di-
mension, height and width of the Rol, respectively, the CL
Head feeds them into the encoder to get an enhanced feature
map Y = f(X) € REXWX*C which will be incorporated
into the mask head for mask segmentation. Next, Y is first
flattened and then fed into the projector, which maps repre-
sentations to the space where the pixel-level contrastive loss
is applied: Z = g(Y) € RTWXC  Here, after projection,
the feature map Z is reshaped to the same size as Y.

3.3. Query-sharing Pixel-level Contrastive Loss

Now, we introduce our new pixel-level loss, which en-
ables learning the mask segmentation model on both base
and novel categories under a unified contrastive learning
framework. A core design philosophy for this loss func-
tion is base and novel categories share two class-agnostic
queries, one for foreground q* and the other for back-
ground g, so that a bridge is formed to transfer the seg-
mentation capability on base categories to novel categories.
For this reason, we name our loss function query-sharing
pixel-level contrastive loss.

The query-sharing pixel-level contrastive loss consists
of two symmetrical formulations for foreground and back-
ground, respectively. Taking foreground as an example,
let KT and X~ denote a set of foreground keys and a set
of background keys, respectively. Then the query-sharing
pixel-level contrastive loss for foreground is defined as:

+ 1
%+,1c— = _Wkéﬁ |:¢(q+ak+)/7- (1
~log (exp(@a’ k")/m) + > exp(o(at,k7)/7))]
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where 7T is a temperature hyper-parameter and ¢(-,-) de-
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Figure 3. The flowchart of our contrastive learning head (CL Head) which consists of an encoder and a projector, supervised by a pixel-
level contrastive loss. Ground-truth masks (if base) or pseudo masks converted from CAMs (if novel) are used to calculate the contrastive
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Figure 4. A schematic diagram to illustrate how to obtain queries
and sample keys. For base categories, we use ground-truth masks
to do partition and extract edges to guide sampling hard keys. For
novel categories, we firstly binarize CAMs by a threshold §, then
perform partition and randomly sample easy and hard keys based
on partitions. The foreground query g and background query q~
are obtained by averaging features from corresponding partitions
of a batch of object proposals.

notes the cosine similarity. Similarly, we can obtain the
query-sharing pixel-level contrastive loss for background

foreéround and background queries q™, q, as well as the
foreground and background key sets KT, K~. We illustrate

these details in Fig. 4.

Next, we describe the details of how to obtain the

Foreground and background partition. Given a pro-
jected feature map Z € RE>XWXC Jet M € {0, 1}V
and A € [0, 1]#*W be the ground-truth mask and the class-
activation map (CAM) aligned with Z, repectively. Let Z
denote the H x W spatial location lattice of feature map Z,
then given a location ¢ € Z, we can obtain a feature vector z;

at location ¢ from feature map Z, and similarly the mask la-
bel m; and the CAM value a; at the location ¢ from ground-
truth mask M and CAM A, respectively. The whole spatial
location lattice can be partitioned into two disjoint lattices:
foreground location lattice Z+ and background location lat-
tice Z~. For base categories, we can achieve this partition
by using the ground-truth mask: Z+ = {i € Z|m; = 1} and

= {i € Z|m; = 0}; While for novel categories, as the
ground—truth mask is not available, we alternatively use the
CAM A to guide the foreground and background partition:
It ={i€ZIla; >1-6}andZ~ = {i € Z|a; < &}, where
0 = 0.1 is a small threshold and is fixed in our method.

+ —
Let I(n) and I(n) be

the foreground and background partitions of n** Rol pro-
posal in a batch consisting of N Rol proposals {Z(™}N_ |
from both base and novel categories, respectively. The fore-
ground and background queries g, q~ are obtained by av-
eraging features within foreground and background parti-
tions across all proposals. Taking the foreground query q*
as an example, we obtain it by:

Query and key set generation.

1 N

N

1 n
2", )

q" =

n=1 | (")| S

The foreground and background key sets for a Rol pro-
posal Z (here we omit the index n for notation simplic-
ity) are obtained by K+ = {z;|i € §(Z7,0)} and K~ =
{zili € §(Z~,0)}, respectively, where §(-, o) is a random
sampling operator which samples a subset from a set ran-
domly with a proportion ratio o.

Hard and easy key mining. Previous studies reveal that
mining hard and easy keys is helpful to learn discriminative
features by contrastive learning [34,35].

For base categories, we specify keys near an object
boundary as hard keys and those far away from the bound-
ary as easy keys. The ground-truth boundary can be ob-
tained from the ground-truth mask easily. Let b; be the
nearest boundary location to location ¢ on an Rol proposal
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Figure 5. The input of the class-agnostic mask head consists of
enhanced featuer map Y, Rol feature map X and CAM A. &
represents an element-wise addition operation.

Z. Then, we have the sets of hard keys and easy keys:
Kr={zi | i €§(T,0),li —bill3 <2}

. : 2 3)
Kp=A{zi | i €§(Z,0),|li —bill3 > 2}.

For novel categories, since the ground-truth boundary is
unavailable, we simply mine the hard and easy key sets by
random sampling, i.e., Ky = {z; | i € §(Z,0)} and K =
{zi | 1€8(Z,0)}.

Instantiation of the proposed contrastive loss. Now,
given an Rol proposal Z, no matter from base or novel cat-
egories, we have described how to obtain foreground and
background key sets from it as well as how to mine hard
and easy key sets from it. Then consequently, we can obtain
four types of key sets (Fig. 4) from it: 1) foreground-easy
key set K, 2) foreground-hard key set K7;, 3) background-
easy key set K, and 4) background-hard key set K};. Re-
ferring to Eq. (1), our query-sharing pixel-level contrastive
loss is defined as:

+ + - -
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which contains four terms for the four key sets, respectively,
and foreground query q© and background query q~ are
shared with keys from both base and novel categories.

3.4. Class-agnostic mask head

As shown in Fig. 5, the architecture and the correspond-
ing loss function of the mask head is the same as those in
Mask R-CNN [18] except for three modifications: 1) Fol-
lowing [2, 15, 46], we change the output channels of the
last convolutional layer from 80 to 1, resulting in a class-
agnostic mask head. 2) We concatenate the output feature
map of the CL Head with the input feature map of the mask
head, which makes the input features of the mask head more
distinctive and facilitates its learning. 3) We utilize the
CAM [2] to tell the mask head which region should focus
on. This can be easily implemented by adding the CAM to
the input feature maps.

3.5. Loss Function

The overall loss function for our ContrastMask contains
three terms: a box detection loss Ly, a mask segmentation

loss L.nqsk, and a contrastive learning loss L,,. The for-
mulations of Ly, and L,,,s: are the same as those defined
in Mask R-CNN [18]:

L= Lbom + Lmask + /\Lcon; (5)

where )\ is a weight parameter.

4. Experiments

In this section, we first describe the experimental setup
and implementation details. Then, we compare Con-
trastMask with state-of-the-art partially-supervised instance
segmentation methods. Finally, we conduct ablation studies
to show the contribution of each component in our method.

4.1. Experimental Setup

Our experiments are conducted on the challenging
COCO dataset [26]. To simulate base and novel categories,
the training set is split into two subsets. Typically, cate-
gories presented in PASCAL VOC dataset [14] is termed as
“voc” and remaining categories are “nonvoc”. We mainly
conduct experiments on these two subsets, and “nonvoc
— voc” indicates that “nonvoc” categories are regarded as
base and “voc” as novel, and vice versa. We use images in
COCO-train2017 for training and those in COCO-val2017
for evaluation. Typical metrics for instance segmentation,
i.e., mask AP, including mAP, APs5y, AP75, APg, APjs and
APy, are used for evaluation. These metrics are calculated
on the novel categories.

Implementation details. We implement our approach
based on MMDetection [9]. We adopt ResNet-50-FPN as
the backbone for most ablation experiments and ResNet-
101-FPN as the backbone for fair comparison with other
methods. Typical training schedules, i.e., 1x and 3%, are
both employed for a fair comparison, and all ablation exper-
iments are conducted by 1x schedule for efficiency. During
training, we employ SGD with momentum for optimization,
and the initial learning rate is 0.02. All experiments are con-
ducted on 8 Tesla V100 GPUs and the batch size is 16, i.e.,
2 images per GPU. Each input image is resized to keep the
rule that the long side of the image is less than 1,333 and
the short side less than 800. The sampling ratio o is set as
o = 0.3, and the temperature hyper-parameter 7 (Eq. 1) for
easy and hard keys are setas 7 = 0.7and 7/ = 1—7 = 0.3,
respectively. We linearly warmup the A of L., ( Eq. (5))
from 0.25 to 1.0. Besides, commonly-used augmentations
such as random-flip and multi-scale training are adopted.

4.2. Experimental Results

We compare our method ContrastMask with recent
partially-supervised instance segmentation methods, in-

It is released under the CC-BY 4.0 license.
It is released under the Apache 2.0 license.



nonvoc—voc voc—nonvoc

Method Backbone Sche. Layers. | mAP AP;y AP7;; APs APy APp | mAP APsy AP7;s APs APy APp
Mask R-CNN (Baseline) [18] | ResNet-50 1x 4 239 429 235 116 243 337 | 192 364 184 11.5 233 244
MaskX R-CNN [19] ResNet-50 1x 4 289 522 286 121 29.0 40.6 | 237 431 235 124 276 329
Mask GrabCut [22] ResNet-50 1x - 195 462 142 47 159 320 | 195 392 170 65 209 343
CPMask [15] ResNet-50 1x 4 - - - - - - 28.8 46.1 30.6 124 33.1 434
ShapeProp [46] ResNet-50 1x 4 344 596 352 135 329 48.6 | 304 512 31.8 143 342 447
ContrastMask (Ours) ResNet-50 1x 4 351 608 357 17.2 347 477 | 309 503 329 152 346 443
OPMask [2] ResNet-50 130k 7 365 625 374 173 348 498 | 319 522 337 163 352 465
ContrastMask (Ours) ResNet-50 3x 4 370 630 386 183 364 502 | 329 525 354 166 371 473
ContrastMask (Ours) ResNeXt-50 3% 4 376 638 389 181 36.6 513 | 334 542 358 177 374 485
Mask GrabCut [22] ResNet-101 1x - 19.6  46.1 143 5.1 16.0 324 | 197 397 170 64 212 358
Mask~ R-CNN [19] ResNet-101 1x 4 295 524 297 134 302 41.0 | 238 429 235 127 281 335
ShapeMask [23] ResNet-101 1x 8 333 569 343 17.1 38.1 454 | 302 493 315 161 382 284
ShapeProp [46] ResNet-101 1x 4 355 605 367 156 338 503 | 319 521 337 142 359 465
ContrastMask (Ours) ResNet-101 1x 4 366 622 377 175 365 50.1 | 324 521 348 152 367 473
ShapeMask (NAS-FPN) [23] | ResNet-101 3% 8 357 603 366 183 405 473 | 332 531 350 183 402 433
CPMask [15] ResNet-101 3% 4 36.8 605 38.6 17.6 37.1 515 | 340 537 365 185 389 474
OPMask [2] ResNet-101 130k 7 37.1 625 384 169 360 50.5 | 332 535 352 172 37.1 469
ContrastMask (Ours) ResNet-101 3x 4 384 645 398 184 381 526 | 343 547 366 17.5 384 50.0
ContrastMask (Ours) ResNeXt-101 3% 4 398 662 423 192 393 536 | 350 564 369 186 389 505

Table 1. Quantitative comparisons on the challenging COCO dataset. “nonvoc—voc” denotes that categories in nonvoc have the mask
annotation and methods are required to be tested on voc categories that only have box annotations, and vice versa. “Sche.” denotes the
training schedule, where 1 x represents for 12 epochs and 730k is a customized schedule only used in OPMask [2]. We use two conventional
schedules, i.e., 1x and 3 X, for fair comparison. “Layers.” indicates the number of Conv blocks adopted in the mask head to perform mask
prediction. Generally, a heavier mask head leads to better performance, which has been demonstrated in [4]. ResNeXt-50 and ResNeXt-101

indicate “ResNeXt-50-32x4d” [41] and “ResNeXt-101-64x4d” [

cluding MaskX R-CNN [19], Mask GrabCut [22], Shape-
Mask [23], CPMask [ 1 5], ShapeProp [46] and OPMask [2].

Quantitative results. The quantitative results for nonvoc
— voc and voc — nonvoc are shown in Tab. 1. When adopt-
ing ResNet-50 as the backbone and using the 1x schedule,
our method surpasses the state-of-the-art method Shape-
Prop [46] by 0.7/0.5 mAP in nonvoc — voc and voc —
nonvoc settings, respectively. We also outperforms CP-
Mask [15] that uses a stronger detector, i.e., FCOS [33],
by a large margin (2.1 mAP). In addition, we provide com-
parison results under the 3x schedule. Our ContrastMask
(ResNet-50) achieves 37.0 mAP which even outperforms
the CPMask [15] (36.8 mAP) that uses ResNet-101 back-
bone by 0.2 mAP. This indicates that our method fully ex-
ploits all training data and builds a bridge to transfer the
segmentation capability from base to novel.

Our method also offers superior performance using the
ResNet-101 as the backbone, e.g., outperforms the SOTA
ShapeProp [46] by 1.1 mAP in the nonvoc — voc set-
ting. By using the 3x schedule, ContrastMask (ResNet-
101) achieves new SOTA performance of 38.4/34.3 mAP in
the nonvoc — voc and voc — nonvoc settings. It outper-
forms CPMask [15] and ShapeMask [23] by 1.6/2.7 mAP,
respectively, in the nonvoc — voc setting. Note that Shape-
Mask [23] adopts enhanced NAS-FPN [16] as the feature
enhancement module to utilize multi-scale features.

We notice that the results of OPMask [2] are reported by
adopting a heavier mask head, i.e., 7 Conv layers, and a dif-
ferent training schedule, i.e., 130k training iterations. We

], respectively.

kindly refer readers to its arXiv version [3] (v1) for more
comparison (They reported their result under the 3x sched-
ule). Even OPMask adopts a heavier mask head, our Con-
trastMask still outperforms it. In addition, we also provide
stronger results by using ResNeXt [4 | ] backbones under the
3% schedule to show the potential of our method.

Qualitative results. Here, we visualize some example seg-
mentation results of our method under two situations: with
and without CL Head. We employ mask annotations from
the voc subset to train our model. In Fig. 6, we show some
samples from COCO-val2017 dataset, including voc (base)
and nonvoc (novel) categories. Our ContrastMask repre-
sents great capability to segment both of base and novel
objects accurately. Even if objects are small and the back-
ground is clutter, our method still performs well. In addi-
tion, we also visualize the CAMs and corresponding pseudo
masks generated by our method of some examples in Fig. 7.
These pseudo masks are used as the prior to obtain the fore-
ground and background queries and sample keys for novel
categories.

4.3. Ablation Study

We conduct ablation studies to verify different designs
of the components in our ContrastMask. Unless otherwise
specified, we do ablations in the nonvoc — voc setting. All
results are reported on novel (voc) categories.

Effectiveness of CL Head. Referring to Fig. 5, the in-
put of the mask head in our ContrastMask is composed of
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Figure 6. Qualitative results on COCO dataset when using voc as training data (base). Each group consists of two results, one is obtained by
ContrastMask without CL Head (Ours w/o CL) and the other is obtained by ContrastMask (Ours). The results show that our ContrastMask
performs more precisely segmentation on both base and novel objects benefited from the unified pixel-level contrastive learning framework

conducted on all training data.

Figure 7. The visualization of CAMs and pseudo masks for some
examples. The yellow and dark purple areas in pseudo masks de-
note for the foreground and background partitions, respectively.

three signals: feature map X from the backbone, feature
map Y from the CL head and class activation map A from
the CAM module. Here, we do an ablation study to show
the benefit brought by each of the inputs. Since Mask R-
CNN [18] is our baseline, We first train it in a partially-
supervised manner. The result is shown in Tab. 2. Then
by involving the CAM module (CM) into the mask head,
“Baseline + CM” obtains a much better result, 32.3 mAP,
since CAM brings a latent cue for class-agnostic mask head
to clearly point out which region is the foreground area.
Furthermore, performance is boosted to 35.1 mAP after in-

Method ‘ mAP AP50 AP75 APS APM APL
Baseline 239 429 235 116 243 337
Baseline + CM 323 576 319 152 31.6 446

Baseline+ CM +CL | 35.1 60.8 357 17.2 347 477

Table 2. Ablation on the impact of each component. The base-
line is Mask R-CNN we built on. “CM” denotes CAM and “CL”
represents for the CL head.

Architecture ‘ mAP AP5y AP7;5 APg APy,  APp
C4F2 342 598 346 165 337 464
C8F3 351 60.8 357 172 347 477
CI12F4 350 61.1 350 173 348 475

Table 3. Ablation on the architecture of the CL head. “CnFm”
indicates n Conv-ReLU blocks in the encoder and m-layer MLP
in the projector.

tegrating the CL Head, termed as “CL”, with the baseline
model plus the CAM module. This evidences that the CL
Head largely improves feature discrimination between fore-
ground and background, and thus facilitates the learning of
the class-agnostic mask segmentation model.

Architecture of CL Head. Since the input to our CLHead
is ROI features from the backbone, unlike other contrastive
learning methods, our encoder is relatively simpler and con-
sists of several convolutional and linear layers. Here we
ablate the architecture of the encoder. Tab. 3 illustrates dif-



Sampling ratio o \ mAP AP5y APy APgs APp  APp

Supervision | mAP  AP5y AP7s  APg APy, AP,

0.1 344 602 343 168 344 469
0.2 347 603 352 171 345 469
0.3 35.1 60.8 357 172 347 477
0.6 343 600 342 169 342 464

Table 4. Discussion on the sample ratio o.

Temperature 7 | mAP  AP5, APz APg APy APp

0.1 344 604 350 167 341 469
0.7 351 60.8 357 172 347 477
0.9 340 602 337 168 334 464

Table 5. Discussion on the temperature hyper-parameter. we
apply 7 and 7 = 1 — 7 for easy and hard keys, respectively.

ferent settings we explored. The base setting employs 4
Conv-ReLU blocks as the encoder and a two-layer MLP
as the projector. After adding additional 4 Conv-ReLU
blocks to the encoder and a one-layer MLP to the projec-
tor, an increase of 0.9 mAP (from 34.2 mAP to 35.1 mAP) is
achieved, which explains that only 4 Conv-ReLU blocks are
insufficient. When increasing the number of Conv-ReLU
blocks to 12, the performance gain is limited. This indi-
cates that adopting 8 Conv-ReLU blocks is adequate for an
encoder, and more Conv-ReL.U blocks bring limited bene-
fits. Thus, we use “C8F3” as the architecture of CL Head,
considering the trade-off between efficiency and accuracy.

Robustness of Sampling Ratio. A proportion ratio o is ap-
plied to determine the number of sampled keys for each
key set. Tab. 4 shows the performance change by vary-
ing the proportion ratio. When o is too small or too large,
i.e., 0 = 0.1 and 0 = 0.6, performance is degraded. The
reason is that a small o means only a few keys can be sam-
pled and a small number of keys can not realize an accurate
representation of foreground and background. A large o en-
counters a dilemma that the rate of error keys will increase
because the foreground and background partition for novel
categories are produced by a predicted and coarse CAM.
In general, a minor discrepancy arises among different o,
which demonstrates the robustness of our method to this
hyper-parameter. We attribute this characteristic to the fact
that only two classes, i.e., foreground and background, are
considered in our method, which requires a small number
of keys to optimize the model.

Temperature hyper-parameter. We apply 7 to easy keys
and 7’ = 1—7 to hard keys when computing our contrastive
loss. From Tab. 5, we notice that a very small 7 is unsuitable
for easy or hard keys, which leads to performance degrada-
tion. This can be explained from a perspective [34] that only
a few negative keys near the query are focused when using
asmall 7, i.e., 7 = 0.1. However, we expect more negative
keys can be pushed away. Thus, we set 7 = 0.7 for easy
keys and 7/ = 1 — 7 = 0.3 for hard keys.

base 335 584 339 159 333 453
novel 334 580 342 158 3311 458
all 351 60.8 357 172 347 477

Table 6. Ablation on different supervision for our contrastive
learning head. “base”, “novel” and “all” denote that only base
categories, only “novel” categories and all categories are consid-

ered when calculating our contrastive loss, respectively.

Query-Sharing ‘ mAP AP5y AP7;5 APs APy AP
X 327 569 331 157 320 447
v 351 60.8 357 172 347 477

Table 7. Ablation on the necessity of query-sharing.

Supervisions for our contrastive learning. In this study,
we guide our query-sharing pixel-level contrastive learning
by three different types of supervisions, i.e., only base, only
novel and all. As shown in Tab. 6, both only using base cat-
egories and only using novel categories to contribute in loss
calculation lead to obvious performance drops, 1.6 mAP
and 1.7 mAP respectively, compared with adopting all cate-
gories. This demonstrates that involving training data from
all categories is important to learn a segmentation model
with good generalization capability between base and novel
categories.

Necessity of query-sharing. We ablate this experiment to
validate the influence of the query-sharing strategy. In
Tab. 7, “X” means that we obtain different query q for dif-
ferent proposal, and thus the pixel-level contrastive loss is
calculated for each proposal individually. It achieves worse
performance compared with “v”’, which indicates that the
query-sharing strategy is essential for the proposed unified
pixel-level contrastive learning framework.

5. Limitations and Discussions

Limitations. Since pseudo masks converted from CAMs
are not accurate, the foreground and background partitions
for novel categories are not guaranteed to be correct, which
inevitably damages segmentation performance. If ground-
truth masks for novel categories are available for sam-
pling keys, an improvement about 1.4 mAP can be further
achieved on the voc — nonvoc setting. There are two ways
to approach this upper bound: 1) Utilizing stronger tech-
niques to produce more precise pseudo masks. 2) Providing
scribble or point annotations for novel categories, which are
also cheaper than mask annotations.

Possible application scenarios. Our method is a kind of
label-efficient learning method, which is known as the key
to extending Al algorithms to real-world applications. We
give two examples for reference. 1) In autonomous driving,
when encountering an unknown scene where new objects



are not involved in existing training set, we can annotate
these objects quickly with only box annotations and then
combine them with existing training set. Then, a more ac-
curate and robust model can be re-trained. 2) Suppose that
a shopping mall wants to build an automatic alert system
to monitor whether the fire passage is blocked by some ob-
jects. This requires training a scene parsing model. There
exist familiar objects (e.g., person) that have abundant anno-
tations in public datasets or internal datasets of a company
but also unusual objects (e.g., wheelbarrow) that do not have
mask annotations. We can apply our partially-supervised
method here to reduce annotation burden.

Relation to a teacher-student model. One may argue that
our method looks like a teacher-student model, and thus the
low quality of CAM may lead to negative impacts on the
segmentation performance. But we think this is a kind of
misunderstanding. First, we use CAM as a prior to form
query-pos/-neg pairs for CL, rather than a teacher super-
vision. Note that as an unsupervised/weakly-supervised
learning framework, CL requires some priors, even though
the priors are not always correct, to determine pos/neg keys,
e.g., instance discrimination (MoCo [17], CVPR20) and
color consistency (DenseCL [38], CVPR21). Second, al-
though sometimes CAMs are incorrect, the influence is lim-
ited (less than 1.4 mAP compared with using GTs for novel
as the prior). This is benefited from that we employ two
strategies to enhance the robustness of the CL head: 1) We
adopt the query-sharing strategy which forms a query based
on both base and novel data in a batch. 2) We only con-
sider high confidence areas of CAMs as the aforementioned
prior, which diminishes the impact of errors.

6. Conclusion

We developed an effective method for partially-

supervised instance segmentation, named as ContrastMask,
which introduces a unified pixel-level contrastive learning
framework to learn a segmentation model on both base and
novel categories. ContrastMask utilized a query-sharing
pixel-level contrastive loss to make data from novel cate-
gories also contribute to the optimization process, and thus
largely improved the feature discrimination between fore-
ground and background areas for all categories. These en-
hanced features further facilitated the learning of the class-
agnostic segmentation model, resulting in a better mask seg-
mentor. Extensive results on the COCO dataset showed
that ContrastMask consistently outperformed other meth-
ods by a large margin, achieving states-of-the-art under the
partially-supervised setting.
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