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Abstract

This paper studies the problem of object discovery — sep-
arating objects from the background without manual labels.
Existing approaches utilize appearance cues, such as color,
texture, and location, to group pixels into object-like regions.
However, by relying on appearance alone, these methods fail
to separate objects from the background in cluttered scenes.
This is a fundamental limitation since the definition of an
object is inherently ambiguous and context-dependent. To re-
solve this ambiguity, we choose to focus on dynamic objects
— entities that can move independently in the world. We then
scale the recent auto-encoder based frameworks for unsuper-
vised object discovery from toy synthetic images to complex
real-world scenes. To this end, we simplify their architec-
ture, and augment the resulting model with a weak learning
signal from general motion segmentation algorithms. Our
experiments demonstrate that, despite only capturing a small
subset of the objects that move, this signal is enough to gener-
alize to segment both moving and static instances of dynamic
objects. We show that our model scales to a newly collected,
photo-realistic synthetic dataset with street driving scenar-
ios. Additionally, we leverage ground truth segmentation
and flow annotations in this dataset for thorough ablation
and evaluation. Finally, our experiments on the real-world
KITTI benchmark demonstrate that the proposed approach
outperforms both heuristic- and learning-based methods by
capitalizing on motion cues.

1. Introduction

Objects are the key building blocks of perception [33,53].
We understand the world not in terms of pixels, surfaces,
or entire scenes, but rather in terms of individual objects
and their combinations. Object-centric representation makes
tractable higher-level cognitive abilities such as casual rea-
soning, planning, etc., and is crucial for generalization and
adaptation [5, 63]. In computer vision, progress has been
achieved in object recognition recently [9,26,49], but these
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Figure 1. A sample from the TRI-PD dataset with: (a) motion
segmentation from [15], top-10 segments produced by (b) our ap-
proach, (c) heuristic-based MCG [3], and (d) learning-based SlotAt-
tention [40]. Our method uses noisy, sparse motion segmentation
to learn to separate both moving and static instances of dynamic
objects from the background, whereas others cannot resolve the
object definition ambiguity based on appearance alone.

approaches rely on large amounts of expensive manual la-
bels, and only cover a fixed vocabulary of object categories.
Discovering objects and their extent in data — in a manner
that generalizes across domains — remains an open problem.

What makes this task especially challenging is that the
notion of an object is inherently ambiguous and context-
dependent. Consider a car in Figure 1: its left door and the
handle on that door can be treated as individual objects, or
parts of the whole. It is thus not surprising that existing
approaches that attempt to automatically separate objects
from the background based on appearance struggle beyond
controlled scenarios. In particular, classical methods that
use graph-based inference tend to over- or under-segment
the objects [3, 20] (Figure 1, bottom left). More recent
learning-based methods model object discovery with struc-
tured generative networks, often leveraging iterative infer-
ence in the bottleneck of an auto-encoder [8, 18,24,39,40].
While promising results have been demonstrated, these ap-
proaches are typically restricted to toy images with colored
geometric shapes on a plain background, and completely fail
on realistic scenes (Figure 1, bottom right).

We posit that while the ambiguity of the object definition



is not resolvable in the static image world without direct su-
pervision, it has a natural resolution in the dynamic world of
videos. Concretely, we choose to focus on dynamic objects,
which we define as entities that are capable of moving inde-
pendently in the world. Independent object motion is a strong
grouping cue, which has been shown to drive object learning
in animal perception [ 14,52]. In computer vision, there exists
a long line of works on motion segmentation that automat-
ically separate moving objects from the background based
on optical flow [7, 15,35,43,43,64]. These methods have
found numerous applications in unsupervised [2, 46] and
weakly-supervised machine learning algorithms [29,47,59].

In this work, we show how motion segmentation can be
bootstrapped to group instances even when they are static.
We build our approach on top of the framework for unsu-
pervised object discovery proposed by Locatello et al. [40],
and show how to scale it from toy images to realistic videos.
We extend the architecture to videos of arbitrary length by
introducing a spatio-temporal memory module [4], and sim-
plify the grouping mechanism to scale the model to realistic
scenes with large resolution and dozens of objects. We then
demonstrate the importance of inductive biases based on in-
dependent object motion on the emergent representation and
the extent to which it captures objects. In particular, we show
how motion segments (Figure 1, top left) can guide the atten-
tion operation to discover static objects. Crucially, we show
that motion segmentation of varying quality — even when
sparse and noisy — can be sufficient to bias the model towards
segmenting both moving and static instances (Figure 1, top
right). Our approach only requires videos for training, and
can segment objects in static images at inference time.

To go beyond the toy data used in [40], while still being
able to thoroughly analyze the various aspects of the method,
we utilize a new, photo-realistic, synthetic dataset collected
using the ParallelDomain platform [ 1] (TRI-PD). It consists
of hundreds of videos, with crowded, street driving scenes,
and comes with a full set of ground truth annotations, includ-
ing object segmentations, 3D coordinates and optical flow,
allowing us to ablate the importance of the quality of the
motion segmentation to the method’s performance. Finally,
we demonstrate that the resulting method generalizes to real
videos on the challenging KITTI dataset [21], and com-
pare it to existing heuristic- and learning-based approaches.
Our code, models, and synthetic data are made available at
https://github.com/zpbao/Discovery_Obj_
Move/.

2. Related work

In this work we study the problem of object discovery
in realistic videos capitalizing on motion segmentation as a
learning signal for bottom-up grouping. Below, we review
the most relevant works in each of these areas.

Object discovery is the problem of separating objects from

the background without manual labels. Traditional computer
vision approaches treated it as perceptual grouping [38] —
the idea that low and mid-level regularities in the data such
as color, orientation, and texture allow for approximately
parsing a scene into object-like regions. Notable approaches
include [20], which uses graph-based inference to identify
region boundaries, and [3] which first extracts regions on
multiple scales with a normalized cut algorithm, and then
groups them into object candidates. However, being purely
appearance-based, these methods are not well equipped to
resolve the inherent ambiguity of the object definition.

This problem has received renewed attention recently
with the introduction of learning-based methods for object
discovery [8, 18, 19,24,25,31,39,40,62,67]. A common
approach is to use iterative inference to bind a set of variables
to objects in an image [ 18,24, 40], usually with a variational
auto-encoder [37,50]. A more efficient variant is proposed
by Locatello et al. [40] in their SlotAttention framework.
Concretely, they perform a single step of image encoding
with a CNN (convolutional neural network) followed by an
iterative attention operation, which is used to bind a set of
variables, called slots, to image locations. The slots are then
decoded individually and combined to reconstruct the image.

Many of the approaches above are capable of discovering
objects in toy, synthetic scenes, but as we demonstrate in
Section 4.5, they fail in more realistic environments, where
appearance alone is not sufficient to separate the objects
from the background. In this work, we extend SlotAttention
to realistic videos by modifying the architecture of the model
to allow it to scale to large scenes with dozens of objects,
and incorporating inductive biases in the form of motion
segmentation. Crucially, our method only uses motion as
a sparse learning signal and the trained model is able to
segment both moving and static instances.

Finally, several works have recently explored integrat-
ing inductive biases in the form of 3D geometry con-
straints [11, 17,28, 54]. However, these methods remain lim-
ited to toy, synthetic environments. In contrast, our method
uses independent object motion as a learning signal, allowing
it to generalize to real-world scenes. Geometric priors are
orthogonal to our approach and combining different forms
of inductive biases is a promising direction for future work.

Motion segmentation is concerned with separating objects
from the background using optical flow [30, 56, 58]. Early
approaches [7,35,43,43] tracked individual pixels with the
flow and then clustered the resulting trajectories inspired by
the common fate principle [38]. While these methods have
shown promising results on motion segmentation bench-
marks, they do not generalize well in the wild due to their
heuristic-based nature. More recently, several learning-based
methods have been proposed [15, 64]. In particular, Dave
et al. re-purpose a state-of-the-art object detection architec-
ture [26] to detect and segment moving objects in an optical
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flow field. The model is trained on a toy, synthetic FlyingTh-
ings3D dataset [4 1], but can generalize to real videos due
to appearance abstraction provided by the flow. We use this
method in our work due to its high performance and simplic-
ity combined with minimal supervision requirements. Note
that since our method requires instance-level moving object
masks, binary motion segmentation techniques [45, 60, 65]
are not applicable in our scenario.

Learning from motion is a paradigm inspired by evidence
from cognitive science research, that independent object mo-
tion is a crucial cue for the development of the human visual
system [52]. In computer vision, it has been adopted for
weakly-supervised object detection [47] and semantic seg-
mentation [29,59], as well as for unsupervised representation
learning [2,46]. However, none of these works address the
problem of object discovery from unlabeled videos. Yang
et al. [66] use binary motion segmentation to train saliency
models, but do not segment individual objects in complex
scenes. Very recently, Tangemann et al. [57] have proposed
to use motion segmentation to build compositional, genera-
tive scene models. However, their approach employs motion
segmentation as a pre-processing step during training and is
not capable of object discovery at inference time.

3. Method

In this section, we first introduce the SlotAttention frame-
work for unsupervised object discovery, which serves as a
basis for our approach, in Section 3.1. We then describe
how we scale this architecture to real-world videos with
dozens of objects in Section 3.2, and present our approach
to incorporating independent motion priors in Section 3.3.

3.1. Background

Following prior work [8,24], SlotAttention [40] models
object discovery as inference in an auto-encoder framework.
Concretely, given an image I € R >*W X3 it is first passed
through an encoder CNN to obtain a hidden representation
H = fon(I) € RH'XW'xDinp 1t is then processed by
the attention module, which we describe below, to map H
to a set of feature vectors of a fixed length K called slots
S € REXDsior . Each slot S; € S is broadcasted onto a
2D grid, and decoded individually with a decoder CNN
O; = faee(S;) € REXWX4 "where the 4th dimension of the
output represents the alpha mask A;. Denoting the first 3
channels of O; with I,;, the complete image reconstruction
is obtained via I’ = 3, A; * I; and is used to supervise the
model with an MSE (mean squared error) loss.

The attention module is the key component of the ap-
proach. It uses an iterative attention mechanism, similar to
the one used in Transformer [61], to map from the input H
to the slots S. In particular, the attention weights are com-
puted with a dot product between the input features and slot

states W = %k(H) - q(S) € RN*K where k and ¢ are

learnable linear transformations and N = H' x W', These
attention weights are then used to compute the update values
viaU = WTvy(H) € REXD where W are the normalized
attention weights, and v is another linear transformation. A
key difference to the classical Transformer architecture is
that the slots are initialized at random, and the inference is
iterative. In particular, at every step [ the slots are updated
via S; = update(S;_1, U;), where the update function is
implemented as a GRU [13] (gated recurrent unit).

The intuition behind this approach is that the slots serve
as a representational bottleneck and individual decoding of
the slots results in them binding to spatially coherent regions,
such as objects. Next, we describe how we modify the
SlotAttention framework to scale it to real-world videos.

3.2. A framework for object discovery in videos

Our model, shown in Figure 2, takes a sequence of video
frames {I*, 12, ..., I} as input. Following [40], each frame
is then processed by an encoder CNN, shown in yellow, to
obtain an individual frame representation H! = f.,.(I?).
These individual representations are aggregated by a Con-
vGRU spatio-temporal memory module [4] to obtain video
encoding via H'* = ConvGRU(R'~!, H'), where R'~! ¢
RH*W'xDiny i the recurrent memory state.

Next, we proceed to map the video representation H " to
the set of slots S®. It is easy to see, however, that the recur-
rent slot assignment strategy proposed in [40] does not scale
well to sequential inputs. Indeed, given a sequence of length
T and L inference steps for each frame, the overall number
of attention operations required to process the sequence is
T x L. Such a nested recurrence is both computationally
inefficient, and can exacerbate the vanishing gradient prob-
lem. To address this issue, as shown in the blue block in
Figure 2, we only perform a single attention operation to
directly compute the slot state S* = W' v(H't), where the
attention matrix W is computed using the slot state in the
previous frame S*~!. For the first frame we use a learnable
initial state S°.

It is worth noting that the authors of [40] suggest that
iterative inference on randomly initialized slots is crucial for
the model to be able to generalize to a different number of
objects at test time. However, we have found that simply
increasing the number of slots to the maximum expected
number of objects is sufficient to generalize to scenes of
varying complexity. In that regard, our approach is similar
to DETR [9], which also uses transformer query vectors as
learnable object proposals that are capable of parsing both
densely and sparsely populated scenes, but is trained in a
fully supervised way.

Finally, the resulting slot states S¢ need to be processed
with the decoder CNN, shown in green in Figure 2, to ob-
tain the frame reconstruction. However, the individual slot
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Figure 2. Our method takes a sequence of frames as input and processes them individually with a backbone network (shown in yellow), and
a ConvGRU recurrent memory module. The resulting feature maps H "t are passed to the attention module (shown in blue) which binds
them to a fixed set of slot variables via an attention operation. We additionally use automatically estimated motion segmentation to guide the
attention operation for a subset of the slots. Finally, the slot states are combined in a single feature map F* and decoded to reconstruct the
frame. The reconstruction objective enforces generalization from moving to static instances.

decoding approach from [40] does not scale well with the
number of slots. Indeed, a full image reconstruction needs
to be computed for each slot which quickly becomes pro-
hibitively expensive in terms of memory, especially for large
resolution frames. Instead, we propose to invert the order
of slot decoding and slot recombination steps. In particular
we first broadcast each individual slot feature S! € R |
to a feature map F! € R *W'*Dstor and use the attention
mask W/, of the slot as an alpha mask Aj. We then con-
struct a single output feature map F* = ", Al x F, shown
with a checkerboard pattern in the figure, and decode it via

— fdec(Ft) c RHXWX?)'

As we demonstrate in Section 4.3, the proposed single
shot decoding strategy reduces the strength of the spatial
cohesion prior to the original SlotAttention architecture, de-
creasing its object discovery capabilities. However, we also
demonstrate that this prior does not generalize beyond toy,
synthetic scenes. Instead, in the next section we describe
our approach of incorporating an independent motion prior
which provides a stronger learning signal and works well
with a single shot decoding strategy.

3.3. Incorporating independent motion priors

Our method assumes that a set of sparse, instance-level
motion segmentation masks M = {M*' M2 .. M7T} is
provided with every video, with M* = {ml, mg, ey Mot )y
where C* is the number of moving objects that were suc-
cessfully segmented in frame ¢, and m; € {0, 1} W' isa
binary mask (downsampled to match the spatial dimension
of the feature maps). Note that for every frame it is possible
that M; = (). This reflects the realistic assumption that a
variable number of objects can be moving in any given frame
and that in some frames all the objects can be static.

We propose to use these motion segmentation masks to
directly supervise the slot attention maps W € RV <K We

thus need to map a variable number of motion segmentations
C* to a fixed number of slots K in every frame. Following
prior work on set-based supervision [9, 55], we first find an
optimal bipartite matching between predicted and motion
masks, and then optimize an object-specific segmentation
loss. Specifically, we consider M? also as a set of length
K padded with @ (no object). To find a bipartite matching
between these two sets we search for a permutation of K
elements with the lowest cost:

K
c}:argminZESGg mt WU()) (1)
7 =1
where L, (m!, ng(i)) is the segmentation loss between
the motion mask m} and the attention map of the slot with in-
dex o(i). In practice, we efficiently approximate the optimal
assignment with a greedy matching algorithm.
Once the assignment & has been computed, the final mo-
tion supervision objective is defined as follows:

K
Lomotion = Z l{m%;ﬁ@}ﬁseg(m? Wt,&(l)) (2

i=1
That is, the loss is only computed for the slots for which
motion masks have been assigned, and the remaining slots
are not constrained and can bind to any regions in the image.
This is illustrated in the right part of Figure 2, where motion
segmentation masks are available for only two objects in a
crowded outdoor scene, and they get matched to the slots
whose attention maps are most similar to the masks. The
remaining slots are unconstrained, but still manage to capture
both moving and static objects, as well as the background,
driven by the image reconstruction objective. The actual
segmentation loss L., in Eq. 2 is the binary cross entropy:

Lseg(m, W) Z —my; log(W;)—(1—m;)log(1—Wj). (3)



3.4. Loss function and optimization

Our final objective is defined as follows:
L= £T€COTL + )\M»Cmotion + )\T»Ctemzn (4)

where L,¢con 1S the MSE loss for the image reconstruction,
Liemp is a temporal consistency regularization term, and
Apr and A are the weights for the motion supervision and
temporal consistency terms. The latter is defined as

T-1

Liemp(S) = Z IT — softmaz(S* - (SHl)T)H» )
t=1

where I € RE XK s the identity matrix. It is easy to see that
this term is encouraging similarity between feature represen-
tations of the slots in consecutive frames and thus improving
temporal consistency of the slot bindings. The model is
trained on video clips of length 7" and we ensure that at least
half of the clips in a batch have a non-empty set of motion
segmentations M.

4. Experimental evaluation
4.1. Datasets and evaluation

We use two synthetic datasets for the analysis of the pro-
posed approach: CATER [22] for ablating the architecture of
the model and a realistic ParallelDomain (TRI-PD) dataset
for analyzing the impact of the motion segmentation quality
on the model’s performance. In addition, we use a real-world
KITTI benchmark [2 1] for comparison to the state of the art.

CATER is a video version of the CLEVR [32] dataset which
was used in many recent works on unsupervised object dis-
covery [8,31,40]. We utilize the provided engine to generate
2,000 videos by placing between 4 and 8 geometric shapes,
such as cubes or cones, on a plain background at random,
and assigning a random color to each instance. Each object
can then move on a random trajectory or remain static, and
the camera motion is also randomized. We use 1600 videos
for training and 400 for evaluation, with each video being
40-frames long with a resolution 128 x 128 (see Figure 3,
left). For ablation analysis, we randomly assign one object
as moving in each video and use the ground truth mask of
that object as a motion mask. Notice that we do experiment
with automatically estimated motion segmentation on more
challenging TRI-PD and KITTI.

ParalleIDomain (TRI-PD) is a synthetic dataset with street
driving scenarios (see Figure 3, center). It was collected
using a state-of-the-art synthetic data generation service [1].
The training set contains 924 photo-realistic, 10 seconds long
videos with driving scenarios in city environments captured
at 20 FPS. We use 51 videos from a disjoint set of scenes for
evaluation. Each video comes with a full set of ground truth
annotations, including optical flow, allowing us to conduct a

Figure 3. Frame samples from the video datasets used in our
experiments. CATER [22] (left) is a toy, synthetic dataset similar
to the ones used in prior works. TRI-PD (center) is a collection of
photo-realistic, synthetic videos, which is a major step forward in
visual complexity. KITTI [21] (right) is a real world benchmark
with outdoor scenes.

detailed analysis of the impact of the motion segmentation
quality on our method’s performance. More statistics and
qualitative examples are provided in the appendix.

KITTI is a real-world benchmark with city driving scenarios
which comes with a variety of annotations (Figure 3, right).
In this work, we use the instance segmentation subset of
the dataset for evaluation. It contains 200 frames, which
we resize to 368 x 1248. Notice that instance segmentation
annotations are provided on individual images in this dataset,
without the temporal context, allowing us to demonstrate
that our approach does not require videos at inference time.
Since our model is unsupervised, we use all the 147 videos
in the training set of KITTI to discover the objects that can
move in the real world.

Evaluation metrics. We use Adjusted Rand Index (ARI) as
the main metric for comparing object discovery capabilities
of the models, but also report more traditional segmentation
metrics like F-measure and mloU in the appendix. ARI
is a clustering similarity metric which captures how well
predicted segmentation masks match ground-truth masks in
a permutation-invariant fashion. This is more suitable for
the evaluation of unsupervised approaches than, say, mloU,
because it does not require for the methods to make the
decision which segments represent the objects and which
correspond to the background. Following prior work [24,40],
we only measure ARI based on foreground objects, which
we refer to as Fg. ARL

4.2. Implementation details

For the components of our model shared with SlotAtten-
tion [40] we follow their architecture and training protocol
exactly, and describe the remaining details below.

We replace the shallow encoder used in [40] with a
ResNet18 [27] to scale the representational power to re-
alistic scenes. We also experiment with deeper backbones
in the appendix. All the models are trained from scratch
unless stated otherwise. We additionally report results with
contrastive-learning pre-training in the appendix. To be able
to capture small objects, we remove the last 2 max pooling
layers from the ResNet, and add a corresponding dilation



ratio to preserve the field of view. We use 10 slots for the
experiments on CATER and 45 slots on TRI-PD and KITTI
to account for the larger number of objects.

All the models are trained for 500 epochs using
Adam [36] with a batch size 20 and learning rate 0.001.
Following [40], we use learning rate warm-up [23] and an
exponential decay schedule to prevent early saturation and
reduce variance. We set Aj; to 0.5 and Ay to 0.01 on the
validation set of CATER, and use these value in all the ex-
periments. Video-based variants are trained using clips of
length 5. At inference time, the model is evaluated in a
sliding window fashion with a stride 5.

We experiment with two motion segmentation algorithms
— a heuristic-based [35], and a learning-based one [15], for
which we only use the motion stream trained on the toy Fliy-
ingThings3D dataset [41]. Both methods take optical flow
as input, so we evaluate them with both ground truth flow,
and flow estimated with the state-of-the-art supervised [58]
and unsupervised [56] approaches. Since the outputs of
both methods contain many noisy segments, we apply a
few generic post-processing steps to clean up the results.
They remove very large and very small segments, as well
as segments at the image boundary. The details of the post-
processing are provided in the appendix.

We compare our approach to several recent learning-
based object discovery algorithms as well as to a classical,
heuristic-based method. In particular, we choose SlotAtten-
tion [40], MONet [8], SCALOR [31], and S-IODINE [24] as
a representative sample of learning-based methods, with S-
IODINE also being a video-based approach. For MONet and
S-IODINE, we replace the original backbone with ResNet18
and match the input resolution to the one used by our method
for a fair comparison, but keep all the other details intact. All
the models are trained until convergence. We use MCG [3]
as an heuristic-based baseline. It is a proposal generation
method, so to obtain a single interpretation of an image, we
sample the top scoring proposals until all the pixels are cov-
ered. For overlapping segments, we assign the corresponding
pixels to the smaller segment.

4.3. Architectural analysis

In this section, we begin the analysis of our method by
studying the variants of the auto-encoder framework for ob-
ject discovery on the validation set of CATER in Table 1.
Firstly, we evaluate the original SlotAttention model (row
1 in the table), which serves as a basis for our approach,
and find that it performs reasonably well on this toy dataset,
though the Fg. ARI scores are noticeable lower than those
reported in the original paper [40] on CLEVR. This is ex-
plained by the fact that the scenes in CATER are more chal-
lenging, with a larger variance in the number of objects and
more occlusions.

Next, we convert the frame-level architecture of SlotAt-

ConvGRU | Slotinf. | Temp. | Decode. | Motion | Recon. | Fg. ARI

- Iter. X Per slot X v 64.4
frame Iter. X Per slot X v 66.3
clip Iter. X Per slot X v 71.5
clip 1-shot X Per slot X v 832
clip 1-shot v Per slot X v 86.7
clip 1-shot v 1-shot X v 345
clip 1-shot v 1-shot v v 92.7
clip 1-shot v 1-shot v X 779

Table 1. Analysis of the model architecture using Fg. ARI on
the validation set of CATER. We ablate the ConvGRU module,
slot inference strategy, temporal consistency constraint, decoding
strategy, independent motion prior, and the reconstruction objective.
Combining motion priors with reconstruction leads to best results.

tention to a video-level model by adding a ConvGRU after
the encoder. This has only a minor effect on the performance
when trained on 1-frame sequences (row 2 in the table), but
training on video clips (row 3) results in a 5.2 points increase
in Fg. ARI score. This demonstrates that the feature space
of the recurrent model can capture video dynamics and thus
simplify separating objects from the background.

However, going from single frame inputs to clips in-
creases the memory requirements of the model. To mitigate
this issue, we now study the architectural modifications pro-
posed in Section 3.2. Firstly, replacing iterative inference on
randomly initialized slots with a single attention operation
with a learnable initialization not only results in an improved
computational efficiency, but also significantly improves the
performance. Incorporating the temporal consistency term
in the loss further boosts the Fg. ARI score due to more
robust slot binding. Next, switching to 1-shot decoding sig-
nificantly reduces the memory consumption of the model,
but also results in it largely loosing its object-discovery ca-
pabilities. This demonstrates that individual slot decoding
was crucial for enforcing the spatial cohesion prior to the
SlotAttention model.

Despite this disadvantage, incorporating a weak learn-
ing signal in the form of a motion segmentation not only
recovers, but significantly improves the model’s perfor-
mance. This demonstrates that independent motion is a much
stronger and more generic prior than appearance and loca-
tion similarity used in the SlotAttention, even in a toy dataset
like CATER. Finally, the last row of Table 1 shows that the
reconstruction objective is still important for achieving top
performance by enforcing generalization from moving to
static instances.

4.4. Object discovery in realistic videos

We now explore how well the model introduced above
scales to realistic outdoor scenes in the TRI-PD dataset in
Table 2 and Figure 4. We separately report the Fg. ARI score
for moving and static objects to assess the network’s gen-
eralization abilities. We begin with evaluating the baseline
variant of our model without independent motion priors, and
observe that appearance similarity is indeed not sufficient for



Model | Motion seg. Fg. ARI Stat. | Fg. ARIMov. | Fg. ARI All Learning_based TRI-PD KITTI
Ours None 10.5 18.4 13.1 n

Ours | GTall 0 -5 TR] SlotAttention [40] v 10.2 13.8
Ours | GT moving 533 62.7 59.6 MONet [8] v 11.0 14.9
Ours | GT flow + [35] 39.9 475 42.8 SCALOR [31] v 18.6 21.1
Ours | GT flow +[15] 483 54.9 51.7

Ours | RAFT flow + [15] 46.8 55.6 50.9 S-IODINE [24] v 98 14.4
Ours | SMURF flow +[15] 473 54.8 50.5 MCG [3] X 25.1 40.9
- RAFT flow + [15] 27 53 34 Ours Vs 50.9 471

Table 2. Analysis of the effect of the quality of motion segmenta-
tion on the model’s performance on validation set of TRI-PD. We
gradually reduce the quality of the motion segments starting from
ground truth to fully estimated. Our method learns to discover both
moving and static instances guided by a very sparse motion signal.

object discovery in realistic scenes, as reflected by the low
Fg. ARI score. Qualitatively, the first column of Figure 4
illustrates that this variant completely fails to discover any
objects, and instead segments the scene into random patches
based on color and location similarity.

Next, we establish the upper bound for our model’s per-
formance by using all the ground truth object segments (cor-
responding to moving and static objects) for training. This
fully-supervised approach reaches a Fg. ARI score of 71.7,
which is significantly below the 92.7 obtained by the best
version of our model on CATER, further emphasizing the
complexity of TRI-PD. Qualitatively, as can be seen in the
second column of Figure 4, this variant successfully captures
all the clearly visible objects in a scene, and also groups the
background pixels together.

Only using the ground truth segments corresponding to
the moving objects, which simulates the theoretical scenario
in which we have a perfect motion segmentation algorithm,
does result in a performance drop of 11.3 Fg. ARI points,
which is especially noticeable for static objects, but the over-
all score remains 46.5 points higher than the baselines trained
without the motion prior. Qualitatively, the model is able to
accurately segment most of the moving and static instances,
as shown in the third column in Figure 4. However, this
variant oversegments the background, demonstrating that
explaining as many objects in the scene as possible is crucial
for learning a strong background model.

Switching to actual motion segmentation algorithms,
we first compare the state-of-the-art heuristic-based and
learning-based methods using the ground truth optical flow
as input in rows 5 and 6 of the Table 2. As expected, we ob-
serve that the more recent learning-based method produces
more accurate motion segmentations, which in turn results
in a higher performance of our approach. Qualitatively, this
model, shown in the 4th column in Figure 4, has a slightly
lower recall than the variant trained with ground truth mov-
ing segments due to the sparser learning signal. Intriguingly,
replacing ground truth flow with the one estimated with a
state-of-the-art supervised RAFT [58], or self-supervised
SMUREF [56] algorithms barely changes the performance,

Table 3. Comparison to the state-of-the-art approaches for ob-
ject discovery on the validation sets of TRI-PD and KITTI using
Fg. ARI. Our approach outperforms both learning- and heuristic-
based methods by capitalizing on independent motion cues.

despite a noticeable decrease in the motion segmentation
quality (last column in Figure 4). This result demonstrates
the robustness of our method to noise. We use RAFT flow
for the remainder of the experiments.

Finally, to better quantify the ability of our model to
generalize from sparse, noisy motion segmentations to the
whole distribution of objects in crowded scenes, we evaluate
the Fg. ARI score of the motion segmentations themselves in
the last row of Table 2. We can see that these masks indeed
mostly capture the moving objects, however, even for those
only a tiny fraction is segmented. In contrast, our approach,
capitalizing on this noisy and incomplete signal, increases
the overall ARI score by a factor of 15.

4.5. Comparison to the state of the art

Finally, we compare our approach to the state-of-the-art
on the validation sets of TRI-PD and KITTI in Table 3.
Firstly, we observe that all the learning-based methods fail
to achieve non-trivial results on both datasets. This con-
firms our hypothesis that appearance alone is not a sufficient
signal to separate objects from the background in realistic
environments. In contrast, our proposed approach outper-
forms all these methods by a wide margin by capitalizing on
independent motion cues.

Interestingly, the classical MCG approach performs sig-
nificantly better than the more recent learning-based methods
(moreover, this observation holds even on the toy CATER
benchmark, as we show in the appendix). Our method out-
performs MCG on both datasets, with the margin being sig-
nificantly larger on TRI-PD. Recall that KITTI is an image-
based benchmark, where the annotated frames are selected
to prominently feature the objects of interest. In contrast,
TRI-PD is a densely labeled video dataset with more chal-
lenging camera angles and more background clutter (see
Figure 5 for a qualitative comparison). Thus, wider margins
on PD highlight the benefits of our learning-based approach
compared to the heuristic-based MCG.

5. Discussion and limitations

Discovering objects and their extent from raw data is a
challenging problem due to the ambiguity of what constitutes



GT all GT moving

GT flow RAFT flow

Figure 4. Top-10 masks produced by our model with varying quality of motion priors on the validation set of TRI-PD. We show the motion
masks used for supervision on top of the corresponding model’s outputs. In the last two columns the approach of Dave et al. [15] is used for
motion segmentation. Our method learns to discover the objects even with sparse and noisy motion segmentation based on estimated flow.

KITTI

Slot
Attention

Figure 5. Qualitative comparison of our approach and representa-
tive heuristic- and learning-based methods on the validation sets of
TRI-PD and KITTI (showing top-10 masks). Ours learns to success-
fully separates objects from the background, whereas appearance-
based methods struggle in cluttered environments.

an object. In this work, we propose one way to automatically
resolve this ambiguity by focusing on dynamic objects and
using independent motion as an inductive bias in an auto-
encoder framework. Our analysis demonstrates promising
results in real-world environments, while further raising a
number of important questions.

Generalization to non-dynamic objects. While indepen-
dent object motion provides a convenient signal for object
discovery from data, it ignores objects that are not capable
of moving by themselves, but might be important for down-
stream tasks. In particular, in indoor environments people
interact with accessories, electronics, food, etc., and captur-
ing these objects is crucial for action recognition [48,69] and
robotics [6,42]. Notice, however, that extending the defini-
tion of a dynamic object to those entities that either move by

themselves or can be moved by humans covers most of such
cases. Classical motion segmentation approaches [7,35] do
attempt to capture all the objects that fall into this more gen-
eral definition, but do not generalize in the wild. Developing
more robust, learning-based versions of these methods is a
critical step towards a generic object discovery algorithm.

Object category imbalance in the real world. Like any
other learning-based method, ours is susceptible to focusing
on the most common categories, while ignoring the objects
in the tail of the distribution. For instance, in the real world
we might see lots of moving people, vehicles and animals,
and sometimes a person picking up a piece of litter. In
theory, this should allow our method to discover not only
what people, cars and animals are, but also litter. However, it
might happen too infrequently in practice. Fortunately, this
problem has received a lot of attention in the few-shot and
continual learning domains [10,34,51,68], and the proposed
solutions can be integrated into our framework.

Supervision used to train the motion segmentation algo-
rithm. The approach of Dave et al. [15], used in our experi-
ments, is trained on the toy, synthetic FlyingThings3D [41]
dataset with ground truth moving object masks. This raises
the question of whether it is this indirect object-level su-
pervision which makes our method outperform other, fully
unsupervised approaches. To address this concern, in the
supplementary material we directly pre-train SlotAttention
on FlyingThings3D in a fully-supervised way, showing this
does not have a significant effect on its object discovery
performance in realistic videos due to the large domain gap.
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Appendices

In this appendix, we provide additional experimental re-
sults, visualizations and implementation details that were
not included in the main paper due to space limitations.
We begin by analysing several aspects of our approach, in-
cluding its memory constraints, effect of the network depth,
self-supervised backbone pre-training, and influence of the
number of slots in Section A. A separate discussion of our
post-processing approach for the motion segmentation out-
puts, together with a hyper-parameter ablation, is available
in Section B. We then report additional experimental com-
parisons in Section C including qualitative comparison with
SCALOR, measurement with representative segmentation
metrics, and comparison with state-of-the-art on CATER.
Finally, we provide more statistics for the synthetic TRI-PD
dataset in Section D and conclude by listing the remaining
implementation details in Section E.

A. Further ablations
A.1. Memory constrains

By adopting the learnable slot initialization and one-shot
decoding strategies, our proposed method can greatly save
the GPU memory. In Table A we compare the memory
consumption for both the original SlotAttention architec-
ture [40] and our optimized model on CATER [22] and
TRI-PD [1] datasets for a single frame. Firstly, we observe
that on CATER our approach does results in an about 25% re-
duction in the amount of memory required to train the model,
though both methods are easy to fit on a single GPU due to
the low resolution of CATER frames and a small number of
slots. In contrast, on TRI-PD, where both the resolution and
the number of slots are much larger, the memory constraints
of SlotAttention become prohibitive whereas our proposed
architecture can save 90% of the GPU memory, enabling
experiments on this realistic dataset.

A.2. Deeper backbones

In the main paper, we used a ResNetl18 backbone for
all the experiments. We now further evaluate the proposed
approach with ResNet34 and ResNet50 backbones on the
TRI-PD dataset in Table B. In addition, we explore the effect
of self-supervised ImageNet [16] pre-training of the back-
bone with the recent SimSam [12] approach. We evaluate
these variants with both ground truth motion segmentation
and the outputs of [15] with RAFT flow, reporting Fg. ARI
for both static and moving instance. We also visualize two
generated samples for randomly initialized ResNet50 and
pre-trained ResNet50, together with our ResNet18 baseline,
for RAFT + [15] setting in Figure A.

Firstly, we observe that increasing the network depth
indeed results in consistent performance improvements of
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ResNet18

ResNet50

ResNet50-pre

Figure A. Visualizations of two samples on TRI-PD dataset with
different backbones. Deeper backbone results in a higher confi-
dence for the foreground objects, and self-supervised pre-training
of the backbone helps to better capture the object masks.

Model \ Dataset \ Resolution \ #Slots \ GPU Memory
SlotAttention [40] | CATER | 128 x 128 10 652 MB

Ours CATER | 128 x 128 10 483 MB
SlotAttention [40] | TRI-PD | 548 x 1123 45 23,796 MB
Ours TRI-PD | 548 x 1123 45 2,297 MB

Table A. GPU memory consumption for SlotAttention and our
proposed method measured with Megabytes (MB). By applying
learnable slot initialization and one-shot decoding, our model can
save 90% of the GPU memory on the realistic TRI-PD datset with
a large resolution and dozens of objects.

Backbone Motion seg. Fg. ARI Stat. | Fg. ARI Mov. | Fg. ARI All
ResNet18 GT moving 48.4 66.7 59.6
ResNet18 RAFT flow + [15] 45.6 56.7 50.9
ResNet34 GT moving 50.1 69.0 61.3
ResNet34 RAFT flow + [15] 46.2 57.1 51.7
ResNet50 GT moving 51.3 69.7 62.0
ResNet50 RAFT flow + [15] 47.2 57.2 52.0
ResNet50-pre | GT moving 53.6 71.2 64.1
ResNet50-pre | RAFT flow + [15] 48.5 68.6 53.1

Table B. Analysis of the effect of the backbone depth and self-
supervised pre-training on the model’s performance on the vali-
dation set of TRI-PD. Both deeper backbones and better weight
initialization result in performance improvements with either GT
or estimated motion segmentation, but the improvements are some-
what higher in the former setting.

our approach both with GT and estimated motion segmen-
tation, but the improvements are somewhat larger in the
former setting. This shows that the noisy estimated mo-
tion segmentation limits the performance of our method and
improvements in motion segmentation algorithms would di-
rectly result in a better scalability. Secondly, self-supervised
pre-training of the backbone results in further improvements
for both variants, demonstrating that recent advances in self-
supervised representation learning can be easily combined
with our object discovery approach.

A.3. Stronger SlotAttention baselines

To further validate the effectiveness of both the proposed
architecture and motion supervision, we now report two ad-
ditional baseline for SlotAttention [40]. Firstly, we apply the
same learning signal in the form of motion masks to [40] on
CATER and report the results in Table C. We observe that the



Model | Motion masks | Fg. ARI
SlotAttention X 64.4
SlotAttention v 83.1
Ours v 92.7

Table C. Comparison with SlotAttention using motion masks su-
pervision on CATER. Independent motion signal can also improve
the perofrmance of this baseline, but it remains below that of our
model, indicating the effectiveness of our model design.

Model Pre-training ‘ Fg. ARI
Slot Attention | None 10.2
Slot Attention | FlyingThings3D [41] 19.1
Ours None 50.9

Table D. Comparison with SlotAttantion pre-trained on FlyingTh-
ings3D [41] on the validation set of TRI-PD. Direct pre-training
only results in minor improvements for SlotAttention, whereas
using these labels to train a motion segmentation approach which
later bootstraps object discovery in our framework is a much more
effective strategy.

independent motion prior indeed also improves the perfor-
mance of the SlotAttention, but it remains 9.6 Fg. ARI points
below our method. This result indicates that our model archi-
tecture not only dramatically reduces memory consumption,
enabling the experiments on the realistic TRI-PD and KITTI
datasets, but also improves the object discovery capabilities
of the approach.

Next, we explore whether the supervised pre-training of
the motion segmentation approach of Dave et al. [15] on the
FlyingThings3D dataset [4 ] provides an unfair advantage
to our method. To this end, we pre-train SlotAttention on
FlyingThings3D, which is a more direct form of utilizing
these labels, and report the results in Table D. The results
indicate that while pre-training on object segmentation labels
in [41] does result in a small improvement for the SlotAtten-
tion, its the performance remains low and the model fails to
discover the objects in realistic images. This is due to the
large domain gap between the toy FlyingThings3D and the
photo-realistic TRI-PD datasets. This toy data, however, is
sufficient to learn to segment moving objects in the optical
flow field - a low level task with an appearance agnostic
input. The resulting model can then be used to bootstrap
object discovery in real world environments.

A 4. Influence of the number of slots

In the main paper, we use a fixed number of slots, which
is slightly larger than the maximum number of objects for
each dataset. Here we ablate the effect of the number of
slots on our method’s performance and run-time on CATER
and TRI-PD in Figure B. Firstly, we observe that, unsur-
prisingly, using fewer slots than the maximum object count
in a dataset results in a decrease in performance. However,
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increasing the slot number has a minimal effect on Fg. ARI
and run-time. The latter is due to our efficient 1-shot decod-
ing strategy, described in Section 3.2 of the paper. These
results demonstrate the flexibility of our method, which does
not require the ground truth object count for training.

©* Fg.ARL-CATER  <- Fg.ARKPD  # run-time-CATER run-time-PD
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Figure B. Influence of the number of slots on our method’s perfor-
mance and run-time on CATER and TRI-PD.

B. Motion-segmentation post-processing

We now describe the motion segmentation post-
processing steps applied in our work. Firstly, we filter out ex-
tremely small (fewer than 100 pixels, or smallest dimension
of the enclosing bounding box less than 10) and extremely
large (occupying more than 60% of the image) segments
since those typically correspond to random noise or capture
background regions. We then additionally remove the seg-
ments that are within 15 pixels from the image boundary,
as well as segments containing more than one connected
component, which also typically correspond to background
and noisy regions respectively.

These rules are applied to the outputs of both the heuristic-
based (CUT) [35] and the learning-based (TSAM) [15] mo-
tion segmentation algorithms, with the only difference being
that, since [35] outputs spatio-temporal segments, we aver-
age the frame-level statistics over time. For the method of
Dave et al. [15] we directly apply the rules at every frame.

In addition, unlike the heuristic-based approach, the
method of Dave et al. [15] also predicts a confidence score
for each segment and applies an internal pre-processing step
to the optical flow, zeroing out flow vectors with a low mag-
nitude, since those are unreliable. We integrate both of these
components into our post-processing algorithm by filtering
out segments with confidence score lower than Tt ¢, and
average normalized flow magnitude lower than 75,4 (we
first normalize flow magnitude to be € [0, 1] for each frame).

We select these two thresholds on the validation set of
TRI-PD using the FG.ARI score between the post-processed
motion segments and ground-truth segments corresponding
to the moving objects in Table E. In addition, we report the
average number of segments per frame after post-processing
under #Seg. Firstly, we evaluate the motion segments pro-
duced by [35] for reference and observe that while this ap-
proach outputs more segments, its accuracy is quite low, as
indicated by the mloU score. In contrast, the learning-based



Method Teon Tmag | #Seg | mloU (1)
CUT [35] - - 1.53 2.5
TSAM[15] | 0.4 0.1 0.38 2.9
TSAM[I5] | 04 0.05 | 0.51 3.1
TSAM [15] | 0.25 0.1 0.57 3.2
TSAM[I5] | 0.25 0.05 | 0.63 34
TSAM[15] | 0.1 0.1 0.71 34
TSAM [15] | 0.1 0.05 | 0.92 3.3

Table E. Fg. ARI measurements and averaged number of segments
on TRI-PD dataset with different threshold for the post-processed
motion segments. We set 1o, as 0.25 and Tinqg as 0.05 in the
main paper based on the ARI scores.

| Slot Attention MONet  SCALOR _ S-IODINE MCG | Ours

Fg. ARI 10.2 11.0 18.6 9.8 25.1 | 509
F-measure 11.0 94 14.1 102 258 | 471
mloU 9.2 7.7 129 13.6 245 | 380

Table F. Evaluation on TRI-PD with with Fg. ARI, F-measure and
mloU. Metrics that do not penalize background over-segmentation
are more informative but our approach shows top results overall.

approach of Dave et al. [15] produces fewer segments, but
they are a lot more accurate across a variety of thresholds.
We also visualize 2 sample frames in Figure C for a qualita-
tive comparison. For our main paper, we set 1.,,, to 0.25 and
T'nag to 0.05 to balance segmentation precision and recall.

C. Additional experimental comparisons
C.1. Qualitative comparison to SCALOR

Here we qualitatively compare our approach to the top-
preforming SCALOR [31] baseline on the validation set
of TRI-PD in Figure D. Since SCALOR does not provide
scores for the generated segments, we sampled 10 masks
uniformly to generate the visualizations. The results indi-
cate that SCALOR also did not work well with complicated
backgrounds and could not discover the objects.

C.2. Evaluation with segmentation metrics

We use Fg. ARI as the standard metric for object dis-
covery in the main paper. The key reason is that it ignores
the (unimportant) differences in how methods segment the
background. For a more comprehensive understanding of
the method, we also evaluate with F-measure [44] and mloU,
which are more standard segmentation metrics, on TRI-PD
dataset and report the results in Table F. Firstly, we observe
that our method still outperforms prior work on both metrics.
Secondly we notice that F-measure has the same property as
Fg. ARI (ignoring the background segments) and provides
similar conclusions. In contrast, mIoU penalizes background
over-segmentation and thus is less informative in this setting.
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C.3. Comparison with SOTA on CATER

For completeness, we now compare our approach (with
estimated motion segmentation) to state-of-the-art on the toy
CATER dataset, and report the results in Table G. For these
experiments, we use the original, shallow backbones for prior
works, in contrast to ResNet18 used in KITTI evaluation,
since we observed that they achieve higher performance
on CATER. We find that: (1) the baselines’ performances
are lower compared to CLEVR used in these works due to
higher scenes complexity (e.g., more occlusions); (2) The
conclusions from the main paper hold, with our method
showing top results; (3) heuristic-based MCG outperforms
most of the recent object-centric learning approaches even
on this toy dataset, highlighting the importance of using
strong baselines.

| SlotAttention MONet S-IODINE SCALOR MCG | Ours
FgARI | 673 88.6 735 74.6 84.0 | 90.4

Table G. Comparison with prior art on CATER. Our method shows
top results, and MCG outperforms most learning-based methods.

D. Parallel Domain dataset details

In this section we describe the details of our synthetic
TRI-PD dataset, which was collected through a state-of-
the-art synthetic data generation service [!]. The whole
dataset contains 200 photo-realistic scenes with driving sce-
narios in city environments captured at 20 FPS. Each video
is 10 seconds long, with a fixed shape at 1936 x 1216, and
comes with 7 different independent camera views. A com-
prehensive set of ground truth labels is provided for ev-
ery video, which include: camera pose, calibration, depth,
instance segmentation, semantic segmentation, 2D bound-
ing box, 3D bounding box, depth, forward 2D motion vec-
tors, backward 2D motion vectors, forward 3D motion vec-
tors, and backward 3D motion vectors. Figure E shows
several samples of the data and corresponding annotations.
We filter out scenarios with low visibility (e.g. foggy and
dark scenes) which are not useful in the context of object
discovery, resulting in 154 scenes which we use for train-
ing. In addition, we render another 17 scenes separately
for evaluation. We use 6 camera views for training, and 3
for evaluation, resulting in 924 training and 51 test videos.
The dataset is available at our project web page: https:
//github.com/zpbao/Discovery_Obj_Move.

We define the objects belonging to the following cate-
gories as the foreground objects: Pedestrian, Bus, Car, Bi-
cyclist, Caravan/RV, OtherMoveable, Motorcycle, Motorcy-
clist, OtherRider, Train, Truck, ConstructionVehicle, and
Bicycle. We filter out the objects with over 50% occlusion
and fewer than 150 visible pixels. To find the independently
moving objects in a pair of consecutive frames F'*, Fi*+!,
we first propagate all the object centers from F* to F*+!
with the ground truth camera motion. Then we calculate the


https://github.com/zpbao/Discovery_Obj_Move
https://github.com/zpbao/Discovery_Obj_Move

—

Ground-Truth CuT

TSAM-0.4-0.1

—

TSAM-0.25-0.05 TSAM-0.1-0.05

Figure C. Visualizations of the motion segmentation post-processing with different methods and thresholds. For TSAM, with a loosing
constrain, we can find more segments, but also more noisy parts. We set T.o,, as 0.25 and Trnq4 as 0.05 to balance the quality and quantity

of the segments.

Ours

SCALOR

Figure D. Visual comparison of our method and SCALOR. Despite
relatively high performance, this approach also fails to discover
most of the objects.

distances between these propagated object centers and the
ground truth centers in F**1. If the distance is larger than
0.05, we label that object as moving independently from the
camera.

We also report some statistics for each foreground cat-
egory, including averaged number of object per frame
(Num./f), Ratio of Moving objects (RoM), Ratio of Static
objects (RoS), Small Object ratio (SObj), Medium Object
ratio (MObj), and Large Object ratio (LObj) in Table H. No-
tice that for some foreground categories, there is no object
found in our subset. We define objects that cover fewer than
2000 pixels in the original resolution as small objects, larger
than 2000 pixels but fewer than 30000 pixels as medium
objects, and larger than 30000 pixels as large objects. We
only count the objects for which at least 50% of the object
mask is visible. Although for most categories more than half
of the objects are in motion, in practice only a tiny fraction
of these objects are captured by our motion segmentation
algorithm (see low FG.ARI values in Table E).

E. Implementation details

To increase the output resolution of the feature map of the
encoder, we modify the standard PyTorch implementation of
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Category Num./f RoM RoS SObj MObj LObj
Pedestrian 0.12 0.76 024 082 0.16 0.02
Bus 0.13 073 027 021 046 033
Car 5.44 037 063 049 038 0.13
Bicyclist 0.15 073 027 079 0.19 0.02
Caravan/RV 0.05 075 025 020 056 024
OtherRider 0.09 078 022 072 025 0.03
ConstructionVehicle 0.01 0.78 022 072 025 0.03
Bicycle 0.15 073 027 079 0.19 0.02

Table H. Statistics of Parallel Domain (TRI-PD) dataset. The aver-
aged number of object per frame (Num./f), Ratio of Moving objects
(RoM), Ratio of Static objects (RoS), Small Object ratio (SObj),
Medium Object ratio (MODbj), and Large Object ratio (LObj) are
reported.

a ResNet !. In particular, we reduce the downsampling ratio
from 16 to 4 by using stride 1 for for all the convolutional
blocks except for the first one. We further drop the last
fully-connected layers of the ResNet to obtain a feature
map. For the decoder, we adopt the 4-layer shallow decoder
following [40].

All the models are trained for 500 epochs using
Adam [36] with a batch size 20 and learning rate 0.001.
Following [40], we use a learning rate warm up for 2000
iterations. For the exponential learning rate decay schedule,
we set the decay rate as 0.5 and the decay step as 500000.
We set A\ps to 0.5 and Ar to 0.01. Dy, and the output
dimension for convGRU are set to 64.

To convert the attention maps W to segmentation masks,
we first apply a SoftMax along the slot dimension to obtain
a distribution over slots for each pixel. We then take the
argmax of this distribution to assign each pixel to one of the
slots and treat the resulting assignment as the masks.

nttps://github.com/pytorch/vision/blob/main/
torchvision/models/resnet.py


https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py
https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py

RGB Bounding Box Instance Segments Depth Optical Flow

Figure E. Several samples from the synthetic TRI-PD dataset, together with corresponding annotations.
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