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Abstract

Transformers are successfully applied to computer vi-
sion due to their powerful modeling capacity with self-
attention. However, the excellent performance of transform-
ers heavily depends on enormous training images. Thus,
a data-efficient transformer solution is urgently needed.
In this work, we propose an early knowledge distillation
framework, which is termed as DearKD, to improve the
data efficiency required by transformers. Our DearKD is
a two-stage framework that first distills the inductive bi-
ases from the early intermediate layers of a CNN and then
gives the transformer full play by training without distil-
lation. Further, our DearKD can be readily applied to
the extreme data-free case where no real images are avail-
able. In this case, we propose a boundary-preserving intra-
divergence loss based on DeepInversion to further close the
performance gap against the full-data counterpart. Exten-
sive experiments on ImageNet, partial ImageNet, data-free
setting and other downstream tasks prove the superiority of
DearKD over its baselines and state-of-the-art methods.

1. Introduction

Transformers [4, 14, 48] have shown a domination trend
in NLP studies owing to their strong ability in modeling
long-range dependencies by the self-attention mechanism.
Recently, transformers are applied to various computer vi-
sion tasks and achieve strong performance [7,15,32]. How-
ever, transformers require an enormous amount of training
data since they lack certain inductive biases (IB) [12,15,47,
53]. Inductive biases can highly influence the generaliza-
tion of learning algorithms, independent of data, by pushing
learning algorithms towards particular solutions [16,17,35].

1This work was done when Xianing Chen was intern at JD Explore
Academy.

2Corresponding authors.

Figure 1. Illustration of data-efficient of our DearKD. We com-
pare the data-efficient properties of DearKD in three situations
with different numbers of real training images: the full ImageNet,
the partial ImageNet and the data-free case (i.e. without any real
images) with DeiT and DeiT .

Unlike transformers, CNNs are naturally equipped with
strong inductive biases by two constraints: locality and
weight sharing mechanisms in the convolution operation.
Thus, CNNs are sample-efficient and parameter-efficient
due to the translation equivariance properties [12, 42, 43].

Recently, some researchers have proposed to explicitly
insert convolution operations into vision transformers to in-
troduce inductive biases [11, 18, 30, 51–53, 61]. However,
the forcefully modified structure may destroy the intrinsic
properties in transformers and reduce their capacity.

Another line of work [47] utilizes Knowledge Distilla-
tion (KD) [23] to realize data-efficient transformers. By
distillation, the inductive biases reflected in the dark knowl-
edge from the teacher network can be transferred to the stu-
dent [1]. DeiT [47], as a typical method in this line, has
successfully explored the idea of distilling knowledge from
CNNs to transformers and greatly increased the data effi-
ciency of transformer training. Nevertheless, DeiT still suf-
fers two drawbacks:
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Firstly, some works [11, 52] reveal that inserting convo-
lutions to the early stage of the network brings the best per-
formance, while DeiT only distills from the classification
logits of the CNN and thus makes it difficult for the early
(i.e. shallow) transformer layers to capture the inductive bi-
ases. Furthermore, the distillation throughout the training
implicitly hinders transformers from learning their own in-
ductive biases [12] and stronger representations [11].

To solve these problems, we propose a two-stage learn-
ing framework, named as Data-efficient EARly Knowledge
Distillation (DearKD), to further push the limit of data effi-
ciency of training vision transformers. Here the term ‘early’
refers to two novel designs in our proposed framework:
knowledge distillation in the early layers in transformers
and in the early stage of transformer training. First, we
propose to distill from both the classification logits and the
intermediate layers of the CNN, which can provide more
explicit learning signals for the intermediate transformer
layers (especially the early layers) to capture the inductive
biases. Specifically, we draw the inspiration from [10]
and design a Multi-Head Convolutional-Attention (MHCA)
layer to better mimic a convolutional layer without con-
straining the expressive capacity of self-attention. Further,
we propose an aligner module to solve the problem of fea-
ture misalignment between CNN features and transformers
tokens. Second, the distillation only happens in the first
stage of DearKD training. We let transformers learn their
own inductive biases in the second stage, in order to fully
leverage the flexibility and strong expressive power of self-
attention.

To fully explore the power of DearKD with respect to
data efficiency, we investigate DearKD in three situations
with different number of real training images (Figure 1):
the full ImageNet [13], the partial ImageNet and the data-
free case (i.e. without any real images). In the extreme case
where no real images are available, networks can be trained
using data-free knowledge distillation methods [8, 34, 56].
In this work, we further enhance the performance of trans-
former networks under the data-free setting by introducing a
boundary-preserving intra-divergence loss based on Deep-
Inversion [56]. The proposed loss significantly increases the
diversity of the generated images by keeping the positive
samples away from others in the latent space while main-
taining the class boundaries.

Our main contributions are summarized as follows:

• We introduce DearKD, a two-stage learning frame-
work for training vision transformers in a data-efficient
manner. In particular, we propose to distill the knowl-
edge of intermediate layers from CNNs to transform-
ers in the early phase, which has never been explored
in previous works.

• We investigate DearKD in three different settings and

propose an intra-divergence loss based on DeepInver-
sion to greatly diversify the generated images and fur-
ther improve the transformer network in the data-free
situation.

• With the full ImageNet, our DearKD achieves state-
of-the-art performance on image classification with
similar or less computation. Impressively, training
DearKD with only 50% ImageNet data can outperform
the baseline transformer trained with all data. Last
but not least, the data-free DearKD based on DeiT-
Ti achieves 71.2% on ImageNet, which is only 1.0%
lower than its full-ImageNet counterpart.

2. Related work
Knowledge Distillation. Knowledge Distillation [23] is

a fundamental training technique, where a student model is
optimized under the effective information transfer and su-
pervision of a teacher model or ensembles. Hinton [23] per-
formed knowledge distillation via minimizing the distance
between the output distribution statistics between student
and teacher networks to let the student learn dark knowl-
edge that contains the similarities between different classes,
which are not provided by the ground-truth labels. To learn
knowledge from teacher network with high fidelity, [59]
further took advantage of the concepts of attention to en-
hance the performance of the student network. [20] focus
on transferring activation boundaries formed by hidden neu-
rons. [44] proposed to match the Jacobians. [31] proposed to
distill the structured knowledge. Moreover, [25] proposed
a Transformers distillation method to transfer the plenty of
knowledge encoded in a large BERT [14] to a small student
Transformer network. However, all of them do not con-
sider the problem of distillation between two networks with
different architectures. Moreover, the teacher network has
lower capacity than the student network in our setting.

Vision Transformers. With the success of Transformers
[48] in natural language processing, many studies [7,15,41,
47] have shown that they can be applied to the field of com-
puter vision as well. Since they lack inductive bias, they in-
deed learn inductive biases from amounts of data implicitly
and lag behind CNNs in the low data regime [15]. Recently,
some works try to introduce CNNs into vision transform-
ers explicitly [9, 11, 18, 30, 51–53]. However, their force-
fully modified structure destroyed the intrinsic properties in
transformers. [12] introduced local inductive bias in mod-
eling local visual structures implicitly, which still learns lo-
cal information through training from amounts of data. [47]
proposed to distill knowledge from CNNs to transformers
which does not consider the differences in their inherent
representations and the Transformers intrinsic inductive bi-
ases. Thus, we propose the two-stage learning framework
for Transformers to learn convolutional as well as their own
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Figure 2. The pipeline of our proposed method. (a) The con-
volutional inductive biases knowledge distillation phase. (b) The
transformers instrinsic inductive biases learning phase.

inductive biases.
Data-Free KD. Data-Free KD [33] aims to learn a stu-

dent model from a cumbersome teacher without accessing
real-world data. The existing works can be roughly di-
vide into two categories: GAN-based and prior-based meth-
ods. GAN-based methods [8, 34, 55, 63] synthesized train-
ing samples through maximizing response on the discrimi-
nator. Prior-based methods [5] provide another perspective
for data-free KD, where the synthetic data are forced to sat-
isfy a pre-defined prior, such as total variance prior [3, 36]
and batch normalization statistics [5, 8]. However, they all
has the problem of mode collapse [6, 45], so we propose
a boundary-preserving intra-divergence loss for DeepInver-
sion [56] to generate diverse samples.

3. Data-efficient Early Knowledge Distillation

In this section, we first recap the preliminaries of Vision
Transformers, and then introduce our proposed two-stage
learning framework DearKD.

Preliminary. Vanilla multi-head self-attention (MHSA)
[48] is based on a trainable associative memory with (key,
value) vector pairs. Specifically, input sequences X ∈

RT×d are first linearly projected to queries (Q), keys (K)
and values (V) using projection matrices, i.e. (Q,K, V ) =(
XWQ, XWK , XWV

)
, whereWQ/K/V ∈ Rd×d denotes

the projection matrix for query, key, and value, respectively.
Then, to extract the semantic dependencies between each
parts, a dot product attention scaled and normalized with
a Softmax layer is performed. The sequences of values are
then weighted by the attention. This self-attention operation
is repeated h times to formulate the MHSA module, where
h is the number of heads. Finally, the output features of
the h heads are concatenated along the channel dimension
to produce the output of MHSA.

MHSA(X) = AXW V

A = Softmax(QK)
(1)

Inductive Biases Knowledge Distillation. It is revealed
in [11,52] that convolutions in the early stage of the network
can significantly enhance the performance since local pat-
terns (like texture) can be well captured by the convolution
in the early layers. Therefore, providing explicit guidance
of inductive biases to the early transformer layers becomes
crucial for improving data efficiency. However, in the later
phase, this guidance may restrict the transformer from fully
exploring its expressive capacity. To this end, we propose a
two-stage knowledge distillation framework DearKD (Fig-
ure 2) for learning inductive biases for transformers, which
is elaborated in the following.

3.1. DearKD: Stage I

Multi-Head Convolutional-Attention (MHCA). Re-
cently, [10] proves that a multi-head self-attention layer
with Nh heads and a relative positional encoding of dimen-
sion Dp ≥ 3 can express any convolutional layer of kernel
size
√
Nh ×

√
Nh by setting the quadratic encoding:

v(h) := −α(h)
(
1,−2∆(h)

1 ,−2∆(h)
2

)
rδ :=

(
‖δ‖2, δ1, δ2

)
Wqry =Wkey := 0, Ŵkey := I

(2)

where the learned parameters ∆(h) =
(
∆

(h)
1 ,∆

(h)
2

)
and

α(h) control the center and width of attention of each head,
δ = (δ1, δ2) is fixed and indicates the relative shift between
query and key pixels.

Motivated by [10], we propose a Multi-Head
Convolutional-Attention (MHCA) layer to enable a
transformer layer to act as a convolution layer by using the
relative positional self-attention [41]. Specifically, given an
input X ∈ RT×d, our MHCA layer performs multi-head
self-attention as follows:

MHCA(X) = AXW V

A = Softmax(QK + v(h)rij)
(3)
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Figure 3. Illustration of the aligner. The aligner aligns trans-
former tokens to have the same size of convolution features by the
stacking of reshape, bilinear interpolate, depth-wise convolution,
LayerNorm and ReLU layers.

where v(h) contains a learnable parameter α(h) (see Equa-
tion (2)) to adaptively learn appropriate scale of the rel-
ative position embedding (adaptive RPE). To prevent the
network from falling into the local optimum where the at-
tention highly focuses on the local information, we add a
dropout layer after the adaptive RPE.

Different from MHSA in Equation (1), the proposed
MHCA consists of two parts, i.e., the content part and posi-
tion part, to incorporate the relative positional information.
The former learns the non-local semantic dependencies de-
scribed above, and the latter makes the attention aware of
local details.

Early Knowledge Distillation. Now we consider the
distillation of the convolutional inductive biases with the
proposed MHCA. To capture the inductive biases and pro-
vide rich spatial information and local visual patterns for the
intermediate transformer layers, we propose to distill from
the intermediate layers of the CNN to transformers in the
first stage. The objective is formulated as follows:

Lhidden =MSE(aligner(HS), HT ) (4)

where HS ∈ Rl×d and HT ∈ Rh×w×c refer to the content
tokens of student and the feature map of teacher networks
respectively. The major difficulty is that the feature maps of
the CNN and the transformer tokens are in different shapes,
and therefore it is infeasible to apply a distillation loss on
top directly. To tackle the problem of feature misalignment,
we design an aligner module to match the size of the con-
tent tokensHS to that ofHT by the stacking of reshape. As
shown in Figure 3, the aligner includes a depth-wise convo-
lution [46], LayerNorm [2] and ReLU layers. Note that, to
the best of our knowledge, this work is the first to explore
the knowledge distillation from the intermediate layers of
the CNNs to transformers.

In addition to imitating the behaviors of intermediate
CNN layers, we adopt the commonly used divergence be-
tween the teacher and student network logits in knowledge
distillation. Instead of adding an additional distillation to-

Figure 4. The average attention distance of our DearKD for
each epoch.

ken [47] which requires additional trained CNNs networks
when fine-tuning on downstream tasks, we directly pool
the content tokens following [21, 38] which contains dis-
criminative information and is consistent with the design
principles of CNNs. The objective with hard-label distilla-
tion [47] is as follow:

Llogit = LCE(logit, yt) (5)

where yt = argmax(logitT ) is the hard decision of the
teacher.

The overall loss function is as follows:

L = αLCE + (1− α)Llogit + βLhidden (6)

where LCE is the cross-entropy loss for the [CLS] token.

3.2. DearKD: Stage II

Transformers Instrinsic Inductive Biases Learning.
Considering that transformers have a larger capacity than
CNNs, we propose to encourage the transformers to learn
their own inductive biases in a second stage. This is a crit-
ical step to leverage their flexibility and strong expressive
power fully. To this end, we formulate the objective of stage
II as follows:

L = LCE(logit, y) (7)

Note that the relative position encoding in stage I is un-
changed. In this stage, the network will learn to explore
a larger reception field to form the non-local representation
automatically. We calculate the average attention distance
of each layer in DearKD for each epoch. The results are
shown in Figure 4. It can be observed that with the usage
of convolutional IBs knowledge distillation, the transformer
layers in the first stage will focuse on modeling locality.
After training our model in the second stage, the model es-
capes the locality, and thus, the intrinsic IBs of Transform-
ers can be learned automatically.

4. DF-DearKD: Training without Real Images
To fully explore the power of DearKD with respect to

data efficiency, we investigate it in the extreme setting
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Figure 5. The pipeline of our proposed DF-DearKD.

(i.e. data-free) where no real images are available. In
this section, we propose DF-DearKD, a data-free variant of
DearKD, for crafting a transformer network without access-
ing any real image. Compared to DearKD, DF-DearKD has
an extra image generation component, as illustrated in Fig-
ure 5. In the following, we first briefly review the closely
related method DeepInversion [56], and then introduce a
novel boundary-preserving intra-divergence loss to further
increase the diversity of the generated samples.

DeepInversion. Assume that we have access to a trained
convolution classifier as a teacher model. Given a randomly
initialized input x ∈ RH×W×C and the corresponding tar-
get label y, DeepInversion [56] synthesized the image by
optimizing

x = argmin
x
LCE(x, y) +R(x) + Ldiversity(x, y) (8)

where LCE(·) is the cross-entropy loss for classification.
R(·) is the image regularization term to steer x away from
unrealistic images and towards the distribution of images
presented. Ldiversity(·) is the diversity loss to avoid repeated
and redundant synthetic images. Specifically, R consists of
two terms: the prior term Rprior [36] that acts on image
priors and the BN regularization term RBN that regularizes
feature map distributions:

R(x) = Rprior(x) +RBN(x) (9)

where Rprior penalizes the total variance and l2 norm of
x, respectively. RBN matches the feature statistics, i.e.,
channel-wise mean µ(x) and variance σ2(x) of the current
batch to those cached in the BN [24] layers at all levels.

Boundary-preserving intra-divergence loss. To syn-
thesize diverse images, Adaptive DeepInversion (ADI) [56]
proposes a competition scheme to encourage the synthe-
sized images out of student’s learned knowledge and to
cause student-teacher disagreement. However, it usually
generates hard and ambiguous samples. To address the
over-clustering of the embedding space (Figure 6a and 6b),

(a) DeepInversion (b) ADI (c) Ours

Figure 6. The concept of the proposed boundary-preserving
intra-divergence loss. Given a set of samples in the latent space
(shown as dots), the boundary-preserving intra-divergence loss in
(c) pushes the easiest positive samples away from others (shown
as red arrows between the same class samples) while keeping the
activation boundaries (shown as circle) unaffected.

which is similar to the mode collapse problem [6, 45], we
propose the boundary-preserving intra-divergence loss to
keep the easiest positive samples away from others in the
latent space while the class boundaries are unaffected. Fig-
ure 6c illustrates the main idea of our proposed loss. Specif-
ically, for each anchor image xa within a batch, the easiest
positive samples [54] are the most similar images that have
the same label as the anchor images:

xep = argmin
x:C(x)=C(xa)

dist(f(xa), f(x)) (10)

where dist(f(xa), f(x)) = ‖f(xa)− f(x)‖2 measures the
euclidean distance between two samples in the latent space.
Inspired by the finding that when two latent codes are close,
the corresponding images are similar [54], we increase the
intra-class diversity by maximizing the distance between
the latent code of the easiest pair of images:

Lep(x) = −dist(f(xa), f(xep)) (11)

This loss encourages the optimizer to explore the latent
space inside the whole decision boundaries. However, this
will push some generated samples out of decision bound-
aries. We solve this by enforcing that the anchor-positive
pairs are at least closer than the anchor-negative pairs by
the margin, i.e., distap − distan>margin, which has the
same form with the triplet loss [22, 49]:

Ltriplet(x) = max(0, distap − distan + margin) (12)

where distap = ‖f(xa)− f(xhp)‖2 and distan = ‖f(xa)−
f(xhn)‖2 measure the distance between the anchor im-
ages and the corresponding hardest positive and negative
images in the latent space, respectively. And xhp =
argmaxx:C(x)=C(xa) dist(f(xa), f(x)) are the hardest pos-
itive samples which are the least similar images that
have the same label with the anchor images, xhn =
argmaxx:C(x)=C(xa) dist(f(xa), f(x)) are the hardest neg-
ative samples which are the most similar images which have
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different labels from the anchor images. Therefore, the
overall proposed intra-divergence loss is:

Lintra-div(x) = αepLep(x) + αtripletLtriplet(x) (13)

5. Experiments
In this section, we evaluate the effectiveness of our pro-

posed DearKD on ImageNet to show that our two-stage
learning framework for Transformers can boost the per-
formance of Transformers. First, we provide an ablation
study for the impact of each choice and analyze of data ef-
ficiency for transformers. Then, we compare with state-of-
the-arts and investigate its generalization ability on down-
stream tasks. Finally, we analyse the results of DF-DearKD.

5.1. Implementation Details

We based our model on the DeiT [47], which is a
hyperparameter-optimized version of ViT. Our models have
three variants named DearKD-Ti, DearKD-S, DearKD-B,
which are the same with DeiT-Ti, DeiT-S, DeiT-B, except
that we increase the heads number of our three variants to
12, 12, 16 while keeping the vector dimension unchanged
to increase the ability to represent convolution [10, 12].
Specifically, we first embed input images of size 224 into
16 × 16 non-overlapping patches. Then we propagate the
patches through 8 MHCA and 4 MHSA blocks. Since the
relative position embedding in MHCA is not suitable for
the [CLS] token, which should disregard the positions of all
other tokens, we simply pad the relative position embedding
with zero vector and add them to all tokens. During testing
or fine-tuning, we only use the [CLS] token to obtain the
probability distribution. Note that our method can be easily
extended to any vision transformer model.

Following [47], we use a pre-trained RegNetY-16GF
from timm [50] that achieves 82.9% top-1 accuracy as our
teacher model. Our models are trained from scratch using
AdamW optimizer for 300 epochs with cosine learning rate
decay. We optimize the model in the first stage with 250
epochs. The learning rate is 0.0005. When we train models
with more epochs, we append the epochs number at the end,
e.g. DearKD-Ti-1000, and train the model in the first stage
with 800 epochs. A batch size of 2048 is used. The image
size during training is set to 224×224. We use Mixup [60],
Cutmix [58], Random Erasing [64] and Random Augmenta-
tion [64] for data augmentation. Experiments are conducted
on 8 NVIDIA A100 GPUs.

5.2. Ablation Study

In this section, we ablate the important elements of our
design in the proposed DearKD. We use DeiT-Ti with atten-
tion heads changed as our baseline model in the following
ablation study. All the models are trained for 300 epochs

MHCA Lhidden distill two-stage Top1
72.3

X 72.5
X 74.3

X X 74.1
X X X 74.6
X X X X 74.8

Table 1. Ablation of different modules evaluated on ImageNet
classification. DeiT-Ti and DearKD-Ti are used. Here, ·distill’
indicates the first stage of our learning framework. The symbol
Xindicates that we use the corresponding element.

Train size DeiT-Ti DeiT-Ti DearKD-TiTop1 Gap Top1 Gap
10% 40.5 13.8% 50.3 4.0% 54.3
25% 61.1 6.0% 64.3 2.8% 67.1
50% 68.3 4.0% 71.6 0.7% 72.3

100% 72.2 2.6% 74.5 0.3% 74.8

Table 2. Comparison of data efficiency of DearKD and DeiT
on ImageNet.

on ImageNet and follow the same training setting and data
augmentation strategies as described above.

As can be seen in Table 1, using our two-stage learn-
ing framework achieves the best 74.8% Top-1 accuracy
among other settings. By adding our MHCA, our model
reaches a Top-1 of 72.5%, outperforming the original DeiT-
Ti with comparable parameters. This mild improvement is
mainly because of the introduction of the locality. Note
that our DearKD uses pooled content tokens as our dis-
tillation token and achieves comparable performance with
DeiT-Ti , which adds additional distillation tokens. Thus
our model can be applied to downstream tasks without a
pre-trained teacher model while the inductive biases are
stored in the adaptive RPE in our MHCA. Since the dif-
ferences between the feature representations of CNNs and
Transformers, adding the hidden stage distillation loss de-
creases the model performance. Thanks to our proposed
MHCA, the hidden stage distillation loss with our MHCA
together brings +2.3%, illustrating their complementarity.
Finally, after using a two-stage learning framework which
introduces the intrinsic IBs of Transformers, the perfor-
mance increases to 74.8% Top-1 accuracy, demonstrating
the effectiveness of learning Transformers intrinsic IB.

5.3. Analysis of Data Efficiency

To validate the effectiveness of the introduced inductive
biases learning framework in improving data efficiency and
training efficiency, we compare our DearKD with DeiT,
DeiT by training them using 10%, 25%, 50%, and 100%
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ImageNet training set. The results are shown in Table
2. As can be seen, DearKD consistently outperforms the
DeiT baseline and DeiT by a large margin. Impressively,
DearKD using only 50% training data achieves better per-
formance with DeiT baseline using all data. When all train-
ing data are used, DearKD significantly outperforms DeiT
baseline using all data by about an absolute 2.6% accuracy.
It is also noteworthy that as the data volume is decreased,
the gap between our DearKD and DeiT is increased, which
demonstrates that our method can facilitate the training of
vision transformers in the low data regime and make it pos-
sible to learn more efficiently with less training data.

5.4. Comparison with Full ImageNet

We compare our DearKD with both CNNs and vision
Transformers with similar model sizes in Table 3. As we
can see from Table 3 that our DearKD achieves the best per-
formance compared with other methods. Compared with
CNNs, our DearKD-Ti achieves a 74.8% Top-1 accuracy,
which is better than ResNet-18 with more parameters. The
Top-1 accuracy of the DearKD-S model is 81.5%, which is
comparable to RegNetY-8GF which has about two times of
parameters than ours. Moreover, our DearKD-S achieves a
better result than ResNet-152 with only a third of the pa-
rameters, showing the superiority of inductive biases learn-
ing procedure by design. Similar phenomena can also be
observed when comparing DearKD with EffiNet, which re-
quires a larger input size than ours.

In addition, we compare with multiple variants of vi-
sion transformers. We use the same structure with ViT and
DeiT except that we increase the head number while keep-
ing the channel dimension unchanged. Thanks to our care-
fully designed learning framework, DearKD can boost the
performance of the model with ignorable additional param-
eters and computation cost. DearKD outperforms T2T-ViT,
which adds an additional module on ViT to model local
structure. Compared with Swin Transformer, DearKD with
fewer parameters also achieves comparable or better per-
formance. For example, DearKD-S achieves better perfor-
mance with Swin-T but has 7M fewer parameters, demon-
strating the superiority of the proposed CMHSA and learn-
ing framework.

Generalization on downstream tasks. To showcase
the generalization of the proposed method, we fine-tune
the DearKD models on several fine-grained classifica-
tion benchmarks. We transfer the models initialized with
DearKD on full ImageNet to several benchmark tasks:
CIFAR-10/100 [28], Flowers [37], Cars [27], and pre-
process them follow [15,26]. The results are shown in Table
4. It can be seen that DearKD achieves SOTA performance
on most of the datasets. These results demonstrate that the
good generalization ability of our DearKD even without a

Method Params size throughput Top1
CNNs

ResNet-18 [19] 12M 2242 4458.4 69.8
ResNet-50 [19] 25M 2242 1226.1 76.2

ResNet-101 [19] 45M 2242 753.6 77.4
ResNet-152 [19] 60M 2242 526.4 78.3

RegNetY-4GF [40] 21M 2242 1156.7 80.0
RegNetY-8GF [40] 39M 2242 591.6 81.7

RegNetY-16GF [40] 84M 2242 334.7 82.9
EffiNet-B0 [46] 5M 2242 2694.3 77.1
EffiNet-B3 [46] 12M 3002 732.1 81.6
EffiNet-B4 [46] 19M 3802 349.4 82.9
EffiNet-B6 [46] 43M 5282 96.9 84.0
EffiNet-B7 [46] 66M 6002 55.1 84.3

Transformers
ViT-B/16 [15] 86M 3842 85.9 77.9
ViT-L/16 [15] 307M 3842 27.3 76.5

T2T-ViT-7 [57] 4M 2242 2638.4 71.7
T2T-ViT-14 [57] 22M 2242 1443.9 81.5
T2T-ViT-19 [57] 39M 2242 781.0 81.9

DeiT-Ti [47] 5M 2242 2536.5 72.2
DeiT-S [47] 22M 2242 940.4 79.8
DeiT-B [47] 86M 2242 292.3 81.8

DeiT-Ti [47] 6M 2242 2529.5 74.5
DeiT-S [47] 22M 2242 936.2 81.2
DeiT-B [47] 87M 2242 290.9 83.4

DeiT-Ti -1000 [47] 6M 2242 2529.5 76.6
DeiT-S -1000 [47] 22M 2242 936.2 82.6
DeiT-B -1000 [47] 87M 2242 290.9 84.2

Swin-T [32] 29M 2242 755.2 81.3
Swin-S [32] 50M 2242 436.9 83.0
Swin-B [32] 88M 2242 278.1 83.3
Swin-B [32] 88M 3842 84.7 84.2
DearKD-Ti 5M 2242 1416.7 74.8
DearKD-S 22M 2242 570.1 81.5
DearKD-B 86M 2242 253.7 83.6

DearKD-Ti-1000 5M 2242 1416.7 77.0
DearKD-S-1000 22M 2242 570.1 82.8
DearKD-B-1000 86M 2242 253.7 84.4

Table 3. Comparison of different backbones on ImageNet clas-
sification. Throughput is measured using the GitHub repository
of [50] and a V100 GPU, following [47].

teacher model when fine-tuning to downstream tasks.

5.5. Performance of DF-DearKD

Implementation details. For the training samples gen-
eration, we use multi-resolution optimization strategy fol-
lowing [56]. We first downsample the input to resolution
112 × 112 and optimize for 2k iterations. Then, we opti-
mize the input of resolution 224×224 for 2k iterations. We
use Adam optimizer and cosine learning scheduler. Learn-
ing rates for each step are 0.5 and 0.01, respectively. We
set αTV = 1e − 4, αl2 = 1e − 5, αBN = 5e − 2, αep =
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Method Cifar10 Cifar100 Flowers Cars
ViT-B/32 [15] 97.8 86.3 85.4 -
ViT-B/16 [15] 98.1 87.1 89.5 -
ViT-L/32 [15] 97.9 87.1 86.4 -
ViT-L/16 [15] 97.9 86.4 89.7 -

T2T-ViT-14 [57] 98.3 88.4 - -
EffiNet-B5 [46] 98.1 91.1 98.5 -

DeiT-B [47] 99.1 90.8 98.4 92.1
DeiT-B [47] 99.1 91.3 98.8 92.9

DearKD-Ti 97.5 85.7 95.1 89.0
DearKD-S 98.4 89.3 97.4 91.3
DearKD-B 99.2 91.1 98.8 92.7

Table 4. Generalization of DearKD and SOTA methods on dif-
ferent downstream tasks.

50, αtriplet = 0.5. We set batch size to 42 and generate 6
classes each batch randomly. Image pixels are randomly
initialized i.i.d. from Gaussian noise of µ = 0 and σ = 1.
We use RegNetY-16GF [40] from timm [50] pre-trained on
ImageNet [13]. Experiments are conducted on NVIDIA TI-
TAN X GPUs.

Performance comparison. Table 5 shows the perfor-
mance of the student model obtained with different meth-
ods. As shown in the table, our method performs signif-
icantly better than training with other data-free methods.
Although our methods achieves results lower than distil-
lation on real images with the same number, the results
are close to training from scratch with original ImageNet
dataset. For example, the student model trained with our
method gets only 1.0% decrease on DeiT-Ti compared with
training from scratch.

Furthermore, the ablation experiments can be seen on
the last three rows in Table 5. The third-to-last row de-
notes distillation with images generated from DeepInver-
sion without diverse loss achieves accuracy of only 62.7%.
When further training with the diversity loss of ADI, we
observe 7.4% accuracy improvement. And by applying the
our intra-divergence loss brings in 8.6% increase.

Diversity comparison. We demonstrate the diversity by
comparing the LPIPS [29,62] of our generated images with
other methods in Table 6. We compute the distance between
4000 pairs of images. We randomly sample 4 pairs of im-
ages for each class. The highest score compared with other
methods shows that our method can generate diverse im-
ages. Although there is still a gap between our generated
images and real images, the generated samples can be a data
source to train the high-performance model.

6. Conclusion
In this paper, we propose DearKD, an early knowledge

distillation framework, to improve the data efficiency for
training transformers. DearKD is comprised of two stages:

Teacher Network ResNet-101 ResNet-101
Teacher Accuracy 77.37% 77.37%
Student Network DeiT-Ti DeiT-S

Train from scratch
ImageNet 72.2% 79.8%

Distill on real images
ImageNet 74.6% (2.4% ↑) 81.5% (1.7% ↑)

partial ImageNet 72.2% (0.0% ↓) 79.1% (0.7% ↓)
Distill on generated samples

DeepInversion 62.7% (9.5% ↓) 66.3 (13.5% ↓)
ADI 70.1% (2.1% ↓) 73.1 (6.7% ↓)

DF-DearKD 71.2% (1.0% ↓) 74.0 (5.8% ↓)

Table 5. Knowledge distillation results from a pre-trained
ResNet-101 classifier to a ViT initialized from scratch on the
ImageNet dataset. ↑ and ↓ indicate performance increase and de-
crease, respectively.

Method LPIPS
real images 0.708

DeepInversion 0.657
ADI 0.683

DF-DearKD 0.692

Table 6. Diversity quantitative comparison. We use the LPIPS
metric to measure the diversity of generated images. Higher
LPIPS score indicates better diversity among the generated im-
ages.

in the first stage, inductive biases are distilled from the
early intermediate layers of a CNN to the transformer, while
the second stage allows the transformer to make full use
of its capacity by training without distillation. Moreover,
we enhance the performance of DearKD under the extreme
data-free case by introducing a boundary-preserving intra-
divergence loss based on DeepInversion to generate diverse
training samples. We conduct extensive experiments on Im-
ageNet, partial ImageNet, data-free setting and other down-
stream tasks, and demonstrate that DearKD achieves supe-
rior performance and surpasses state-of-the-art methods.
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Figure 7. Images generated by our method on RegNetY-16GF
model pre-trained with ImageNet.

Appendix

A. The image regularization term of DF-
DearKD

The image regularization term R(·) consists of two
terms: the prior term Rprior [36] that acts on image priors
and the BN regularization term RBN that regularizes feature
map distributions:

R(x) = Rprior(x) +RBN(x) (14)

Specifically, Rprior penalizes the total variance and l2
norm of x, respectively.

Rprior(x) = αTVRTV (x) + αl2Rl2(x) (15)

RBN matches the feature statistics, i.e., channel-wise
mean µ(x) and variance σ2(x) of the current batch to those
cached in the BN [24] layers at all levels:

RBN (x) = αBN
∑L
l=1

∥∥µl(x)− µBNl ∥∥
2
+∥∥σ2

l (x)− σ2BN
l

∥∥
2

(16)

where L is the total number of BN layers.

B. Generated samples from DF-DearKD
Figure 7 shows samples generated by our method from

an ImageNet-pretrained RegNetY-16GF model. Remark-
ably, given just the pre-trained teacher model, we observe
that our method is able to generate images with high fidelity
and resolution.

C. Analysis of the number of epochs for the
first stage of DearKD

In this section, we ablate the number of epochs for the
first stage of our DearKD. As can be seen in Table 7, train-
ing the model in the first stage with 250 epochs achieves
the best 74.8% Top-1 accuracy among other settings. It is

Epochs number 200 225 250 275 300
Accuracy 74.3 74.6 74.8 74.7 74.6

Table 7. Ablation of different epochs number of the first stage
of DearKD evaluated on ImageNet classification. DearKD-Ti is
used.

not surprising that training the model in the first stage with
less epochs will lead to worse performance. But, for mod-
els trained with 300 epochs, the inductive biases knowledge
from CNNs are not saturated. So, we use Equation (6) in
the second stage except that we set β to 0 and let α linearly
increase to 1. Besides, for models trained with 1000 epochs,
we empirically select 800 as the number of epochs for the
first stage.

D. More implement details of DF-DearKD
We filter out ambiguous images whose output logits from

a pre-trained ResNet-101 are less than 0.1 and finally syn-
thesize 600k images to train our transformer student net-
work from scratch. Then, we use the target label for invers-
ing the RegNetY-16GF as our ground truth. The RegNetY-
16GF can achieve 100% accuracy on the generated samples.
This phenomenon is the same as that in [56]. So, we use
a pre-trained ResNet-101 from pytorch [39] that achieves
77.37% top-1 accuracy on ImageNet as our teacher model,
which can provide good results as well as inductive biases
clues. We use AdamW optimizer with learning rate 0.0005
and cosine learning scheduler. The model is trained from
scratch for 1000 epochs. A batch size of 1024 is used. We
train the model in the first stage with 800 epochs. We use
Mixup [60], Cutmix [58], Random Erasing [64] and Ran-
dom Augmentation [64] for data augmentation. Experi-
ments are conducted on 4 NVIDIA TESLA V100 GPUs.

E. Limitation and Future works
Although DF-DearKD can generate high quality images,

it still has difficulty in handling human-related classes due
to the limited information stored in the feature statistics.
Moreover, we generate lots of samples which takes a lot
of time and computation costs even we do not use any real
images. There is still a gap between training with generated
samples and real images. In the future, we plan to investi-
gate more in model inversion or image generation to further
improve training data quality and diversity.

Besides, to further explore the data efficiency of training
vision transformers under different settings (i.e. full Im-
ageNet, partial ImageNet and data-free case), we plan to
distill other kinds of IBs for transformers and investigate
how to introduce transformers’ intrinsic IBs in the future
study. The data-free setting would be a particularly interest-
ing case to cope with the emerging concern of data privacy
in practice.

12


	1 . Introduction
	2 . Related work
	3 . Data-efficient Early Knowledge Distillation
	3.1 . DearKD: Stage i
	3.2 . DearKD: Stage ii

	4 . DF-DearKD: Training without Real Images
	5 . Experiments
	5.1 . Implementation Details
	5.2 . Ablation Study
	5.3 . Analysis of Data Efficiency
	5.4 . Comparison with Full ImageNet
	5.5 . Performance of DF-DearKD

	6 . Conclusion
	A . The image regularization term of DF-DearKD
	B . Generated samples from DF-DearKD
	C . Analysis of the number of epochs for the first stage of DearKD
	D . More implement details of DF-DearKD
	E . Limitation and Future works

