
Fine-tuning Image Transformers using Learnable Memory

Mark Sandler Andrey Zhmoginov Max Vladymyrov Andrew Jackson
Google Inc.

{sandler, azhmogin, mxv, jacksona}@google.com

Abstract

In this paper we propose augmenting Vision Transformer
models with learnable memory tokens. Our approach al-
lows the model to adapt to new tasks, using few parameters,
while optionally preserving its capabilities on previously
learned tasks. At each layer we introduce a set of learn-
able embedding vectors that provide contextual informa-
tion useful for specific datasets. We call these “memory to-
kens”. We show that augmenting a model with just a hand-
ful of such tokens per layer significantly improves accuracy
when compared to conventional head-only fine-tuning, and
performs only slightly below the significantly more expen-
sive full fine-tuning. We then propose an attention-masking
approach that enables extension to new downstream tasks,
with a computation reuse. In this setup in addition to being
parameters efficient, models can execute both old and new
tasks as a part of single inference at a small incremental
cost.

1. Introduction

Transformers [38], originally introduced for sequence
problems, such as NLP and speech recognition, have been
very successful in advancing state-of-the-art for vision
tasks. “Vision transformers” most commonly have been
trained on large amounts of data, either in supervised [21]
or self-supervised [7] modes. The resulting model is then
“fine-tuned” on a downstream task, either in whole or in
part. This fine-tuning has been shown to help achieve high
performance on a variety of downstream tasks, from classi-
cal tasks like image super-resolution [6] and object detec-
tion [3] to novel ones, such as Ising model simulations [19].
It has been observed that in order to reach the highest ac-
curacy it is best to fine-tune the entire model on the target
task [7,21]. However, this is often problematic, since Trans-
former models can have hundreds of millions or billions of
parameters, making maintaining, transmitting and storing a
full size model for each new task an expensive proposition.
Additionally, full fine-tuning is often sensitive to the choice

Modified Transformer Encoder With Memory

Norm

Attention

Norm

MLP Head

K-class
 bird
 ball
 car…

1 2 3 4 5 6 87 9

Patches with added position encoding

0 *

Linear projection of patches

MLP MLP

Norm

Attention

Norm

Input Memory

MLP

Norm

Attention

Norm

Input Memory

MLP

Norm

Attention

Norm

Input Memory

“*” denotes extra learnable class token.
“+” indicates residual connection
T(*) denotes the output corresponding to class token

Input Memory

T(*)

Figure 1. Structure of an encoder with learned memory. The input
to each encoder layer is augmented with learned memory, which
is used as an optional source of attention by the embeddings that
propagate from previous layers. Memory tokens do not attend to
other tokens. For detailed design of individual layer see Fig. 2.

of the learning rate [30]. In this paper we propose a method
where we augment a pre-trained model with learnable to-
kens that are appended at each layer of the transformer
block. These extra tokens can be intuitively thought of as
a permanent memory that are used as a contextual reference
to improve the final prediction. Another point of analogy is
that these tokens can represent concepts at varying levels of
abstractions: starting from tokens that run alongside pixel-
based patches, and all the way to the tokens representing
final concepts.

Our approach allows significant improvements to down-
stream task accuracy compared to head-only fine-tuning.
Further, we believe that our particular architecture design
is of independent interest as it provides a novel way of ex-
tending a trained model to perform new tasks while retain-

1

Standard Encoder Layer

MLP

Norm

Multi-Head
Attention

Norm

Input

MLP

Norm

Multi-Head
Attention

Norm

Input (zl)

Input Learned
Memory

Encoder Layer With Memory

Attended embeddings
(input only)

Alternative ways of introducing memory

MLP

Norm

Multi-Head
Attention

Norm

Input

Input

Learned
Memory

Propagated
memory w/

learned
additive update

Attended embeddings
(all tokens)

MLP

Norm

Multi-Head
Attention

Norm

Input

Input

Attended embeddings
(all tokens)

Memory
(previous layer)

Memory

Memory

(previous layer)

Memory

Output (yl)Output
Output Updated

memory Output Updated
memory

Propagated
memory

Figure 2. Detailed design of encoder layer with memory. The designs on the right are the alternative options that we explore in Sec. 4.
The rightmost one is similar to the MemTransformer design in [5]. Here we use rounded boxes to indicate functions and square boxes to
indicate input/output to highlight data propagation.

ing the ability of performing old tasks with only incremen-
tal compute cost. This is important in many applications, as
the training data for different task often not available at the
same time. Naively, by adding more memory one can eas-
ily extend a model to new tasks, however, if we try to run
such model on an old task we would commonly observe
20%-40% percentage drop in accuracy. We show that with
proper attention masking, additional cells can be introduced
in a way that doesn’t degrade the accuracy of the previous
tasks in the presence of new memories,which is crucial for
applications in life-long and continual learning. We show
that the models can be both extended, where new function-
ality is added on top of existing ones, as well as concate-
nated, where the two (or more) independently trained mod-
els can be combined into a single network performing all
tasks, with only incremental cost per task.

The paper is organized as follows. In Sec. 2 we de-
scribe the method of our memory model. Then in Sec. 2.2
we introduce our attention masking technique that inde-
pendent sequential task training, without accuracy degra-
dation. Then in Sec. 3 we provide an overview of related
approaches to memory and fine-tuning approaches. Sec. 4
contains our experiments and ablation studies. The last
Sec. 5 draws some early conclusions and identifies future
areas of interest.

2. Memory model

To introduce memory, we build upon the Vision Trans-
former (ViT) encoder model [21], where an image x ∈
Rh×w×c is split into a grid of N patches, each of size
P ×P × c, which are flattened and fed through the multiple

layers of the transformer encoder. For this paper, we only
consider classification models, and do not use a decoder.
Following [21] we use learnable 1D position embeddings
that are added to the input of the first layer. The input to the
standard image transformer is defined as:

zvit0 := [xcls, Ex1, . . . , ExN] + Epos

where E is a learnable linear transformation into the en-
coder embedding space and Epos is a position embedding.
Here xcls is a special learnable token that is shared for
all inputs and the corresponding output value is used as an
embedding for the final classification as shown in Fig. 1.
x1 . . . xN are flattened image patches. The basic structure
of the encoder layer is shown in Fig. 2. We refer to [21] for
the detailed definition of each component.

Now, to add memory, we concatenate m learnable em-
beddings Emem ∈ Rm×D, where D is the dimensionality
of the input tokens, as an input to the layer:

zmem
0 := [zvit0 ;E0

mem]

Thus our transformer receives N + 1 + m tokens in total
as an input. This input is then passed through a sequence
of encoder-layers as in [21, 38]. The architecture of the in-
dividual layers exactly matches that of ViT, with a notable
exception that we do not propagate updated memory: that
is, the output of the self attention module is truncated to the
first N + 1 tokens. Thus the output of the layer l, which
we denote as yl, has only N + 1 tokens. See the left part
of Fig. 2 for a comparison between a standard layer block
and our augmented version.

2

Q
K

INP CLS C1 C2

. . .

Ck M1 M2

. . .

Mk

INP ✓ ✓ - - - - - -
CLS ✓ ✓ - - - - - -
C1 ✓ ✓ ✓ - - ✓ - -
C2 ✓ ✓ ★ ✓ - ★ ✓ -

.
Ck ✓ ✓ ★ ★ ✓ ★ ★ ✓

Table 1. Attention mask for model extension and concatenation.
Here ✓ indicates that corresponding token type Q (query) at-
tends to token type K (key), - that it does not attend, and ★

indicates that attention is used for model extension, but not for
concatenation. For brevity, we denoted CLS-K as Ck and MEM-K

as Mk and omitted memory rows since they do not attend to other
tokens. See Sec. 2.2 for details.

All consequent layers receive input that follows the same
pattern:

zmem
l = [yl−1;E

l
mem]

where yl−1 is the truncated output of the previous layer.
In our experiments we explored several different vari-

ants of memory models, including ones where memory it-
self actively attends and propagates to the next layer, how-
ever we found that such modifications generally hurt per-
formance. We report some of those results in the ablation
study in Sec. 4.3.

2.1. Fine-tuning with full attention

The main use of memory that we explore in this paper,
is applying it to fine-tuning existing models. To do this we
introduce randomly-initialized memory tokens as described
above and perform gradient descent to learn the memory to-
ken, the classifier head, and the class token xcls. While this
method gives excellent results, the resulting model can no
longer be used to solve its original task, due to change in
hidden activations. In the next section we introduce Atten-
tion Masking that allows to lift this constraint.

2.2. Attention masking for computation reuse

After fine-tuning the class token of a transformer model
on a new dataset, or adding memory, the network perfor-
mance on the original task generally degrades. This might
not be a problem if we are only interested in solving the
new task. However it is often desirable to be able to execute
both original and new tasks as part of the same inference,
with only incremental cost per each new task. A common
way to approach this is via multi-task learning where all
datasets are present at training time and we learn a univer-
sal model with a shared backbone and per-task head solves
all tasks. However, it is not always possible, as in prac-
tice data is often owned by different entities, and can not be
learned within the same environment or at the same time.
In this section we describe an extension of our model where

0 *

Norm

Attention

Norm

MLP

Input Mem1 Mem2 Mem3

0 %

Head1

T(*)

0 #

✖L

Head2 Head3

T(%) T(#)

Concatenated model

Patches

Individual models

0 *

Head1T(*)

Inp Mem1

✖L

Patches

0 %

Head2T(%)

Inp

✖L

Patches

0 #

Head3T(#)

Inp

✖L

Patches

Mem2

Mem3

Figure 3. Concatenating multiple models together. The class to-
kens are concatenated at the input level, while individual models’
memory are concatenated at each layer.

we introduce memory a new dataset class token xnew
cls and

a per-task head in such a way that the model output for the
original dataset token xcls is preserved, i.e., identical to the
output obtained for this dataset token in the original model.
As a result, we can solve multiple tasks for the same input,
effectively reusing both parameters and computation. We
achieve this by using an attention mask that prevents the
original xcls and input patches from attending to the mem-
ory tokens and xnew

cls that we introduce for the new dataset.
A head for each task is attached to the corresponding dataset
token. (see Tab. 1).

Model concatenation vs. model extension. Attention
masking can be used to extend memory as more and more
tasks are added. For model extension each new dataset
Dk is trained by fine-tuning its individual memory and the
dataset class token x

(k)
cls and the attention is constrained to

explicitly prevent older datasets from attending to tokens
added by following tasks (see Tab. 1). Alternatively, if we
have two independently trained subtasks1, we can concate-
nate these models into one as shown in Fig. 3. In this case
the attention mask for the class token x

(k)
cls in the concate-

nated model will be chosen to only attend to xcls and input
patches, and not to other task tokens or memory, thus allow-
ing us to concatenate memory and tokens for models trained
independently. Interestingly, as we discuss in Sec. 4.4 we
did not see much improvement when extending a model,
despite it theoretically being more powerful, as opposed to
concatenating them. However we believe this remains an
interesting direction to explore in future work.

1trained with attention masking preventing xcls and input patches
from attending to xnew

cls

3

3. Related work
Transformers have been the subject of extensive research

in the last few years, first in the NLP community [38]. Vi-
sion transformers were first introduced in [21, 35], where
they achieved impressive results on a series of complex clas-
sification tasks. We refer to [20, 27] for an in-depth survey
of recent literature.

There have been a few attempts to couple a learning net-
work with an external immutable memory via a learned dif-
ferentiable module for encoding and retrieval of the infor-
mation [13,33,41]. Subsequent work focused on represent-
ing memory using a more explicit data structure, such as
stacks [18]. More recently, in the context of transformers
for language modeling, several papers [10, 12, 14, 25, 39]
propose to augment a model with access to fixed knowledge
base.

On the other hand, internal episodic memory in deep
neural networks has been subject of active research since
early on, often in the context of recurrent networks. Hop-
field networks [16] were one of the first attempts to store in-
formation within the layers of a neural network. In a recent
years, there has been proposed a series of improvements to
the energy function of such networks to increase its capac-
ity [24], help protect against adversarial attacks [23] or as a
replacement for attention in transformer networks [32].

More generally, different variations of internal recur-
rent memory networks are actively used in many sequen-
tial models, such as in GRU [9] or LSTM [15] architec-
tures. For LSTM, the recurrent cells could be “enabled”
to preserve or forget a cumulative state as a document
was scanned sequentially. Transformers represent a detour
where instead of keeping the intermediate state as sequen-
tial data is scanned, they introduce a global attention mech-
anism that enables individual tokens to do random access to
the full window of data. As a result, the memory is limited
to the size of the window of data, which scales quadrati-
cally with respect to the attention window. Several papers
attempted to reduce this cost by either introducing spar-
sity [8], low-rank approximations [40] or splitting the atten-
tion matrix into hierarchical modules connected locally [4].
In a similar vein, BigBird [45] and ETC [1] models intro-
duce special global tokens that are not part of the input and
serve as connector tokens for locally connected segments.
More recent work expanded on the use of memory to pre-
serve connections in long sequences to avoid the high com-
putational cost of the full attention matrix [2,42]. The main
difference from our paper is that the memory considered in
earlier works was episodic – it was preserved only for the
duration of the sequence. In the present work the memory
is learned as part of the training process and it does not rep-
resent information about any individual samples, but rather
is a collective summary representing the entire dataset.

The closest approach to our work is a recent paper by

Burtsev et al. [5] and that considered a special case of mem-
ory where individual memory tokens were added at the first
layer alongside the data and were treated as regular inputs
and propagated using the same multi-head attention. A sim-
ilar line of inquiry was also considered in Li et al. [26],
where they considered single task-specific token. All these
work was applied to NLP tasks. In contrast, we learn mem-
ory that is passed alongside inputs, as a source of atten-
tion, at every layer but it does not itself attend to any to-
kens, nor does it propagate to deeper layers. We show that
this improves the performance when compared to only us-
ing learned tokens at the input-level layer. Another line of
inquiry that uses a similar approach is a recent work on data-
efficient transformer training by Touvron et al. [35]. There,
authors train an additional class token for distillation pur-
poses only. Using a dedicated token for a new task can be
seen as a special memory based approach. This was further
refined in the follow-up work by the same authors in [36],
where they moved the class token into later layers of the
architecture. The class token is then used as a read-out to-
ken. This can be seen as a hybrid of propagated-memory
and finetuning the class token approach.

An alternative way of viewing the present work can be
seen as modifying the individual layers during fine-tuning
to redirect their attention in novel ways. Such approaches
were explored in [17, 29, 31]. There, a set of special lay-
ers called adapters are introduced for each of the fine-tuned
tasks. During fine-tuning, only those layers and/or normal-
ization parameters [30, 44] are updated. Such approaches
are more complex because they introduce additional struc-
tures and in contrast with our approach, they do not allow
non-destructive fine-tuning.

4. Experiments

4.1. Datasets and training setup

For all our experiments, with the exception of Tab. 3 we
use the ViT-B/32 base transformer model from [21]. We use
the pre-trained model released in [21], which was trained on
Imagenet-21K [11]. This model has about 80M parameters.
We use a cosine learning rate schedule [28] and followed
the setup of fine-tuning in [21], to generate our baselines.
We used batch size 512, and all fine-tuning runs were run
for 20000 steps. We note that shorter runs generally reached
slightly worse results but preserved the relative relationship
between different fine-tuning setups. We used SGD with
Momentum with gradient clipping, though we did not see
much benefit with or without it. We used a 5-step linear
rate warmup.

Following the standard practice we used standard in-
ception preprocessing [34] for all datasets except CIFAR-
100, where we used random clipping. For the latter we
only used random flips. The memory was initialized using

4

0.003 0.010 0.030 0.100 0.300 1.000 3.000
50

52

54

56

A
cc

ur
ac

y,
 %

Places-365

0.003 0.010 0.030 0.100 0.300 1.000 3.000

85.0

87.5

90.0

92.5
Cifar-100

0.003 0.010 0.030 0.100 0.300 1.000 3.000
Learning rate

45

50

55

A
cc

ur
ac

y,
 %

iNaturalist

0.003 0.010 0.030 0.100 0.300 1.000 3.000
Learning rate

74

75

76

77

Sun-297

1 memory token
5 memory tokens
10 memory tokens
20 memory tokens
Full
Class + head
Head only

Accuracy as a function of learning rate for different datasets

Figure 4. Performance of memory-augmented transformers for different datasets and comparison with baseline fine-tuning methods.

Full Head Only Head + Class 1 cells 5 cells 10 cells 20 cells
Sun-297 76.9 75.9 76.4 77.0 76.8 76.9 76.9

iNaturalist 54.0 46.3 48.7 49.4 50.1 50.0 50.0
Cifar-100 91.8 85.8 88.6 90.9 91.0 91.1 90.9

Places-365 55.9 50.9 52.4 53.3 53.8 53.9 54.1

Table 2. Accuracy for different datasets using the optimal learning rate for each fine-tuning regime.

Full Head Head + CLS 5 cells
ViT-B/32 55.9 50.9 52.4 53.8
ViT-B/16 58.0 52.3 53.8 55.4
ViT-L/32 56.6 52.4 49.7 54.8

Table 3. Accuracy for Places-365 dataset using optimal learning
rate for different ViT architectures.

Accuracy Params (ViT-B/16)
Memory 50.1 768 * 12 * m ≈ 46K
Adapters [17] 49.9 3078 * 5 * 4 * m ≈ 737K
Combined 50.3 46K + 737K ≈ 783K

Table 4. Performance for i-Naturalist for adapters [17] with bottle-
neck of size 5, vs learnable memory with 5 cells. (ours). Parameter
counts exclude the size of the head which is the same for all meth-
ods

N (0, 0.02), following the initialization of other variables in
Vision Transformers in [21]. We evaluate the performance
of our approach on the following datasets CIFAR-100 [22],
i-Naturalist [37], Places-365 [46] and SUN-397 [43]. In
all cases we used 95% of the training split for training, the
remaining 5% as a dataset for early stopping and hyper-
parameter selection, and we used the validation split to re-
port final accuracy.

4.1.1 Baseline fine-tuning experiments

We compare our methods with the following fine-tuning
modes.

Full fine-tuning the entire model is fine-tuned. This is
the most expensive and thus often the least practical regime
if multiple downstream tasks are present, because each task
requires a full model. It is also prone to overfitting and is
sensitive to the learning rate. For example, we found that
often the optimal learning rate for other regimes resulted in
full fine-tuning producing dramatically sub-optimal results,
as can be seen in Fig. 4

Head-only fine-tuning as might be expected, only tunes
the head of the classifier. This approach essentially fully
reuses the embedding learned by a pretrained model. One
important advantage of this mode is that it allows reuse of
both the parameters and the compute, because the compu-
tation of embeddings is shared across tasks.

Head + Class token where we fine-tune the head and
the class token. Note that this regime, while using only
marginally more parameters, does not allow any significant
computation reuse, since an input tokens attention (and em-
bedding) will change as they attend to a new class-token.
We note that this method can be seen as a precursor to mem-
ory training, since tuning the class token allows us to learn
a representation of a dataset.

5

Full Head only Class Mem (5)
Params 80M 768× k 768 768× 12× 5
Flops ≈1G 0 0 ≈ 25M

Table 5. Incremental cost on number of parameters and FLOPS for
ViT-32-B for each fine-tuning regime. Class and head fine-tuning
do not incur any extra computation cost as the architecture stays
unchanged. Here k denotes number of classes, and we assume 5
memory tokens per layer.

4.1.2 Memory fine-tuning

Our main experiments use the following two regimes.

Memory + head + class token We refer to this as “mem-
ory” fine-tuning. This is our method. We conduct experi-
ments on architectures containing 1, 2, 5, 10 and 20 cells.
We did not see improvement when using more than 20 cells
per layer. In fact most of the benefit is realized (see Tab. 2),
when we use 5 cells for all our datasets, thus we conjecture
that using 5 cells provides good universal size that can be
used without any additional hyper-parameter search.

In Fig. 4 we show performance of learned memory vs
other fine-tuning methods for different learning rate. As can
be seen, especially fine-tuning performs best as much lower
learning rates. Thus in all our experiments we used the best
learning rate for each regime.

Memory with attention mask This is the regime which
combines the benefit from head-only fine-tuning of allow-
ing computation reuse, while achieving accuracy above
Head + Class token, and slightly below the full-attention
fine-tuning. The advantage of this regime is that models
can be independently fine-tuned on multiple tasks, and com-
bined in a single model that reuses most of the compute.

The number of variables used by our different ap-
proaches is shown in Tab. 5.

The rest of the section is organized as split into three
parts. In Sec. 4.2 we discuss our results on standard transfer
learning tasks, and in Sec. 4.4 we discuss the results on
attention-masking based fine-tuning.

4.2. Performance of memory for transfer learning

In Fig. 4 we show our results for fine-tuning with mem-
ory versus the baseline regimes as a function of learning
rate. Remarkably, full fine-tuning is much more sensitive
to the learning rate. The performance dropped dramati-
cally for a large learning rate, while memory and head-only
fine-tuning achieve better performance with higher learning
rates. As can be seen from the same figure, models with
memory outperform all other fine-tuning regimes.

In Tab. 2 we show the comparison where we picked the
best learning rate for each fine-tuning regime and for dif-
ferent numbers of memory tokens. As can be seen, for

most datasets the highest performance is achieved when the
number of memory tokens is between 5 and 20. We hy-
pothesize that such a small difference is caused by the in-
creased potential for over-fitting as more memory is intro-
duced. In the supplemental materials we show that training
accuracy increases steadily as the number of memory tokens
increases. For Cifar-100 and Sun-297, the performance of
memory-fine-tuning nearly reaches the performance of full
fine-tuning, while using ¡1/100 of the number of variables.

4.3. Ablation Study

We now turn our attention to exploring which compo-
nents of our approach are important, as well as showing
some alternative approaches. First of all, we consider in-
troducing memory at the first layer only and propagating
through the entire transformer as shown in Fig. 2. This can
be as seen as introducing additional class tokens as a source
of attention for other tokens in the inputs. This approach
is similar to that introduced in [5] for NLP tasks. While
we see small improvement, as seen in Fig. 6, it is mini-
mal compared to improvements from using full memory. A
variant of this approach that can be seen as hybrid of prop-
agating and learned memory, is when the memory is both
propagated and then learned memory is added. This method
worked better, but overall it appeared that using learnable
memory works best without propagation.

Another question we consider is which layers are impor-
tant for memory introduction. For that we introduce k layers
of memory starting from the earliest layers (close to input),
and compare it against memory introduced at deepest lay-
ers. As can be seen in Fig. 5 the performance gain is mostly
gradual. It appears that adding memory to the initial layers
has less performance benefit than adding them to the last
4 layers, but it appears that all layers benefit from adding
memory.

4.4. Attention masking

In this section we study attention masking for model
fine-tuning as discussed in Sec. 2.2. First we verify that
performance degrades if we simply concatenate memory
and class tokens fine-tuned independently without attention
masking. We start by independently fine-tuning 4 sepa-
rate models with dataset-specific class tokens and memory
on SUN-397, Places-365, i-Naturalist and CIFAR-100. All
four models are fine-tuned from the same pre-trained ViT-
B/32 model. Starting with a model trained on i-Naturalist,
we then progressively add class tokens and memory from
models trained on Places-365, CIFAR-100 and SUN-397 in
that order. As a result, the original i-Naturalist accuracy
evaluated using a corresponding class token degrades from
50.0 to 28.1 (after adding Places-365), 27.8 (after adding
CIFAR-100) and finally to 17.3 (after adding SUN-397). In
other words, naive concatenation of class tokens and mem-

6

0.1 0.3 1.0 3.0
Learning rate

50

52

54

A
cc

ur
ac

y

Initial layers have memory

0.1 0.3 1.0 3.0
Learning rate

50

52

54

Deepest layers have memory

0 layers 4 layers 8 layers 12 layers

0 2 4 6 8 10 12
Number of layers (k) with memory

50

52

54

Impact of introducing memory.

k initial k deepest

Performance when different layers have memory

Figure 5. Introducing memory in different layers. All results are for Places-365 dataset. The left chart shows the impact of serially
introducing memory in the first 0, 4, 8 and 12 layers, respectively the left chart shows the effect of introducing memory in the deepest
layers first. The right-most chart shows performance for best optimal learning rate for each count k.

Fine-tuning Comp. Reuse CIFAR-100 Places-365 SUN-397 i-Naturalist
Class, no memory N 88.6 52.4 76.4 48.7
Class, 10 memory tokens, full attention N 91.1 53.9 76.9 50.0
Head-only, no memory Y 85.8 50.9 75.9 46.3
Class, masking, no memory Y 87.2 52.5 75.8 49.0
Class, 10 memory tokens, masking Y 88.7 53.3 76.4 49.5

Full attention, 4 models combined - 71.5 47.6 67.8 17.3

Table 6. Test accuracies of models fine-tuned from a pre-trained ViT-B/32 model on different datasets. All models included an additional
separate class token. We consider models trained with full attention and models trained with attention-masking. The models with masking
can be combined with each other without any accuracy degradation, while also retaining ability to perform original Imagenet-21K predic-
tions as part fo the same computation. To demonstrate interference of models trained without attention masking, in a separate experiment
(last row), we concatenated all models fine-tuned with full attention and memory, and then evaluated different dataset heads.

0.1 0.3 1.0 3.0
Learning rate

50

51

52

53

54

A
cc

ur
ac

y

Exploring memory propagation

Propagated 1st

Propagated/added
Full memory
No memory

Figure 6. Performance of different memory architectures. All re-
sults are for Places-365 dataset.“Full memory”” is our approach
with learnable memory at each layer . “Propagated 1st” propagates
memory introduced at the first layer, as described in [5]. “Propa-
gated/added” propagates memory from previous layer and adds
new at each layer. See Fig. 2 and Sec. 4.3 for more detail.

ory pre-trained without attention masking, results in de-
structive interference between the elements of the sequence,
hurting the performance of individual model heads.

Alternatively, we could instead fine-tune individual mod-
els with attention masking and concatenate the individual

0.03 0.10 0.30 1.00 3.00 10.00

86

88

90

A
cc

ur
ac

y

Cifar-100

0.03 0.10 0.30 1.00 3.00 10.00
50

52

54

Places-365

0.03 0.10 0.30 1.00 3.00 10.00
Learning rate

46

48

50

A
cc

ur
ac

y

iNaturalist

0.03 0.10 0.30 1.00 3.00 10.00
Learning rate

74

75

76

77
Sun-397

Full attention,
memory
Attention mask
memory
Attention mask
no memory
Full attention
no memory

Impact of Attention masks on memory and class tokens

Figure 7. Performance of fine-tuning with attention mask. The top
line (■) shows the baseline with full attention. The second (◀)
shows attention-mask with memory. The last two are class+head
fine-tune with full attention (▼) and with attention mask (×).

class tokens and memory tokens with a mask that would
prevent them from interfering with each other (see Sec. 2.2),
retaining the original accuracy of individual models. Fig-

7

ure 6 shows test accuracy for models fine-tuned on different
datasets with attention masking. Our results, summarized
in Tab. 6, show attention mask produces models that are
less accurate compared to their full-attention counterparts,
but there is still an advantage of using additional memory
tokens compared to models without them and this approach
to training allows us to assemble multiple models into a sin-
gle model sharing most of the necessary computation while
still retaining Imagenet-21K head predictions.

Finally, we conducted experiments where we extended
the original ViT-B/32 model by adding dataset-specific
class tokens and memory for each new consecutive dataset.
In this setup, as discussed in Sec. 2.2, the attention mask
restricted old class tokens and memory from attending to
tokens added later for new datasets, but new tokens could
attend to all existing tokens. As in all our experiments,
we started with ViT-B/32 model and fine-tuned it on two
datasets in one of two ways, either: (a) fine-tuned it first
on SUN-397 and then on Places-365, or (b) fine-tuned in
on Places-365 and then on SUN-397. We did not see any
improvement from the case when SUN-397 and Places-365
were trained independently and concatenated post-training.
We hypothesize that in order to see advantage in model ex-
tension, the intermediate datasets need to provide a signifi-
cant amount of relevant samples compared to both the pre-
training dataset and the new final dataset.

5. Conclusions, Limitations and Future work
We proposed a novel method of incorporating memory

into transformer models. Our results show that memory im-
proves the performance of a fine-tuned model significantly
and allows training models for multi-task scenarios with-
out compromising on performance. The memory tokens are
shown to be an important part of the attention model. We
believe they could be a critical ingredient for lifetime and
continuous learning. There are several directions that are
subject to future exploration. There are some limitations in
our work that will be a subject of future work.

Scaling memory. We observed that as the number of
memory tokens increases, there appears to be little benefit
from using more than 10 tokens. One potential direction
is to explore limiting the attention to the Top-K memory
tokens. This would reduce the amount of background noise
from irrelevant tokens.

Combining episodic memory with learnable memory.
Episodic memory provides a way to memorize very long
sequences, without remembering everything. This type of
memory is typically used during inference and not learned
directly. Unifying permanent and episodic memory within
the same framework is an interesting extension.

Incremental Model extension. We showed that multi-
ple attention masking models can be trained independently

and concatenated into one model with efficient computation
reuse while outperforming the baseline. However, showing
that models trained sequentially can benefit from intermedi-
ate memory accumulation is important for curriculum learn-
ing and is a subject of future work.

Novel domains and architectures An important next
step is to introduce memory into other transformer models,
and to apply our method to different domains, such as NLP.

References
[1] Joshua Ainslie, Santiago Ontañón, Chris Alberti, Philip

Pham, Anirudh Ravula, and Sumit Sanghai. ETC: encod-
ing long and structured data in transformers. arXiv e-prints,
pages arXiv–2004, 2020. 4

[2] Anonymous. Memorizing transformers. Under review for
ICLR, 2021. 4

[3] Josh Beal, Eric Kim, Eric Tzeng, Dong Huk Park, Andrew
Zhai, and Dmitry Kislyuk. Toward transformer-based object
detection. arXiv preprint arXiv:2012.09958, 2020. 1

[4] Iz Beltagy, Matthew E Peters, and Arman Cohan. Long-
former: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020. 4

[5] Mikhail S. Burtsev and Grigory V. Sapunov. Memory trans-
former. CoRR, abs/2006.11527, 2020. 2, 4, 6, 7

[6] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping
Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu, and
Wen Gao. Pre-trained image processing transformer. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12299–12310, 2021. 1

[7] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Hee-
woo Jun, David Luan, and Ilya Sutskever. Generative pre-
training from pixels. In International Conference on Ma-
chine Learning, pages 1691–1703. PMLR, 2020. 1

[8] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever.
Generating long sequences with sparse transformers. arXiv
preprint arXiv:1904.10509, 2019. 4

[9] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using rnn
encoder-decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078, 2014. 4

[10] Michiel de Jong, Yury Zemlyanskiy, Nicholas FitzGerald,
Fei Sha, and William Cohen. Mention memory: incorporat-
ing textual knowledge into transformers through entity men-
tion attention. arXiv preprint arXiv:2110.06176, 2021. 4

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, pages 248–255, 2009. 4

[12] Thibault Févry, Livio Baldini Soares, Nicholas FitzGer-
ald, Eunsol Choi, and Tom Kwiatkowski. Entities as ex-
perts: Sparse memory access with entity supervision. arXiv
preprint arXiv:2004.07202, 2020. 4

[13] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing
machines. arXiv preprint arXiv:1410.5401, 2014. 4

8

[14] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and
Mingwei Chang. Retrieval augmented language model pre-
training. In International Conference on Machine Learning,
pages 3929–3938. PMLR, 2020. 4

[15] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural Computation, 9(8):1735–1780, 1997. 4

[16] John J Hopfield. Neural networks and physical systems with
emergent collective computational abilities. Proceedings of
the national academy of sciences, 79(8):2554–2558, 1982. 4

[17] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. Parameter-efficient transfer
learning for NLP. In International Conference on Machine
Learning, pages 2790–2799. PMLR, 2019. 4, 5

[18] Armand Joulin and Tomas Mikolov. Inferring algorithmic
patterns with stack-augmented recurrent nets. Advances in
neural information processing systems, 28:190–198, 2015. 4

[19] Onur Kara, Arijit Sehanobish, and Hector H Corzo. Fine-
tuning vision transformers for the prediction of state vari-
ables in ising models. arXiv preprint arXiv:2109.13925,
2021. 1

[20] Salman H. Khan, Muzammal Naseer, Munawar Hayat,
Syed Waqas Zamir, Fahad Shahbaz Khan, and Mubarak
Shah. Transformers in vision: A survey. CoRR,
abs/2101.01169, 2021. 4

[21] Alexander Kolesnikov, Alexey Dosovitskiy, Dirk Weis-
senborn, Georg Heigold, Jakob Uszkoreit, Lucas Beyer,
Matthias Minderer, Mostafa Dehghani, Neil Houlsby, Syl-
vain Gelly, Thomas Unterthiner, and Xiaohua Zhai. An im-
age is worth 16x16 words: Transformers for image recogni-
tion at scale. In ICLR, 2021. 1, 2, 4, 5

[22] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. Technical report, Uni-
versity of Toronto, 2009. 5

[23] Dmitry Krotov and John Hopfield. Dense associative mem-
ory is robust to adversarial inputs. Neural computation,
30(12):3151–3167, 2018. 4

[24] Dmitry Krotov and John J Hopfield. Dense associative mem-
ory for pattern recognition. Advances in neural information
processing systems, 29:1172–1180, 2016. 4

[25] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich
Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al.
Retrieval-augmented generation for knowledge-intensive
NLP tasks. arXiv preprint arXiv:2005.11401, 2020. 4

[26] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing
continuous prompts for generation. CoRR, abs/2101.00190,
2021. 4

[27] Yang Liu, Yao Zhang, Yixin Wang, Feng Hou, Jin Yuan,
Jiang Tian, Yang Zhang, Zhongchao Shi, Jianping Fan, and
Zhiqiang He. A survey of visual transformers, 2021. 4

[28] Ilya Loshchilov and Frank Hutter. Sgdr: Stochas-
tic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016. 4

[29] Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa De-
hghani, and James Henderson. Parameter-efficient multi-task
fine-tuning for transformers via shared hypernetworks. arXiv
preprint arXiv:2106.04489, 2021. 4

[30] Pramod Kaushik Mudrakarta, Mark Sandler, Andrey Zh-
moginov, and Andrew Howard. K for the price of 1. parame-
ter efficient multi-task and transfer learning. In International
Conference on Learning Representations, 2019. 1, 4

[31] Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya Ka-
math, Ivan Vulić, Sebastian Ruder, Kyunghyun Cho, and
Iryna Gurevych. AdapterHub: A framework for adapting
transformers. arXiv preprint arXiv:2007.07779, 2020. 4

[32] Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner,
Philipp Seidl, Michael Widrich, Thomas Adler, Lukas
Gruber, Markus Holzleitner, Milena Pavlović, Geir Kjetil
Sandve, et al. Hopfield networks is all you need. arXiv
preprint arXiv:2008.02217, 2020. 4

[33] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan
Wierstra, and Timothy Lillicrap. Meta-learning with
memory-augmented neural networks. In International con-
ference on machine learning, pages 1842–1850. PMLR,
2016. 4

[34] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1–9, 2015.
4

[35] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In International Conference on Machine Learning,
pages 10347–10357. PMLR, 2021. 4

[36] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles,
Gabriel Synnaeve, and Hervé Jégou. Going deeper with im-
age transformers. arXiv preprint arXiv:2103.17239, 2021.
4

[37] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui,
Chen Sun, Alex Shepard, Hartwig Adam, Pietro Perona, and
Serge Belongie. The inaturalist species classification and de-
tection dataset. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2018. 5

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Il-
lia Polosukhin. Attention is all you need. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 30. Curran Associates,
Inc., 2017. 1, 2, 4

[39] Pat Verga, Haitian Sun, Livio Baldini Soares, and William W
Cohen. Facts as experts: Adaptable and interpretable
neural memory over symbolic knowledge. arXiv preprint
arXiv:2007.00849, 2020. 4

[40] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and
Hao Ma. Linformer: Self-attention with linear complexity.
arXiv preprint arXiv:2006.04768, 2020. 4

[41] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory
networks. arXiv preprint arXiv:1410.3916, 2014. 4

[42] Qingyang Wu, Zhenzhong Lan, Jing Gu, and Zhou Yu.
Memformer: The memory-augmented transformer, 2020. 4

9

[43] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba.
Sun database: Large-scale scene recognition from abbey to
zoo. In CVPR, pages 3485–3492, June 2010. 5

[44] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and
Thomas Huang. Slimmable neural networks. arXiv preprint
arXiv:1812.08928, 2018. 4

[45] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey,
Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip
Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big
bird: Transformers for longer sequences. In NeurIPS, 2020.
4

[46] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva,
and Antonio Torralba. Places: A 10 million image database
for scene recognition. IEEE transactions on pattern analysis
and machine intelligence, 2017. 5

A. Dependence of training accuracy on num-
ber of memory tokens

As we discussed in the experiments sections, the test
data performance as a function of number of memory to-
kens appear not to improve much. We hypothesize that the
reason for that might be the growing generalization gap.
Specifically on Fig. 8 we show the training performance of
memory-augmented transformers. As can be clearly seen,
there the performance improves monotonically as the num-
ber of memory token grow.

B. Exploring memory attention
In this section we explore how the attention to memory

changes as training progresses. In Fig. 9 we show how the
attention changes over training trajectory. Specifically, we
measure the fraction of input samples in the validation sub-
set, that have at least one input token, have cumulative atten-
tion to memory of at least 0.5 at different layers. We used
the first 3 heads and measured the attention at 4 different
layers in the beginning, in the middle and at the top of the
network. As we can see, the general pattern is that attention
to memory tends to increase as learning progresses.

10

0.003 0.010 0.030 0.100 0.300 1.000 3.000
50

55

60

A
cc

ur
ac

y,
 %

Places-365

0.003 0.010 0.030 0.100 0.300 1.000 3.000
96

97

98

99

100
Cifar-100

0.003 0.010 0.030 0.100 0.300 1.000 3.000
Learning rate

60

70

80

90

A
cc

ur
ac

y,
 %

iNaturalist

0.003 0.010 0.030 0.100 0.300 1.000 3.000
Learning rate

85

90

95

100
Sun-297

1 memory token
5 memory tokens
10 memory tokens
20 memory tokens
Full
Class + head
Head only

Training accuracy as a function of learning rate for different datasets

Figure 8. Performance of memory-augmented transformers for different datasets and comparison with baseline fine-tuning methods.

0 5000 10000 15000
0.0

0.5

1.0

F
ra

ct
io

n
of

 in
pu

ts

Head 0, Layer 0

0 5000 10000 15000
0.0

0.5

1.0
Head 0, Layer 4

0 5000 10000 15000
0.0

0.5

1.0
Head 0, Layer 8

0 5000 10000 15000
0.0

0.5

1.0
Head 0, Layer 11

0 5000 10000 15000
0.0

0.5

1.0

F
ra

ct
io

n
of

 in
pu

ts

Head 1, Layer 0

0 5000 10000 15000
0.0

0.5

1.0
Head 1, Layer 4

0 5000 10000 15000
0.0

0.5

1.0
Head 1, Layer 8

0 5000 10000 15000
0.0

0.5

1.0
Head 1, Layer 11

0 5000 10000 15000
Training step

0.0

0.5

1.0

F
ra

ct
io

n
of

 in
pu

ts

Head 2, Layer 0

0 5000 10000 15000
Training step

0.0

0.5

1.0
Head 2, Layer 4

0 5000 10000 15000
Training step

0.0

0.5

1.0
Head 2, Layer 8

0 5000 10000 15000
Training step

0.0

0.5

1.0
Head 2, Layer 11

class token
Memory
Input

Fraction of inputs that attend to input/memory/class token with cumulative weight at least 0.5.

Figure 9. Attention of input tokens to different types of other tokens for individual heads and layers. We only include 3 heads (0, 1,
and 2) and 4 layers spread uniformly over architecture. Here we calculate what fraction of samples have at least one token, that attends
with weight at least 0.5 to (a) memory (■) (b) class token (+) and (c) self-attention (◀). Remarkably, we see a significant variability for
different heads.

11

0.003 0.010 0.030 0.100 0.300 1.000 3.000
50

55

60

A
cc

ur
ac

y,
 %

Places-365

0.003 0.010 0.030 0.100 0.300 1.000 3.000
96

97

98

99

100
Cifar-100

0.003 0.010 0.030 0.100 0.300 1.000 3.000
Learning rate

60

70

80

90

A
cc

ur
ac

y,
 %

iNaturalist

0.003 0.010 0.030 0.100 0.300 1.000 3.000
Learning rate

85

90

95

100
Sun-297

1 memory token
5 memory tokens
10 memory tokens
20 memory tokens
Full
Class + head
Head only

Training accuracy as a function of learning rate for different datasets

Figure 1. Performance of memory-augmented transformers for different datasets and comparison with baseline fine-tuning methods.

A. Dependence of training accuracy on number of memory tokens
As we discussed in the experiments sections, the test data performance as a function of number of memory tokens appear

not to improve much. We hypothesize that the reason for that might be the growing generalization gap. Specifically on Fig. 1
we show the training performance of memory-augmented transformers. As can be clearly seen, there the performance
improves monotonically as the number of memory token grow.

B. Exploring memory attention
In this section we explore how the attention to memory changes as training progresses. In Fig. 2 we show how the attention

changes over training trajectory. Specifically, we measure the fraction of input samples in the validation subset, that have at
least one input token, have cumulative attention to memory of at least 0.5 at different layers. We used the first 3 heads and
measured the attention at 4 different layers in the beginning, in the middle and at the top of the network. As we can see, the
general pattern is that attention to memory tends to increase as learning progresses.

ar
X

iv
:2

20
3.

15
24

3v
2

 [
cs

.C
V

]
 3

0
M

ar
 2

02
2

0 5000 10000 15000
0.0

0.5

1.0

F
ra

ct
io

n
of

 in
pu

ts

Head 0, Layer 0

0 5000 10000 15000
0.0

0.5

1.0
Head 0, Layer 4

0 5000 10000 15000
0.0

0.5

1.0
Head 0, Layer 8

0 5000 10000 15000
0.0

0.5

1.0
Head 0, Layer 11

0 5000 10000 15000
0.0

0.5

1.0

F
ra

ct
io

n
of

 in
pu

ts

Head 1, Layer 0

0 5000 10000 15000
0.0

0.5

1.0
Head 1, Layer 4

0 5000 10000 15000
0.0

0.5

1.0
Head 1, Layer 8

0 5000 10000 15000
0.0

0.5

1.0
Head 1, Layer 11

0 5000 10000 15000
Training step

0.0

0.5

1.0

F
ra

ct
io

n
of

 in
pu

ts

Head 2, Layer 0

0 5000 10000 15000
Training step

0.0

0.5

1.0
Head 2, Layer 4

0 5000 10000 15000
Training step

0.0

0.5

1.0
Head 2, Layer 8

0 5000 10000 15000
Training step

0.0

0.5

1.0
Head 2, Layer 11

class token
Memory
Input

Fraction of inputs that attend to input/memory/class token with cumulative weight at least 0.5.

Figure 2. Attention of input tokens to different types of other tokens for individual heads and layers. We only include 3 heads (0, 1,
and 2) and 4 layers spread uniformly over architecture. Here we calculate what fraction of samples have at least one token, that attends
with weight at least 0.5 to (a) memory (�) (b) class token (+) and (c) self-attention (J). Remarkably, we see a significant variability for
different heads.

