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Abstract

Despite the popularity of Model Compression and Mul-
titask Learning, how to effectively compress a multitask
model has been less thoroughly analyzed due to the chal-
lenging entanglement of tasks in the parameter space.
In this paper, we propose DiSparse, a simple, effective,
and first-of-its-kind multitask pruning and sparse training
scheme. We consider each task independently by disen-
tangling the importance measurement and take the unani-
mous decisions among all tasks when performing parame-
ter pruning and selection. Our experimental results demon-
strate superior performance on various configurations and
settings compared to popular sparse training and pruning
methods. Besides the effectiveness in compression, DiS-
parse also provides a powerful tool to the multitask learn-
ing community. Surprisingly, we even observed better per-
formance than some dedicated multitask learning methods
in several cases despite the high model sparsity enforced
by DiSparse. We analyzed the pruning masks generated
with DiSparse and observed strikingly similar sparse net-
work architecture identified by each task even before the
training starts. We also observe the existence of a "water-
shed" layer where the task relatedness sharply drops, imply-
ing no benefits in continued parameters sharing. Our code
and models will be available at: https://github.com/SHI-
Labs/DiSparse-Multitask-Model-Compression.

1. Introduction

Convolutional Neural Networks (CNNs) [29] are consid-
ered the go-to architecture for computer vision, ever since
the inception of AlexNet [28], especially in fundamental
vision tasks such as image classification [8], object detec-
tion [22, 35] and segmentation [3, 38]. As more complex
and difficult vision tasks are explored, substantial efforts
are devoted to scaling deep convolutional networks to enor-
mous sizes. Many models exist with parameters as many
as billions, which significantly challenges those targeting
edge device applications. Therefore, effectively compress-
ing deep convolutional networks for efficient storage and
computation has been a very active research area, and var-
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Figure 1. Converged training and validation multitask loss on
Cityscapes. Our method DiSparse obtains the best training and
validation behavior in both static and dynamic sparse training
paradigms comparing to other methods. DiSparse even beats the
unsparsified baseline at several sparsity levels.

ious approaches have been proposed and developed [6, 9]
over the years.

Generally, neural network compression techniques can
be categorized [9] into pruning [20,30,32], quantization [4,
37, 56], low-rank factorization [10, 33, 58], and knowledge
distillation [25, 26, 36]. Network pruning, as a popular sub-
field of model compression, aims to discard certain param-
eters in the model, while retaining performance as much
as possible. Pruning methods usually try to assign the
best saliency score (also referred to as importance score)
to each parameter and perform selection and pruning based
on these importance measurements. Despite the diversity
in the pruning schemes proposed in recent years, chasing
sparsity in the network, either in a structured or unstruc-
tured manner, has been one of the central themes since the
very beginning [21,30]. Parameter efficiency of sparse neu-
ral networks has been demonstrated [19, 52], and multiple
works [15,48] have shown inference time speedups are pos-
sible using sparsity for convolutional neural networks.

Notwithstanding the increasing attention on model prun-
ing and sparse training, effectively sparsifying a multi-
task network remains unexplored in spite of its importance.
Multitask Learning (MTL) focuses on simultaneously solv-
ing multiple related tasks using a single model, which can
significantly reduce the training and inference time and im-
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prove the generalization performance through learning a
shared representation across tasks [2]. It has a wide ap-
plication in many problems like autonomous driving and
indoor navigation robot where multiple tasks like seman-
tic segmentation and depth estimation need to be performed
simultaneously. A compact and efficient multitask net-
work makes real-time performance possible on edge de-
vices where computational resources are limited. Multitask
network naturally brings storage and speed advantages over
its single-task counterparts by a commonly shared back-
bone adopted in many popular MTL works [12, 27, 49].
However, how to further compress and sparsify such net-
works hasn’t been carefully analyzed. Compression on mul-
titask networks with comparable performance as on single-
task ones is very challenging because the shared space con-
tains heavily entangled and intertwined features, causing
the traditional pruning and sparse training algorithm to fail.
A fraction of parameters in the shared space, though not im-
portant for one task, could be crucial for the performance of
another. A few MTL works have explored the problem of
entangled features and showed disentangling representation
into shared and task-private spaces will improve the model
performance [34, 55].

We propose the first-of-its-kind pruning scheme that en-
forces sparsity in multitask networks by taking the entan-
gled nature of their features into consideration. We argue
that the key to properly compressing a multitask model is
correctly identifying saliency scores for each task in the
shared space, therefore Sparsifying in a Disentangled man-
ner (DiSparse). We take unanimous selection decisions
among all tasks, which means that a parameter is removed
only if it’s shown to be not critical for any task. This pre-
vents extreme degradation in performance for certain tasks
due to sparsification, leading to a more balanced network.

We conduct extensive experiments to validate the effi-
ciency of our proposed scheme. We demonstrate compres-
sion performance on models of different structures with
datasets of various sizes [7,46,57]. We show results on pre-
trained network, static sparse network at initialization, and
dynamically growing sparse network at initialization. For
each paradigm, we offered a slightly altered variant with
the same core idea. We compared with popular pruning
and sparse training methods and found that our proposed
method is superior in both the training and validation phase,
attaining lower training loss in a shorter period of time and
better evaluation metrics on the validation set across differ-
ent sparsity levels. Even more surprisingly, we observed
better performance than some dedicated multitask learning
approaches [1, 41, 50] in several cases in spite of the high
sparsity enforced in our model, showing the effectiveness
of DiSparse in multitask training. Besides the demonstra-
tion of superior model performance, we provide interesting
observations in our experiments with DiSparse. We com-

pute the Intersection over Union (IoU) of the binary pruning
masks generated with DiSparse for each task to indicate task
relatedness or similarity. Surprisingly, we observed strik-
ingly similar sparse network architecture identified by each
task even before the training starts. This offers a glimpse
of the transferable subnetwork architecture across domains.
Moreover, we observe the existence of a "watershed" layer
where the task relatedness sharply drops, implying no ben-
efits in continued parameters sharing. Exploitation of such
property with DiSparse could save tremendous labor and
computation cost by obtaining a better multitask architec-
ture pre-training. These observations show that DiSparse
does not only provide the compression community with the
first-of-its-kind multitask sparsification scheme but also a
powerful tool to the multitask learning community.

Our contributions can be summarized as follows:

• Proposing a simple, effective, and first-of-its-kind
pruning and sparse training scheme for multitask net-
work by disentangling the importance measurements
among tasks, leading to a more balanced network.

• Performing an extensive empirical study on multiple
vision tasks and datasets, which demonstrates the su-
periority of DiSparse compared to popular pruning and
sparse training algorithms and even several dedicated
multitask learning methods.

• Studying and discussing task relatedness and multitask
model architecture design with DiSparse, which pro-
vides a valuable tool to the multitask learning commu-
nity from a compression perspective.

2. Related Works
2.1. Pruning and Sparse Training

Network pruning is effective in reducing inference cost
and storage. Pruning can be roughly categorized into
two categories by architecture: unstructured and structured
pruning. Unstructured pruning methods [20, 30] drop less
significant weights, regardless of where they occur. On the
other hand, structured pruning methods [32, 36], operate
under structural constraints, for example removing convo-
lutional filters or attention heads [40], thus enjoy imme-
diate performance improvement without specialized hard-
ware or library support. Pruning methods compute impor-
tance scores with different criterion to perform parameter
selection. Most commonly used score criterion include: 1.
Magnitude-based [20, 32], 2. Gradient-based [43, 44], 3.
Hessian-based [21, 30], 4. Learning-based [11, 36]. Most
pruning methods are only applied to pre-trained models.

Sparse training techniques, on the other hand, train
sparse networks from scratch, and have also gained sig-
nificant attention from the research community. The Lot-
tery Ticket Hypothesis (LTH) [17] hypothesized that if we
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can find a sparse neural network with iterative pruning, then
we can train that sparse network from scratch to the same
level of accuracy, by starting from the same initial condi-
tions. Single-Shot Network Pruning (SNIP) [31] attempts
to find an initial mask in a data-driven approach with one-
shot pruning and uses this initial mask to guide parameters
selection. As these methods still maintain a static network
architecture throughout the training process, we refer to this
group of methods as Static Sparse Training.

Another direction of sparse training is making network
connections dynamic and allowing pruned weights to grow
back. This allows for adaptive identification of high-
quality sparse subnetworks. Sparse Evolutionary Training
(SET) [42] prunes weights according to the standard mag-
nitude criterion then adds weights back at random. Evci et
al. [16] proposed Rigging the Lottery (RigL), an idea simi-
lar to SET but grows the weights back based on their gradi-
ents. We refer to this group of methods as Dynamic Sparse
Training due to the model’s ability to dynamically grow
back pruned weights.

2.2. Multitask Network Compression

Research in multitask network compression has recently
gained attention. Several methods [5, 23, 24] start with
single-task networks and gradually merge them into a uni-
fied one, using feature sharing and similarity maximization.
However, these schemes are inapplicable to pre-designed
multitask models. This motivated our work, in which
we propose a method that provides a pruning and sparse
training scheme targeting a unified multitask network with
shared parameters between tasks. To the best of our knowl-
edge, our proposed method is the first to do so.

3. Methodology

3.1. Notations

Given a dataset D with individual samples xi, targets yi,
and a desired sparsity level S ∈ (0, 1) (i.e. the ratio of zero
weights), pruning or sparse training a neural network can be
written as the following optimization problem:

min
Θ

L(Θ;D) = min
Θ

1

n

n∑
i=1

ℓ(f(Θ;xi), yi) (1)

s.t. Θ ∈ Rm, ∥Θ∥0 ≤ (1− S) ·m

Here, ℓ(.) is the standard loss function, Θ is the set of pa-
rameters of the neural network, m is the total number of
parameters in the model, and ∥.∥0 represents the L0 norm.
For the ease of later notations, we reformulate the pruning
and sparse training problem to find an optimal binary mask

and modify Equation (1) as follows:

min
B

L(Θ,B;D) = min
B

1

n

n∑
i=1

ℓ(f(Θ⊙ B;xi), yi) (2)

s.t. Θ ∈ Rm,B ∈ Rm,B ∈ {0, 1}m, ∥B∥0 ≤ (1− S) ·m

where B represents a binary mask over the parameters, indi-
cating which are kept and which are pruned. Given a set of
K tasks T = {T1, T2, . . . , TK}, we represent the parameters
used only by the kth task as Θk ∈ Rmk and the common
parameters used by all of the tasks as Θc ∈ Rmc . We also
denote Θk ∪Θc as Θkc, and Bkc as its corresponding mask.
Therefore masked parameters in the sparse network for task
Tk can be expressed as Θkc ⊙ Bkc. Furthermore, the target
for kth task is denoted with yki for the ith data sample, as
well as the loss function the same task with ℓk. As a result,
total loss for all tasks is expressed as follows:

ℓ(f(Θ;xi), yi) =

K∑
k

λkℓk(f(Θkc ⊙ Bkc;xi), y
k
i ) (3)

where λk represents the weighting scalar for each task.
Equation (2) can therefore be re-written as:

min
B

L(Θ,B;D) = min
B

1

n

n∑
i=1

K∑
k

λkℓk(f(Θkc ⊙ Bkc;xi), y
k
i )

= min
B

K∑
k

Lk(Θkc ⊙ Bkc;D) (4)

s.t. Θ ∈ Rm,B ∈ Rm,B ∈ {0, 1}m, ∥B∥0 ≤ (1− S) ·m

3.2. Our Method

When solving for task-specific binary masks, Bk, tra-
ditional pruning or sparse training methodologies work as
proposed. However, while solving for Bc, the binary mask
for the large number of commonly shared parameters, we
can’t simply apply typical methods which directly utilize
L(Θ,B;D) as guidance, because the shared parameters are
entangled with multiple tasks. Therefore, we propose a
scheme for solving the shared mask, Bc. For a given task
Tk, we compute the binary mask Bkc solely based on the
task itself. This means saliency scores are computed solely
based on Lk(Θkc,Bkc;D). This mask will capture the pre-
ferred sub-network structure provided that we solve for task
Tk independently. We denote the mask corresponding to the
shared parameters in Bkc as C(Bkc) ∈ Rmc and the task-
private parameters in Bkc as P(Bkc) ∈ Rmk . We can then
make the direct assignment Bk = P(Bkc). To solve for
the mask for the shared parameters, Bc, we feed all of the
masks into an "arbiter" function, A, and compute the final
mask Bc for the shared parameters shown as follows:

Bc = A(C(B1c), C(B2c), . . . , C(BKc)) (5)
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Algorithm 1 Proposed Algorithm: DiSparse
Input: Θkc ∈ Rmk+mc , Lk(.) ∀k ∈ {1, 2, . . . ,K}
A,S,D, saliency(.)
Output: B

1: Bcs← [ ]
2: for k ← 1 to K do
3: s⃗k ← saliency(Θkc, Lk(.),D)
4: γ ← (1− S) · (mk +mc)

5: ˜skγ ← Topγ(s⃗k)

6: Bkc← s⃗k > ˜skγ //Element-wise Comparison

7: Bk ← P(Bkc) //Task-specific Mask

8: Bcs.append(C(Bkc)) //Common Mask

9: end for
10: Bc← A(Bcs)
11: B ← Bc ∪ (

⋃K
k=1 Bk)

12: return B

We use three variants of saliency score criterion based on
our proposed scheme for three different popular paradigms
to enforce sparsity in the model: 1). Static Sparse Training
2). Dynamic Sparse Training 3). Pruning on pre-trained
models. In the following subsections, we will outline how
Bkc is computed for each paradigm.

3.2.1 Static Sparse Training

We borrowed the effective data-driven sensitivity measure-
ment from SNIP [31] and made modifications based on our
scheme. We represent the saliency for task Tk of the jth

weight in the parameter space Θkc, Θkc
j , as skcj , which is

computed as follows:

gkcj (Θkc;D) = ∂Lk(Θkc ⊙ Bkc;D)
∂Bkcj

(6)

skcj =
|gkcj (Θkc;D)|∑mc

z |gkcz (Θkc;D)|
(7)

We can then use the saliency measurements to compute the
mask Bkc for task Tk.

γ = (1− S) · (mk +mc) (8)

Bkcj = I[skcj − ˜skcγ ≥ 0], ∀j ∈ {1 . . .mk +mc} (9)

Here, ˜skcγ is the γth largest element in the vector s⃗kc.
We can thus use Bkc as discussed in 3.2 to compute the final
mask for the entire model.

3.2.2 Dynamic Sparse Training

We follow RigL [16] in terms of the pruning and growing
criterion and made modifications based on our scheme. For

pruning, we performed the standard magnitude pruning. For
growing, as in 3.2.1, we compute the saliency for task Tk of
the jth weight in the parameter space, skcj , as follows:

gkcj (Θkc;D) = ∂Lk(Θkc;D)
∂Θkc

j

(10)

skcj = |gkcj (Θkc;D)| (11)

We can then use the saliency measurements to compute the
growing mask Bkc for task Tk.

γ = fdecay(t;α, Tend) · (1− S) · (mk +mc) (12)

Bkcj = I[skcj − ˜skcγ ≥ 0], ∀j s.t. Θkc
j ̸∈ Θkc \ Iactive

(13)

Here, fdecay(.) is a decaying function as in RigL [16] to
update the ratio of parameters to prune and grow at each
update iteration, and Θkc \ Iactive is the set of active con-
nections remaining after pruning.
We can thus use Bkc as discussed in 3.2 to compute the final
mask for the entire model.

3.2.3 Pruning on Pre-trained Models

We borrowed the pruning criterion from GF [39] and made
modifications based on our scheme. As in 3.2.1, we com-
pute the saliency for task Tk of the jth weight in the param-
eter space, skcj , as follows:

gkcj (Θkc;D) = ∂Lk(Θkc;D)
∂Θkc

j

(14)

skcj = |gkcj (Θkc;D)| · |Θkc
j |2 (15)

Therefore, we can use the saliency measurements to com-
pute the pruning mask Bkc for task Tk.

γ = (1− S) · (mk +mc) (16)

Bkcj = I[skcj − ˜skcγ ≥ 0], ∀j ∈ {1 . . .mk +mc} (17)

We can thus use Bkc as discussed in 3.2 to compute the final
mask for the entire model.

3.2.4 Arbiter Function

As discussed in 3.2, we used an "arbiter" function, A, to
solve the mask for the common parameters, Bc. We pro-
vided two choices here:
Element-wise Logical OR. We performed a logical OR
operation over the mask computed by each task. In this
case, a parameter will be pruned only if it’s considered not
important for each task.

Bc = A(C(B1c), C(B2c) . . . C(BKc))

= C(B1c)|C(B2c)| . . . |C(BKc) (18)
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Figure 2. An overview of DiSparse . For task Tk, we feed weights Θkc and their gradients w.r.t the loss Lk(.) into a saliency scoring
function to get their importance scores. Later we generate an optimal binary mask Bkc for the model assuming that we’re only training the
network independently for task Tk. We directly assign P(Bkc), the task-private part, to Bk used as the pruning or growing mask for the
task-private parameters. For C(Bkc), the shared part, we feed all of {C(Bkc),∀k ∈ {1, . . . , T }} to an element-wise arbiter function A
and take its output as Bc, the pruning or growing mask for the shared parameters.

Majority Vote. For three or more tasks (K ≥ 3), element-
wise majority vote can be applied for more effective com-
pression. A parameter will be pruned if most of the tasks
agree to remove this particular connection.

Bc = A(C(B1c), C(B2c) . . . C(BKc))

= MAJ(C(B1c), C(B2c) . . . C(BKc)) (19)

4. Empirical Evaluation
We conduct extensive experiments to show that our pro-

posed method outperforms many strong baselines and is
very effective in sparsifying a multitask model.

4.1. Datasets, Tasks, and Model

We evaluate our method on three popular multitask
datasets: NYU-v2 [46], Cityscapes [7], and Tiny-
Taskonomy [57]. We perform joint Semantic Segmentation
and Surface Normal Prediction [18,41,54] for NYU-v2, and
joint Semantic Segmentation and Depth Prediction [54] for
Cityscapes. For Tiny-Taskonomy, we perform joint training
on 5 tasks: Semantic Segmentation, Surface Normal Predic-
tion, Depth Prediction, Keypoint Detection, and Edge De-
tection [53, 54].

We performed sparsification on the widely-used
DeepLab-ResNet [3] with atrous convolutions as the
backbone and the ASPP [3] architecture for task-specific
heads. As discussed in the above sections, we use the

popular multitask architecture, in which all tasks share the
backbone but have separate task-specific heads.

4.2. Evaluation Metrics

We demonstrated sparsity level as the most direct eval-
uation metric for the pruned or the sparse-trained model.
The higher the sparsity level of a model, the more zeros it
contains thus enjoying more acceleration and memory ben-
efits. In terms of the performance evaluation of tasks, for
Semantic Segmentation, we show mean Intersection over
Union (mIoU) and Pixel Accuracy (Pixel Acc). For Surface
Normal Prediction, we use mean and median angle error as
the main evaluation metrics. On NYU-v2, we also demon-
strate the percentage of pixels whose prediction is within the
angles of 11.25◦, 22.5◦, and 30◦ to the ground truth [13].
For Depth Prediction, we compute absolute and relative er-
rors as the main evaluation metrics. On Cityscapes, we
also show the relative difference between the prediction and
ground truth via the percentage of δ = max(

ypred

ygt
,

ygt

ypred
)

within threshold 1.25, 1.252, and 1.253 [14]. In both key-
points and edge detection tasks, we choose to show the
mean absolute error to the provided ground-truth map as
the main evaluation metric. Since for multitask learning,
it’s hard to qualify the performance of a model or algo-
rithm with a single metric, we also demonstrate the con-
verged training and testing multitask loss to show how our
proposed scheme helps the model to learn in the training
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Model T1: Semantic Seg. T2: SN Prediction Sparsity Pre-trained
mIoU↑ PixelAcc↑ Mean Err↓ Median Err↓ 11.25↑ 22.5↑ 30↑ (%)↑

DeepLab [3](baseline) 27.69 58.77 16.55 14.17 39.62 73.54 86.33 0 N/A
LTH [17] 24.63 56.25 17.01 14.27 39.49 71.95 84.31 90.00 ✓
SNIP [31] 23.83 56.90 16.58 14.05 39.82 73.73 85.77 90.00 ✗
Random 25.56 25.18 18.86 16.22 27.81 69.55 85.45 90.00 ✗
DiSparse (Ours) 26.48 57.77 16.44 13.69 41.24 74.07 85.85 90.00 ✗

RigL [16] 24.91 56.74 17.27 14.63 38.52 70.75 83.71 90.00 ✗
DiSparse (Ours) 28.16 59.18 16.54 13.47 42.25 73.14 84.73 90.00 ✗

IMP [20] 29.19 59.81 16.58 13.32 43.32 72.31 84.03 90.00 ✓
Random 25.56 25.18 18.69 16.04 23.37 73.08 86.78 90.00 ✓
DiSparse (Ours) 29.45 59.95 16.56 13.30 43.33 72.49 84.18 90.00 ✓

Table 1. DiSparse semantic segmentation and surface normal prediction results on NYU-v2 [46] compared to static sparse training, dynamic
sparse training, and pre-trained model pruning methods.

phase.

4.3. Experimental Settings

We used PyTorch for all of our experiments, and two
RTX 2080 Ti GPUs. We used Adam optimizer and a batch
size of 16 for all experiments. We trained NYU-v2 for 20K
iterations and used an initial learning rate of 1e−3, decaying
by 0.5 every 4000 iterations. We used the same optimiza-
tion settings for Cityscapes, except for the initial learning
rate, which was set to 1e− 4. Tiny-Taskonomy was trained
for 100K iterations with an initial learning rate of 1e−4 de-
caying by 0.3 every 12K iterations. We used cross-entropy
loss for Semantic Segmentation, negative cosine similar-
ity between the normalized prediction and ground-truth for
Surface Normal Prediction, and L1 loss for the rest of the
tasks. To avoid bias and diversity in different pre-trained
models, we train all of the models from scratch for a fair
comparison among different methods.

4.4. Baselines and Ours

We evaluated several methods: LTH [17], RigL [16],
SNIP [31], and IMP [20]. We used SNIP’s official imple-
mentation in Tensorflow, and implemented the rest in Py-
Torch. For LTH [17], we used the fully-trained model to
get the sub-network structure and rewind the model to the
initial weights to start the sparse training. For SNIP [31],
we use the gradients on 50 random data batches drawn
from the training datasets to compute the sparse mask. For
RigL [16], we followed the original paper and utilized a co-
sine decay to gradually decrease the pruning and growing
ratio at each iteration. We stopped the update at the 75%-
th iteration. Also, for the initial sparsity distribution over
layers, we adopted Erdős-Rényi-Kernel (ERK) introduced
in [16, 42] as it was shown to attain the best performance.
For our method, we used the same configurations as SNIP
in static sparse training experiments and RigL in dynamic
sparse training ones. In terms of the optimization, for the

sparse training methods, we used the same settings as the
original models described in 4.3. For the pruning on pre-
trained model experiments, we retrained the model for 1000
iterations with learning rate set as 1e − 5 after pruning
for NYU-v2 and Cityscapes. For Tiny-Taskonomy, we re-
trained for 4000 iterations with learning rate set as 1e − 6
decaying by 0.3 every 1500 iterations. Also, we select the
Element-wise OR as our arbiter function for results reported
in the tables but also explore the Majority Vote choice in the
ablation studies.

4.5. Quantitative Results

We demonstrated results in three different learning sce-
narios and datasets in Table 1, 2, and 3. We performed
all of the experiments on four different sparsity levels
(30%, 50%, 70%, 90%) for all of the methods. Due to the
space constraint, we only report evaluation results at the
most extreme sparsity level, 90%. However, we do show the
converged training and validation loss for all of the sparse
training methods including two of ours at all sparsity levels
on Cityscapes in Figure 1. From the figure, the superior-
ity of our proposed scheme is clearly observed in both the
training and validation set. It attains much lower training
loss across all sparsity levels than other methods and gener-
alizes well on the validation set. For full evaluation results
at all sparsity levels, please refer to the Appendix. In the ta-
bles, we reported all the evaluation metrics discussed in 4.2.
We also indicate whether the method utilized any informa-
tion from the pre-trained model. Though LTH [17] proposes
a sparse training approach, it relies on the pre-trained model
to extract the sub-network architecture. As shown in [59],
the "winning lottery tickets" obtain non-random accuracies
even before training has started. Thus, we also check the
"pre-trained" mark for LTH in our tables. For all the learn-
ing scenarios, we also include random pruning or sparse
training results.

On NYU-v2, as shown in Table 1, DiSparse outper-
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Model T1: Semantic Seg. T2: Depth Prediction Sparsity Pre-trained
mIoU ↑ PixelAcc ↑ Error ↓ Abs. Error ↓ Rel. Error ↓ δ1.25 ↑ δ1.252 ↑ δ1.253 ↑ (%) ↑

DeepLab [3](baseline) 42.58 74.84 0.49 0.016 0.33 74.22 88.90 94.47 0 N/A
LTH [17] 36.19 73.97 0.51 0.017 0.35 72.46 87.29 93.59 90.00 ✓
SNIP [31] 38.47 73.99 0.53 0.016 0.36 72.49 87.51 93.61 90.00 ✗
Random 35.67 71.74 0.60 0.021 0.43 66.47 82.21 90.63 90.00 ✗
DiSparse (Ours) 38.21 74.31 0.49 0.015 0.35 72.72 87.60 93.59 90.00 ✗

RigL [16] 36.57 74.02 0.51 0.017 0.37 71.98 86.66 93.05 90.00 ✗
DiSparse (Ours) 38.55 74.28 0.49 0.016 0.36 72.11 87.01 93.41 90.00 ✗

IMP [20] 37.63 73.90 0.50 0.018 0.37 71.15 86.41 93.01 90.00 ✓
Random 33.62 51.63 1.18 0.034 0.43 50.09 72.42 82.73 90.00 ✓
DiSparse (Ours) 40.71 74.64 0.49 0.016 0.37 72.06 86.67 93.11 90.00 ✓

Table 2. DiSparse semantic segmentation and depth prediction results on Cityscapes [7] compared to static sparse training, dynamic sparse
training, and pre-trained model pruning methods.

forms all the other methods by a significant margin in all
paradigms. In the static sparse training paradigm, DiS-
parse gets really close overall performance to the original
unsparsified model and even better performance on three
metrics (i.e. Median Angle Error, 11.25◦, and 22.5◦). As
discussed in 3.2, we borrowed the saliency measurement
from SNIP [31] for static sparse training. As seen in the
table, DiSparse is much more effective compared to SNIP.
In the dynamic training paradigm, DiSparse performs much
better than RigL [16]. Surprisingly, our performance is even
better than the original unsparsified model by a noticeable
margin, demonstrating the efficacy of our proposed scheme.
In fact, the performance of DiSparse surpasses several ded-
icated multitask learning methods [1, 41, 50] in the same
optimization settings but with zero sparsity. Comparison
with such methods is included in the Appendix. On the
paradigm where pruning is performed on pre-trained mod-
els, DiSparse is also better than both IMP [20] and random
pruning by a noticeable margin.

On Cityscapes, as shown in Table 2, DiSparse is shown
to be more superior than other methods consistently across
all paradigms. On static sparse training, though SNIP ob-
tains better mIoU and close Pixel Acc to DiSparse, it per-
forms poorly on the depth prediction task. As another in-
dicator of Semantic Segmentation task, we also include
the mean absolute error indicated as "Error" in Table 2.
As shown, DiSparse even obtains the same error as the
baseline. On the dynamic sparse training and pruning
paradigms, DiSparse outperforms other methods by a sub-
stantial performance margin across all metrics.

DiSparse is also superior in Tiny-Taskonomy, as shown
in Table 3. Its performance is demonstrated to be more
balanced across tasks. For example, although SNIP gets
slightly better mIoU and Pixel Acc, it performs even much
worse than the random sparse training on surface normal
prediction. Whereas our method is demonstrated to have
decent performance on all of the 5 tasks and does not have
one task being drastically worse than others. On the dy-

namic sparse training and pruning paradigms, DiSparse is
also shown to be much more effective than other methods.

The consistent superiority of DiSparse on all three
datasets shows that it can indeed help multitask model
achieve high sparsity with minimum performance drop.

4.6. Ablation Studies

We explored the effect of the arbiter function A and
demonstrated the results in Table 4. As discussed above, re-
sults reported in Table 1, 2, and 3 come from methods with
Element-wise OR as the arbiter function. Here, we tried
using the Element-wise Majority Vote on Tiny-Taskonomy
since it only makes sense when we have a relatively large
number of tasks (K ≥ 3). Compared to results shown in Ta-
ble 3, Majority Vote yields better results in the static sparse
training paradigm. It gives better performance on Semantic
Segmentation and Surface Normal Prediction. However, in
the dynamic sparse training setup, it doesn’t surpass the per-
formance of the Element-wise OR option but is still better
than RigL in overall performance.

4.7. Limitation

As shown in 3.2, the sparsity of our model will not be
exactly as requested due to the operations taken by the ar-
biter function A. For the dynamic sparse training experi-
ments, since DiSparse grows more weights in the growing
session, we simply adjust the pruning rate in the following
pruning session to compensate for it. For example, suppose
the expected sparsity level at iteration i is Si and the ex-
pected pruning rate is Pi. Our method generates a model
with sparsity Ŝi, Ŝi ≤ Si. We adjust the pruning rate to
P̂i = 1 − 1−Si

1−Ŝi
· (1 − Pi) to keep the final sparsity as ex-

pected. For static sparse training, it’s more complex and we
set up an empirical approach. We start from the requested
sparsity and iteratively increase it and run DiSparse until the
final sparsity is within an acceptable margin. When the final
sparsity is a little bit off, we always keep it higher than that
of the baselines for a fair comparison.
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Model T1: Semantic Seg. T2: SN Prediction T3: Depth T4: Keypt. T5: Edge Sparsity Pre-trained
mIoU ↑ PixelAcc ↑ Mean Err. ↓ Med. Err. ↓ Abs. Err ↓ Rel. Err ↓ Err ↓ Err ↓ (%) ↑

DeepLab [3](baseline) 29.51 92.98 24.36 12.88 0.021 0.033 0.20 0.21 90.00 N/A
LTH [17] 24.36 91.62 26.07 15.78 0.023 0.036 0.20 0.22 90.00 ✓
SNIP [31] 26.03 91.89 27.06 18.12 0.022 0.036 0.20 0.21 90.00 ✗
Random 25.39 91.18 26.31 16.30 0.023 0.037 0.20 0.22 90.00 ✗
DiSparse (Ours) 25.53 91.85 25.42 14.80 0.022 0.035 0.20 0.21 90.00 ✗

RigL [16] 23.87 90.14 26.91 17.75 0.023 0.037 0.19 0.20 90.00 ✗
DiSparse (Ours) 25.21 91.49 25.28 14.63 0.022 0.034 0.19 0.20 90.00 ✗

IMP [20] 26.71 91.74 24.99 13.89 0.021 0.033 0.20 0.21 90.00 ✓
Random 23.89 83.89 41.21 38.35 0.25 0.39 0.45 0.40 90.00 ✓
DiSparse (Ours) 29.12 92.58 24.70 13.42 0.021 0.033 0.19 0.20 90.00 ✓

Table 3. DiSparse semeantic segmentation, surface normal prediction, depth prediction, keypoint detection, and edge detection results on
Tiny-Taskonomy [57] compared to static sparse training, dynamic sparse training, and pre-trained model pruning methods.

Model T1: Semantic Seg. T2: SN Prediction T3: Depth T4: Keypt. T5: Edge Sparsity Pre-trained
mIoU ↑ PixelAcc ↑ Mean Err. ↓ Med. Err. ↓ Abs. Err. ↓ Rel. Err. ↓ Err. ↓ Err. ↓ (%) ↑

DiSparse (static) 26.03 (0.50) 92.03 (0.18) 25.28 (-0.14) 14.52 (-0.32) 0.022 (0.00) 0.035 (0.00) 0.20 (0.00) 0.22 (0.01) 90.00 ✗
DiSparse (dynamic) 24.97 (-0.24) 91.77 (0.28) 25.89 (0.61) 15.88 (1.25) 0.023 (0.001) 0.036 (0.002) 0.20 (0.01) 0.21 (0.01) 90.00 ✗

Table 4. Ablations on Tiny-Taskonomy [57]. We show the results with the majority vote. Values inside the parenthesis are changes from
the corresponding metrics in Table 3. Positive changes are bold.
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Figure 3. Layer-wise IoU evaluating preferred sparse subnetwork
architecture among different tasks on three different datasets.

4.8. Discussion

LTH [17] inspired many to study the transferability of
the "winning ticket", or sparse subnetwork architecture in
general, across domains [45, 47, 51]. Morcos et al. [45]
showed that winning ticket initializations generalized across
a variety of natural image datasets, suggesting that different
tasks seem to enjoy the same sparse subnetwork structure.
Here, we made another exploratory step towards finding a
transferable across domains sparse sub-network architec-
ture. In the static sparse training setups, before the training
even started, we analyzed the masks generated by different
tasks regarding the commonly shared backbone with crite-
rion discussed in 3.2.1. To evaluate the task similarity and
relatedness, we compute Intersection over Union (IoU) be-
tween their computed masks, which indicate the agreement

and divergence of the preferred sparse subnetwork architec-
ture by different tasks. Similar to 3.2, we use C(Bkc) to de-
note the preferred mask on the shared backbone for task Tk.
IoU can therefore be computed as IoU =

|
⋂K

k=1 C(Bkc)|
|
⋃K

k=1 C(Bkc)| .
We present layer-wise IoU scores from the first 32 layers
of the backbone on all three datasets in Figure 3. Surpris-
ingly, we observed strikingly high IoU among tasks, even
in the 5-task Tiny-Taskonomy dataset. This implies that
even before training starts, different tasks tend to select the
same architecture in the shared parameter space to facili-
tate training, suggesting potential for domain-independent
sparse architecture exploration. Another interesting obser-
vation is that IoU drops sharply at certain layers. This phe-
nomenon is observed across all three datasets, though this
"watershed" layer is different (Layer 18 on NYU-v2, Layer
28 on Cityscapes, and Layer 26 on Taskonomy). This IoU
analysis among tasks could be very helpful for pre-training
multitask network design. For example, we could stop shar-
ing parameters in the backbone and start branching out for
different tasks at the layer where IoU sharply drops. We
leave this for future discussions.

5. Conclusion
In this paper, we present DiSparse, a novel sparse train-

ing and pruning method targeting multitask models. We
conduct extensive experiments which demonstrate its supe-
riority compared to other related methods on three different
datasets and learning scenarios. We also provide promis-
ing future research directions in transferrable lottery-ticket
across domains and multitask architecture design with our
proposed scheme.
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Appendix
Comparison With MTL Methods

As mentioned in the Empricial Evaluation Section, DiS-
parse surpasses several dedicated multitask learning ap-
proaches despite the high sparsity enforced in our model.
In Table 5, we show comparison of DiSparse in both
static and dynamic sparse training setting with several MTL
approaches including DEN [1], Sluice [50], and Cross-
Stitch [41] applied on exactly the same model with the same
optimization settings. The superiroty of DiSparse is clearly
observed in the table, demonstrating that DiSparse is not
only an effective compression approach but also a powerful
tool for multitask learning.

Results at Lower Sparsity Levels

In the Empricial Evaluation Section, we showed the re-
sults of DiSparse and other pruning and sparse training ap-
proaches at high sparsity level(90%). Here, in Table 6, 7,
we show the results at a sparsity of 30%, demonstrating the
superiority of DiSparse at low sparsity level as well. From
the table, we can see that DiSparse is better across all con-
figurations and evaluation metrics. Moreover, we observed
that DiSparse achieved lossless compression performance,
achieving close or even better performance than the baseline
unsparsified model.
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Model T1: Semantic Seg. T2: SN Prediction Sparsity Pre-trained
mIoU↑ PixelAcc↑ Mean Err↓ Median Err↓ 11.25↑ 22.5↑ 30↑ (%)↑

Cross-Stitch [41] 25.3 57.4 16.6 13.2 43.7 72.4 83.8 0 ✗
Sluice [50] 26.6 59.1 16.6 13.0 44.1 73.0 83.9 0 ✗
DEN [1] 26.3 58.8 17.0 14.3 39.5 72.2 84.7 0 ✗
DiSparse(Static) 26.5 57.8 16.4 13.7 41.2 74.1 85.9 90 ✗
DiSparse (Dynamic) 28.2 59.2 16.5 13.5 42.3 73.1 84.7 90 ✗

Table 5. DiSparse semantic segmentation and surface normal prediction results on NYU-v2 [46] compared to other MTL approaches.

Model T1: Semantic Seg. T2: SN Prediction Sparsity Pre-trained
mIoU↑ PixelAcc↑ Mean Err↓ Median Err↓ 11.25↑ 22.5↑ 30↑ (%)↑

DeepLab [3](baseline) 27.69 58.77 16.55 14.17 39.62 73.54 86.33 0 N/A
LTH [17] 23.84 56.35 16.81 13.84 40.91 72.31 84.28 30.00 ✓
SNIP [31] 26.57 59.85 16.91 13.55 42.01 71.72 82.01 30.00 ✗
Random 25.08 55.56 17.60 14.27 40.49 70.12 81.68 30.00 ✗
DiSparse (Ours) 28.24 60.33 16.62 13.37 42.98 72.29 83.96 30.00 ✗

RigL [16] 24.83 57.92 16.78 14.84 37.76 72.18 86.15 30.00 ✗
DiSparse (Ours) 28.41 59.77 16.54 13.48 43.42 73.55 86.76 30.00 ✗

IMP [20] 29.23 59.83 16.57 13.38 43.16 72.41 84.14 30.00 ✓
Random 26.43 58.25 16.89 13.71 41.92 71.72 83.77 30.00 ✓
DiSparse (Ours) 29.44 59.98 16.56 13.35 43.21 72.25 84.06 30.00 ✓

Table 6. DiSparse semantic segmentation and surface normal prediction results on NYU-v2 [46] compared to static sparse training, dynamic
sparse training, and pre-trained model pruning methods.

Model T1: Semantic Seg. T2: Depth Prediction Sparsity Pre-trained
mIoU ↑ PixelAcc ↑ Error ↓ Abs. Error ↓ Rel. Error ↓ δ1.25 ↑ δ1.252 ↑ δ1.253 ↑ (%) ↑

DeepLab [3](baseline) 42.58 74.84 0.49 0.016 0.33 74.22 88.90 94.47 0 N/A
LTH [17] 40.21 72.59 0.51 0.017 0.36 72.54 87.39 93.69 30.00 ✓
SNIP [31] 41.03 74.65 0.51 0.018 0.36 74.80 89.53 94.53 30.00 ✗
Random 38.17 72.77 0.52 0.019 0.38 72.83 83.73 92.33 30.00 ✗
DiSparse (Ours) 42.34 74.55 0.49 0.016 0.33 74.91 89.22 94.62 30.00 ✗

RigL [16] 40.68 74.40 0.51 0.018 0.36 72.47 87.39 93.53 30.00 ✗
DiSparse (Ours) 42.53 74.82 0.49 0.016 0.33 74.62 85.96 93.73 30.00 ✗

IMP [20] 42.39 72.73 0.51 0.016 0.36 72.96 87.80 93.77 30.00 ✓
Random 40.14 74.41 0.52 0.018 0.39 72.38 87.90 93.85 30.00 ✓
DiSparse (Ours) 42.47 74.69 0.50 0.016 0.34 73.32 88.46 94.37 30.00 ✓

Table 7. DiSparse semantic segmentation and depth prediction results on Cityscapes [7] compared to static sparse training, dynamic sparse
training, and pre-trained model pruning methods.
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