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Figure 1. Reconstruction results of three different tasks - super-resolution, inpainting, and MRI reconstruction. Numbers in parenthesis
indicate the iteration numbers for reverse diffusion. Proposed method is compared with canonical conditional diffusion models for each
task. (a) Corrupted measurement, (b) ILVR [5], score-SDE [34], and score-MRI [6], respectively, for each task. (c) Proposed method.

Abstract

Diffusion models have recently attained significant interest
within the community owing to their strong performance as
generative models. Furthermore, its application to inverse
problems have demonstrated state-of-the-art performance.
Unfortunately, diffusion models have a critical downside
- they are inherently slow to sample from, needing few
thousand steps of iteration to generate images from pure
Gaussian noise. In this work, we show that starting
from Gaussian noise is unnecessary. Instead, starting
from a single forward diffusion with better initialization
significantly reduces the number of sampling steps in the
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reverse conditional diffusion. This phenomenon is formally
explained by the contraction theory of the stochastic differ-
ence equations like our conditional diffusion strategy - the
alternating applications of reverse diffusion followed by a
non-expansive data consistency step. The new sampling
strategy, dubbed Come-Closer-Diffuse-Faster (CCDF),
also reveals a new insight on how the existing feed-forward
neural network approaches for inverse problems can be
synergistically combined with the diffusion models. Ex-
perimental results with super-resolution, image inpainting,
and compressed sensing MRI demonstrate that our method
can achieve state-of-the-art reconstruction performance at
significantly reduced sampling steps.

1. Introduction

Denoising diffusion models [8, 10, 15, 29] and score-
based models [31,32,34] are new trending classes of gener-



Figure 2. Plot of average error ε̄ vs. time t, using different approaches. (a) Conditional diffusion starts from Gaussian noise x(t) and
uses full reverse diffusion. (b) CCDF with vanilla initialization: Corrupted data is forward-diffused with a single step up to t = t0, and
reverse diffused. (c) CCDF with NN initialization: Initialization with reconstruction from pre-trained NN lets us use much smaller timestep
t = t′0 < t0, and hence faster reverse diffusion.

ative models, which have recently drawn signficant atten-
tion amongst the community due to their state-of-the-art
performance. Although inspired differently, both classes
share very similar aspects, and can be cast as variants of
each other [12, 15, 34], thus they are often called diffusion
models.

In the forward diffusion process, a sampled data point x
at time t = 0 is perturbed gradually with Gaussian noise
until t = T , arriving approximately at spherical Gaussian
distribution, which is easy to sample from. In the reverse
diffusion process, starting from the sampled noise at t = T ,
one uses the trained score function to gradually denoise the
data up to t = 0, arriving at a high quality data sample.

Interestingly, diffusion models can go beyond uncondi-
tional image synthesis, and have been applied to conditional
image generation, including super-resolution [5, 17, 25], in-
painting [31, 34], MRI reconstruction [6, 13, 33], image
translation [5, 19, 28], and so on. One line of works re-
design the diffusion model specifically suitable for the task
at hand, thereby achieving remarkable performance on the
given task [17, 25, 28]. However, they compromise flexi-
bility since the model cannot be used on other tasks. An-
other line of works, on which we build our method on, keep
the training procedure intact, and only modify the inference
procedure such that one can sample from a conditional dis-
tribution [5, 6, 13, 33, 34]. These methods can be thought of
as leveraging the learnt score function as a generative prior
of the data distribution, and can be flexibly used across dif-
ferent tasks.

Unfortunately, a critical drawback of diffusion models is
that they are very slow to sample from. To address this,
for unconditional generative models, many works focused
on either constructing deterministic sample paths from the
stochastic counterparts [30, 34], searching for the optimal
steps to take after the training of the score function [4, 38],
or by retraining student networks that can take shortcuts

via knowledge distillation [18, 26]. Orthogonal and com-
plementary to these prior works, in this work, we focus on
accelerating conditional diffusion models by studying the
contraction property [21–23] of the reverse diffusion path.

Specifically, our method, which we call Come-Closer-
Diffuse-Faster (CCDF), first perturbs the initial estimate
via forward diffusion path up to t0 < T , where t0 de-
notes the time where the reverse diffusion starts. This for-
ward diffusion comes almost for free, without requiring any
passes through the neural network. While the distribution
of forward-diffused (noise-added) images increases the es-
timation errors from the initialization as shown in Fig. 2(b),
the key idea of the proposed CCDF is that the reverse con-
ditional diffusion path reduces the error exponentially fast
thanks to the contraction property of the stochastic differ-
ence equation [22,23]. Therefore, compared to the standard
approach that starts the reverse diffusion from Gaussian dis-
tribution at t = T (see Fig. 2(a)), the total number of the re-
verse diffusion step to recover a clean images using CCDF
can be significantly reduced. Furthermore, with better ini-
tialization, we prove that the number of reverse sampling
can be further reduced as shown in Fig. 2(c). This implies
that the existing neural-network (NN) based inverse solu-
tion can be synergistically combined with diffusion models
to yield accurate and fast reconstruction by providing a bet-
ter initial estimate.

Using extensive experiments across various problems
such as super-resolution (SR), inpainting, and MRI recon-
struction, we demonstrate that CCDF can significantly ac-
celerate diffusion based models for inverse problems.

2. Background

2.1. Score-based Diffusion Models

We will follow the usual construction of continuous dif-
fusion process x(t), t ∈ [0, T ] with x(t) ∈ Rd [34]. Con-



cretely, we want x(0) ∼ p0(x), where p0 = pdata, and
x(T ) ∼ pT , where pT is a tractable distribution that we
can sample from. Consider the following Itô stochastic dif-
ferential equation:

dx = f̄(x, t)dt+ ḡ(t)dw, (1)

where f̄ : Rd 7→ Rd is the drift coefficient of x(t),
ḡ : R 7→ R is the diffusion coefficient coupled with the
standard d-dimensional Wiener process w ∈ Rd. By care-
fully choosing f̄ , ḡ, one can achieve spherical Gaussian dis-
tribution as t → T . In particular, when f̄(x, t) is an affine
function, then the perturbation kernel p0t(x(t)|x(0)) is al-
ways Gaussian, where the parameters can be calculated in
closed-form. Hence, perturbing the data with the perturba-
tion kernel p0t(x(t)|x(0)) comes almost for free, without
requiring any passes through the neural network.

For the given forward SDE in (1), there exists a reverse-
time SDE running backwards [12, 34]:

dx = [f̄(x, t)− ḡ(t)2∇x log pt(x)︸ ︷︷ ︸
score function

]dt+ ḡ(t)dw̄ (2)

where dt is the infinitesimal negative time step, and w̄ is the
Brownian motion running backwards.

Interestingly, one can train a neural network to approx-
imate the actual score function via score matching [31, 34]
to estimate sθ(x, t) ≃ ∇x log pt(x), and plug it into (2)
to numerically solve the reverse-SDE [34]. Furthermore, to
circumvent technical difficulties, de-noising score match-
ing is typically used where ∇x log pt(x) is replaced with
∇x log p0t(x(t)|x(0)).

2.2. Discrete Forms of SDEs

In this paper, we make use of two different SDEs: vari-
ance preserving (VP) SDE, and variance exploding (VE)
SDE [34]. First, by choosing

f̄(x, t) = −1

2
β(t)x, ḡ(t) =

√
β(t), (3)

where 0 < β(t) < 1 is a monotonically increasing function
of noise scale, one achieves the variance preserving (VP)-
SDE [10]. On the other hand, variance exploding (VE)
SDEs choose

f̄ = 0, ḡ =

√
d[σ2(t)]

dt
, (4)

where σ(t) > 0 is again a monotonically increasing func-
tion, typically chosen to be a geometric series [31, 34].

For the discrete diffusion models, we assume we have
N discretizations which are linearly distributed across t ∈
[0, T ]. Then, VP-SDE can be seen as the continuous ver-
sion of DDPM [15,34]. Specifically, in DDPM, the forward
diffusion is performed as

xi =
√
ᾱix0 +

√
1− ᾱiz (5)

where z ∼ N (0, I) and ᾱi =
∏i−1

j=1 αj for αi = 1−βi with
monotonically increasing noise schedule β1, β2, . . . , βN ∈
(0, 1). The associated reverse diffusion step is

xi−1 =
1
√
αi

(
xi + (1− αi)sθ(xi, i)

)
+
√
σiz, (6)

where sθ(xi, i) is a discrete score function that matches
∇xi

log p0i(xi|x0). Further, the noise term σi can be fixed
to σi = 1− αi [10], or set to a learnable parameter [8, 20].

For DDPM, denoising diffusion implicit model (DDIM)
establishes the current state-of-the-art among the accelera-
tion methods. Unlike DDPM, DDIM has no additive noise
term during the reverse diffusion, allowing less iterations
for competitive sample quality. Specifically, the reverse dif-
fusion step is given as:

xi−1 =
√
ᾱi−1

(
xi −

√
1− ᾱizθ(xi, i)√

ᾱi

)
+
√
1− ᾱi−1zθ(xi, i) (7)

where

zθ(x, i) := −sθ(x, i)
√
1− ᾱi. (8)

One can further define

σi =

√
1− ᾱi√
ᾱi

, x̄i =
xi√
ᾱi

, (9)

to express (7) as x̄i−1 = x̄i + (σi−1 − σi)zθ(xi, i).
On the other hand, score matching with Langevin dy-

namic (SMLD) [31, 32] can be seen as the discrete version
of VE-SDE. Specifically, the forward SMLD diffusion step
is given by

xi = x0 + σiz (10)

where σi = σmin(
σmax
σmin

)
i−1
N−1 , as defined in [34]. The associ-

ated reverse diffusion is given by

xi−1 = xi + (σ2
i − σ2

i−1)sθ(xi, i) +
√

σ2
i − σ2

i−1z

(11)

where z ∼ N (0, I).

3. Main Contribution
3.1. The CCDF Algorithm

The goal of our CCDF acceleration scheme is to make
the reverse diffusion start from N ′ := Nt0 < N such that
the resulting number of reverse diffusion step can be signif-
icantly reduced. For this, our CCDF algorithm is composed
of two steps: forward diffusion up to N ′ with better ini-
tialization x0, which is followed by a reverse conditional
diffusion down to i = 0.



Specifically, for a given initial estimate x0, the forward
diffusion process can be performed with a single step diffu-
sion as follows:

xN ′ = aN ′x0 + bN ′z (12)

where z ∼ N (0, I), and aN ′ , bN ′ for SMLD and DDPM
can be computed for each diffusion model using (10) and
(5), respectively.

In regard to the conditional difusion, SRDiff [17],
SR3 [25] are examples that are trained specifically for SR,
with the low-resolution counterparts being encoded or con-
catenated as the input. However, these approaches attempt
to redesign the score function so that one can sample from
the conditional distribution, leading to a much complicated
formulation.

Instead, here we propose a much simpler but effective
conditional diffusion. Specifically, our reverse diffusion
uses standard reverse diffusion, alternated with an operation
to impose data consistency:

x′
i−1 = f(xi, i) + g(xi, i)zi (13)

xi−1 = Ax′
i−1 + b (14)

where the specific forms of f(xi, i) and g(xi, i) depend on
the type of diffusion models (see Table 1), zi ∼ N (0, I),
and A is a non-expansive mapping [2]:

∥Ax−Ax′∥ ≤ ∥x− x′∥, ∀x,x′ (15)

In particular, we assume A is linear. For example, one-
iteration of the standard gradient descent [13,24] or projec-
tion onto convex sets (POCS) in [9, 11, 27, 35] corresponds
to our data consistency step in (14) with (15). See Supple-
mentary Section D for algorithms used for each task.

f(xi, i) g(xi, i)

SMLD xi + (σ2
i − σ2

i−1)sθ(xi, i)
√

σ2
i − σ2

i−1

DDPM 1√
αi
(xi + (1− αi)sθ(xi, i))

√
1− αi

DDIM
√
αi−1

(
xi−

√
1−ᾱizθ(xi,i)√

ᾱi

)
+
√
1− ᾱi−1zθ(xi, i) 0

Table 1. Values of f , g, and noise schedule of discrete SDEs.

3.2. Fast Convergence Principle of CCDF

Now, we are ready to show why CCDF provides much
faster convergence than the standard conditional diffusion
models that starts from Gaussian noise. In fact, the key in-
novation comes from the mathematical findings that while
the forward diffusion increases the estimation error, the con-
ditional reverse diffusion decreases it much faster at expo-
nential rate. Accordingly, we can find a “sweet spot” N ′

such that the forward diffusion up to N ′ followed by re-
verse diffusion can significantly reduces the estimation er-
ror of the initial estimate x0. This fast convergence princi-
ple is shown in the following theorems, whose proofs can

be found in Supplementary Materials. First, the following
lemma is a simple consequence of independency of Gaus-
sian noises.

Lemma 1. Let x̃0 ∈ Rn and x0 ∈ Rn be the ground-
truth clean image and its initial estimate, respectively, and
the initial estimation error is denoted by ε0 = ∥x0 − x̃0∥2.
Suppose, furthermore, that xN ′ and x̃N ′ denote the forward
diffusion from x0 and x̃0, respectively, using (12). Then, the
estimation error after the forward diffusion is given by

ε̄N ′ := E∥xN ′ − x̃N ′∥2

= a2N ′ε0 + 2b2N ′n. (16)

Now, the following theorem, which is a key step of our
proof, comes from the stochastic contraction property of the
stochastic difference equation [22, 23].

Theorem 1. Consider the reverse diffusion using (13) and
(14). Then, we have

ε̄0,r ≤
2Cτ

1− λ2
+ λ2N ′

ε̄N ′ (17)

where ε̄0,r denotes the estimation error between reverse
conditional diffusion path down to i = 0, and τ =
Tr(ATA)

n . Furthermore, the contraction rate λ and the con-
stant C have the following closed form expression:

λ =


max
i∈[N ′]

√
αi

(
1−ᾱi−1

1−ᾱi

)
(DDPM)

max
i∈[N ′]

σ2
i−1−σ2

0

σ2
i−σ2

0
(SMLD)

max
i∈[N ′]

σi−1

σi
(DDIM)

(18)

and

C =


n(1− αN ) (DDPM)
n max

i∈[N ′]
σ2
i − σ2

i−1 (SMLD)

0 (DDIM)

(19)

Now we have the main results that shows the existence
of the shortcut path for the acceleration.

Theorem 2 (Shortcut path). For any 0 < µ ≤ 1, there
exists a minimum N ′(= t0N < N) such that ε̄0,r ≤ µε0.
Furthermore, N ′ decreases as ε0 gets smaller.

Theorem 1 states that the conditional reverse diffusion
is exponentially contracting. Subsequently, Theorem 2 tells
us that we can achieve superior results (i.e. tighter bound)
with shorter sampling path. Hence, it is unnecessary for us
to start sampling from N . Rather, we can start from an arbi-
trary timestep N ′ < N , and still converge faster to the same
point that could be achieved when starting the sampling pro-
cedure at N . Furthermore, as we have better initialization



such that ε0 is smaller, then we need smaller reverse diffu-
sion step, achieving much higher acceleration.

For example, we can initialize the corrupted image with
a pre-trained neural network Gφ, which has been widely
studied across different tasks [16,39,40]. These methods are
typically extremely fast to compute, and thus does not intro-
duce additional computational overload. Using this rather
simple and fast fix, we observe that we are able to choose
smaller values of t0, endowed with much stabler perfor-
mance. For example, in the case of MRI reconstruction, we
can choose t0 as small as 0.02, while outperforming score-
MRI [6] with 50× acceleration.

4. Experiments

4.1. Experimental settings

We test our method on three different tasks: super-
resolution, inpainting, and MRI reconstruction. For all
methods, we evaluate the qualitative image quality and
quantitative metrics as we accelerate the diffusion process
by reducing the t0 values. For the proposed method, we
report on the results starting with neural network (NN)-
initialized x0 unless specified otherwise.
Dataset. For vision tasks using face images, we use two
datasets - FFHQ 256 × 256, and AFHQ 256 × 256. For
FFHQ, we randomly select 50k images for training, and
sample 1k images of test data separately. For AFHQ, we
train our model using the images in the dog category, which
consists of about 5k images. Testing was performed with
the held-out validation set of 500 images of the same cate-
gory. For the MRI reconstruction task, we use the fastMRI
knee data, which consists of around 30k 320 × 320-sized
slices of coronal knee scans. Specifically, we use magni-
tude data given as the key reconstruction esc. We
randomly sample 10 volumes from the validation set for
testing.
Quantitative metrics. Since it is well known that for high
corruption factors, standard metrics such as PSNR/SSIM
does not correlate well with the visual quality of the re-
construction [25, 40], we report on the FID score based on
pytorch-fid1. For MRI reconstruction, it is less sound
to report on FID; hence, we report on PSNR.
Super-resolution. Experiments were performed across
three different levels of SR factor -×4,×8,×16. We train a
discretized VP-SDE based on IDDPM [20] for each dataset
- FFHQ and AFHQ, following the standards. Specific de-
tails can be found in Supplementary section D. For the one-
step feed forward network corrector, we train the widely-
used ESRGAN [37] for each SR factor, using the same
neural network architecture that was used to train the score
function. We use three methods for comparison - ESRGAN,

1https://github.com/mseitzer/pytorch-fid

Figure 3. Stability of convergence depending on the choice of
initialization. (a) Random initialization, large ε0, (b) vanilla ini-
tialization, moderate ε0, (c) NN initialization, small ε0.

ILVR, and SR32. We note that the official code of SR3
is yet to be released, and hence we resort to unofficial re-
implementation, which we train with default configurations.
Additionally, in the original work of SR3 [25], the authors
propose consecutively applying ×4 SR models to achieve
16×16 7→ 64×64 7→ 256×256 SR. In contrast, we report
on a single×16 SR model which maps 16×16 7→ 256×256
directly.

Inpainting. The score function used in the inpainting task
is the same model that was used to solve SR tasks, since we
use task-agnostic conditional diffusion model. The feed-
forward network was adopted from Yu et al. [40]. We con-
sider box-type inpainting with varying sizes: 96×96, 128×
128, 160 × 160. The model was trained for 50k steps with
default configurations. We compare with score-SDE [34],
using the same trained score function.

MRI reconstruction. Experiments were performed across
three different levels of acceleration factor, with gaussian
1D sampling pattern - ×2,×4,×6, each with 10%, 8%, 6%
of the phase encoding lines included for autocalibrating sig-
nal (ACS) region. We train a VE-SDE based on ncsnpp,
proposed in [34], and demonstrated specifically for MR re-
construction in [6, 33]. For comparison with compressed
sensing (CS) strategy, we use total-variation (TV) regular-
ized reconstruction. For feed forward network, we train a
standard U-Net, using similar settings from [6, 41]. We use
the same trained score function for comparison with score-
MRI [6].

2https://github.com/Janspiry/Image-Super-Resolution-via-Iterative-
Refinement

https://github.com/mseitzer/pytorch-fid
https://github.com/Janspiry/Image-Super-Resolution-via-Iterative-Refinement
https://github.com/Janspiry/Image-Super-Resolution-via-Iterative-Refinement


Figure 4. Results of super-resolution on AFHQ 256×256 data. First, second and third row denote ×4 SR, ×8 SR, and ×16 SR, respectively.
(a) LR input, (b) Ground Truth, (c) ESRGAN [37], (d) SR3 [25] with 20 diffusion steps (N = 20,∆t = 0.05), (e) ILVR [5] with 20
diffusion steps (N = 20,∆t = 0.05), (f) proposed method with 20 diffusion steps (N = 100, t0 = 0.2).

4.2. Super-resolution

Dependence on ε0. We first demonstrate the dependency
of stochastic contraction on the squared error term in Fig-
ure 3. For small squared difference, as in the case for many
inverse problems, we see that the reverse diffusion stably
converges to the same solution, even with small timestep
t0. In contrast, when random x0 is the starting point, ε0
becomes large, and only with higher values of t0 does the
reverse SDE converge to a feasible solution.

t0 0.05 0.1 0.2 0.5 0.75 1.0 [5]
SR ×4 63.90 60.90 60.91 64.04 64.14 63.31
SR ×8 85.21 78.13 75.76 79.34 79.67 77.34
SR ×16 116.37 101.79 92.59 88.09 92.12 88.49

Table 2. FID(↓) scores on FFHQ test set for SR task with N =
1000, and varying t0 values. t0 = 1.0 is the baseline method
without any acceleration used in [5]. Numbers in boldface and
underline indicate the best and the second best.

Dependence on t0. In Table 2, we report on the FID scores
by varying the t0 values with a fixed discretization step
∆t = 1/1000 in order to see which value is optimal for each
degradation factor. Consistent with the theoretical findings,
we see that as the corruption factor gets higher, and ε0 gets
larger, we typically need higher values of t0 to achieve op-
timal results. Interesting enough, we observe that there al-
ways exist a value t0 ∈ [0, 1) where the FID score is lower
(lower is better) than when using full reverse diffusion from
T = 1.
Comparison study. The results of various super-resolution
algorithms is compared in Fig. 4. We compare with
SR3 [25] and ILVR [5], with setting the number of itera-
tions for reconstruction same for ILVR, SR3, and the pro-
posed method. We clearly see that SR3 and ILVR starting
from pure Gaussian noise at T = 1 cannot generate satis-
factory results with 20 iterations, whereas our method can
estimate high-fidelity samples with details preserved even
with only 20 iterations starting from t0 = 0.2. Visualizing



the trend of FID score in Figure 5, we see that the quality of
the image degrades as we use less and less number of itera-
tions for the ILVR method, whereas the proposed method is
able to keep the FID score at about the same level, or even
boost the image quality, with less iterations.

Figure 5. Comparison of FID score on ×8 SR task. For ILVR,
re-scheduling method of IDDPM [20] was used starting from
T = 1. For CCDF, the step size for discretization is ∆t = 0.01
so that the starting point for the reverse diffusion is t0 = ∆t ×
[number of iteration].

SR factor ESRGAN [37] SR3∗ [25] ILVR [5] CCDF (ours)

FFHQ
×4 81.14 66.79 63.14 60.90
×8 108.96 80.27 81.85 75.76
×16 143.80 99.46 92.32 88.39

AFHQ
×4 24.52 20.68 18.70 15.53
×8 51.84 30.23 34.85 32.30
×16 98.22 60.76 47.28 48.77

Table 3. Comparison of FID(↓) scores on FFHQ and AFHQ test
set. t0 values used for the proposed method is 0.1, 0.2, 0.3 for
×4,×8,×16 SR, respectively. Numbers in boldface represent the
best results among the row. (∗unofficial re-implementation)

We also perform a comparison study where we set the
total number of diffusion steps to N = 1000 starting from
T = 1 for ILVR [5], and set t0 to 0.1, 0.2, and 0.3 for
each factor, thereby reducing the number of diffusion steps
to 100, 200, and 300, respectively, by our method. In Ta-
ble 3, we demonstrate by using the proposed method, we
achieve results that are on par or even better. For qualitative
analysis, see Supplementary Section E.
Incorporation of DDIM. As briefly discussed before,
CCDF can be combined together with approaches that
searches for the optimal (full) reverse diffusion path. In
Fig. 6, we illustrate that we can reduce the number of it-
erations to as little as 5 steps, and still maintain high image
quality.

4.3. Inpainting

We illustrate the results of inpainting in Fig. 7. Consis-
tent with what was observed in the SR task, the results in
Figure 7 show that using full reverse diffusion with large

Figure 6. Results on SR task using CCDF with DDIM. (a) LR
image, (b) initialization with ESRGAN, (c) ILVR + DDIM, (d)
CCDF + DDIM. Numbers on top indicate the number of itera-
tions. Proposed method uses N = 50, and t0 = 0.1, 0.2, 0.5,
respectively.

Figure 7. Results of inpainting on FFHQ 256×256 data. (a)
Masked image, (b) Ground Truth, (c) SN-PatchGAN [40]. (d)
score-SDE [34] using 20 steps from T = 1, (e) proposed method
(CCDF) using 20 steps from t0 = 0.2.

discretization steps is inefficient, leading to unrealistic out-
put. On the other hand, our method can reconstruct very



realistic images within this small budget.

method masked SN-PatchGAN
[40]

Score-SDE [34]
(1000)

CCDF
(200)

Box 96 131.31 46.42 50.85 45.99
Box 128 145.81 52.63 64.51 49.77
Box 160 167.37 66.25 78.29 57.99

Table 4. Comparison of FID(↓) scores on FFHQ test set for in-
painting task (N = 1000,∆t = 0.001). Number in parenthesis
indicate the number of iterations used for generation. Numbers in
boldface and underline indicate the best and the second best.

Comparison with prior arts by setting relatively large
number of iterations is shown in Table 4. We observe that
the proposed method outperforms both score-SDE with full
reverse diffusion, and SN-PatchGAN, in terms of FID score.
For detailed comparison and further experiments, see Sup-
plementary Section E.

4.4. MRI reconstruction

We summarize and compare our results in Figure 8, and
the quantitative metrics are presented in Table 5. In the
task of MR reconstruction, we observe that we can push
the t0 value down to very small values: t0 = 0.02, and
still achieve remarkable results, even outperforming score-
POCS which uses full reverse diffusion. When we compare
the proposed method which uses 20 iterations vs. score-
POCS with 20 iterations, we see that score-POCS can-
not generate a feasible image, arriving at what looks like
pure noise, as demonstrated in Figure 1. With other tasks,
we could see that higher degradations typically require in-
creased t0 values. With CCDF, we do not see such trend,
and observe that selecting low values of t0 ∈ [0.02, 0.1]
stably gives good results. We emphasize that this is a huge
leap towards practical usage of diffusion models in clinical
settings, where fast reconstruction is crucial for real-time
deployment.

Figure 8. Results of the MR reconstruction task: (a) TV [3], (b) U-
Net [41], (c) score-POCS [6] using 1000 steps starting from T =
1, (d) proposed method (CCDF) using 20 steps from t0 = 0.02
(20 steps), (e) Reference image. Numbers in yellow correspond to
PSNR values.

method ZF TV [3] U-Net [41] Score-POCS
[6]

CCDF
(20)

× 2 27.23 29.10 32.93 32.85 33.41
× 4 22.68 25.93 31.07 31.45 32.51
× 6 21.54 24.69 30.77 31.15 31.30

Table 5. PSNR(↑) on fastMRI test set for MRI reconstruction
tasks. Gaussian 1D sampling masks were used. Number in paren-
thesis indicate the number of iterations used (N = 1000, t0 =
0.02). Numbers in boldface indicate the best among the rows.

5. Discussion

We note that we are not the first to propose starting from
forward-diffused data in the context of diffusion models. It
was first introduced in SDEdit [19], but in a different con-
text with distinct aim form ours. In SDEdit, forward diffu-
sion was used up to t0 ∈ [0.3, 0.6], which a relatively higher
value than those used in our work t0 ≤ 0.2, since the pur-
pose was to destroy the signal so as to acquire high fidelity
images from coarse strokes.

Our work differs from SDEdit in that we consider this
procedure in a more rigorous framework and first reveal that
starting from a better initialization for inverse problems sig-
nificantly accelerate the reverse diffusion. This leads to a
novel hybridization that has not been covered before: a sim-
ple incorporation of pre-trained feed-forward NNs can be
very efficient at pushing t0 to smaller limits, even as small
as t0 = 0.02 in the case of MRI reconstruction.

5.1. Limitations

We note that the choice of t0 for acceleration varies by
quite a margin across different tasks, and the degree of cor-
ruptions. Currently, there does not exist clear and concise
rules for selecting such values as we do not have a knowl-
edge of ε0 a priori. Thus, one needs to rely mostly on
trial-and-error, which could potentially reduce practicality.
Building an adaptive method that can automatically search
for the optimal t0 values will be beneficial, and we leave
this venue for possible direction of future research.

6. Conclusion

In this work, we proposed a method to accelerate condi-
tional diffusion models, by studying the property of stochas-
tic contraction. When solving inverse problems via con-
ditional reverse diffusion, rather than starting at random
Gaussian noise, we proposed to initialize the starting from
forward-diffused data from a better initialization, such as
one-step correction via NN. Using the stochastic contrac-
tion theory, we showed theoretically why taking the shortcut
path is in fact optimal, and back our statement by showing
diverse applications in which we both achieve acceleration
along with increased stability and performance.
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Supplementary Material
A. Mathematical Preliminaries
Definition 1 (Contraction on Rn). A function f : Rn 7→ Rn

is called a contraction mapping if there exists a real number
0 ≤ λ < 1 such that for all x and y in Rn,

∥f(x)− f(y)∥ ≤ λ∥x− y∥ (20)

Using the intermediate value theorem for the function
f(x), we can easily see that f(x) is contracting with the
rate 0 ≤ λ < 1 if f satisfies the following:

σmax

(
∂f(x)

∂x

)
≤ λ < 1 (21)

where σmax(A) denotes the largest singular value of a ma-
trix A. Note that the contraction mapping in Rn is closely
related to Lipschitz continuity, and indeed the function that
satisfies (20) with any λ > 0 is called λ-Lipschitz continu-
ous function.

Now, we provide a theorem for discrete stochastic con-
traction, which is slightly modified from the contraction
theorem of stochastic difference equation in [22].

Theorem A.1. [22] Consider the stochastic difference
equation:

xi+1 = f(xi, i) + g(xi, i)wi (22)

where f(·, i) is a Rn 7→ Rn function, g(·, i) is a Rn ×
N 7→ R function for each i ∈ N, and {wi, i = 1, 2, · · · }
is a sequence of independent n-dimensional zero mean unit
variance Gaussian noise vectors. Assume that the system
satisfies the following two hypothesis:

(H1) The function f(·, i) is contracting with factor λ in the
sense of (21) for all i ∈ N.

(H2) Tr(g(x, i)Ig(x, i)) ≤ C, ∀x, i.

Then, for two sample trajectory xi and x̃i that satisfies (22),
we have

E∥xi − x̃i∥2 ≤
2C

1− λ2
+ λ2iE∥x0 − x̃0∥2 (23)

The following corollary is a simple consequence of The-
orem A.1.

Corollary 1. Consider the stochastic difference equation
associated with the data fidelity term:

x′
i+1 = f(xi, i) + σ(xi, i)zi (24)

xi+1 = Ax′
i+1 + b (25)

where the A ∈ Rn×n is a non-expansive linear mapping,
and f(x, i) and σ(x, i) satisfies (H1) and (H2). Then, for

two sample trajectories xi and x̃i that satisfies (22), we
have

E∥xi − x̃i∥2 ≤
2Cτ

1− λ2
+ (λ)

2iE∥x0 − x̃0∥2 (26)

where τ = Tr(ATA)
n .

Proof. After the application of (25), we have

xi+1 = Af(xi, i) + b︸ ︷︷ ︸
f̃(xi,i)

+σ(xi, i)Azi

Therefore, we have

σmax

(
∂f̃(x, i)

∂x

)
≤ σmax(A)σmax

(
∂f(x, i)

∂x

)
= λ

as σmax(A) ≤ 1 for a non-expansive linear mapping. Fur-
thermore, we have

Tr(g(x, i)ATAg(x, i)) = g(x, i)2Tr(ATA)

=
Tr(ATA)

n
C = Cτ

Therefore, we have

E∥xi − x̃i∥2 ≤
2Cτ

1− λ2
+ λ2iE∥x0 − x̃0∥2 (27)

Lemma A.1. Let sθ(xi, i) be a sufficiently expressive pa-
rameterized score function so that

sθ(xi, t) =
∂

∂xi
log p0i(xi|x0) (28)

Then, we have

∂

∂xi
sθ(xi, t) = −

1

b2i
I. (29)

where

b2i =

{
1− ᾱi, (DDPM)
σ2
i − σ2

0 , (SMLD)
(30)

Proof. The forward diffusion is given by

xi = aix0 + biz (31)

where z ∼ N (0, I) and (ai, bi) are defined in (5) and (10)
for DDPM and SMLD, respectively. Using (28), we have



∂

∂xi
(sθ∗(xi, i))

T (32)

=
∂

∂xi

(
∂

∂xi
log p0i(xi|x0)

)T

(33)

=
∂

∂xi

(
∂

∂xi

(
− ∥xi − aix0∥2

2b2i

))T

(34)

=
∂

∂xi

(
− xi − aixi

b2i

)T
(35)

= − 1

b2i
I, (36)

where T denotes the transpose. This concludes the proof.

B. Proof of Theorem 1

Let N be the standard reverse diffusion step when start-
ing from T = 1. Then, the number of discretization step for
our method is given N ′ = Nt0 < N so that t0 can refer to
the acceleration factor. We further define a new index i =
N ′−j to convert the reverse diffusion index j = N ′, · · · , 1
to a forward direction index i = 0, 1, · · · , N ′. This does
not change the contraction property of the stochastic differ-
ence equation. Therefore, without loss of generality, we use
the aforementioned contraction property of stochastic dif-
ference equation for the index i = 0, 1, · · · , N ′. Now, we
are ready to provide the proof.

B.1. DDPM

In DDPM, the discrete version of the forward diffusion
is given by Eq. (5), and the reverse diffusion is given by
eq. (6). Here, zθ(x, i) is trained by

min
θ

EiEx(0)Ez∼N (0,I)

[
∥z − zθ(

√
ᾱix(0) +

√
1− ᾱiz, i)∥2

]
.

(37)

It was shown that zθ(x, i) is a scaled version of the score
function [34]:

sθ(x, i) = −
1√

1− ᾱi
zθ(x, i) (38)

which leads to

xi−1 =
1
√
αi

(
xi + (1− αi)sθ(xi, i)

)
︸ ︷︷ ︸

f(xi,i)

+σiz, (39)

Thus, we have

∂fT (xi, i)

∂xi
=

1
√
αi

(
I + (1− αi)

∂sTθ (xi, i)

∂xi

)
=

1
√
αi

(
1− 1− αi

1− ᾱi

)
I

=
1
√
αi

αi − ᾱi

1− ᾱi
I

=
√
αi

1− ᾱi−1

1− ᾱi
I

Therefore, the contraction rate is given by

λ = max
i∈[N ′]

√
αi

(
1− ᾱi−1

1− ᾱi

)
< 1 (40)

as 0 < αi, ᾱi < 1. Furthermore, we can easily show that

C = n max
i∈[N ′]

(1− ᾱi) = n(1− ᾱN ),

as ᾱi is decreasing with i.

B.2. SMLD: Discrete Version of VE-SDE

In discrete version of VE-SDE, the forward diffusion is
given by (10). The associated reverse diffusion is given by
(11). Thus, we have

∂fT (xi, i)

∂xi
= I + (σ2

i − σ2
i−1)

∂sTθ (xi, i)

∂xi

=

(
1−

σ2
i − σ2

i−1

σ2
i − σ2

0

)
I

=
σ2
i−1 − σ2

0

σ2
i − σ2

0

I

and the contraction rate is given by

λ = max
i∈[N ′]

σ2
i−1 − σ2

0

σ2
i − σ2

0

< 1 (41)

as σi is increasing with i. Furthermore, we can easily show
that

C = n max
i∈[N ′]

σ2
i − σ2

i−1

B.3. DDIM

The DDIM forward diffusion can be set identically to
the forward diffusion of DDPM (5), whereas the reverse
diffusion is given as (7). In fact, with a proper reparame-
terization, one can cast DDIM such that it is equivalent to
the discrete version of VE-SDE without noise terms. More
specifically, if we define the following reparametrization:

x̄i =
xi√
ᾱi

(42)



then (7) becomes

x̄i−1 = x̄i + (σi−1 − σi) zθ(xi, i) (43)

where

σi =

√
1− ᾱi√
ᾱi

(44)

Furthermore, the corresponding score function with respect
to the reparameterization is

sθ(x̄i, i) = −
zθ(xi, i)

σi
(45)

so that we have

x̄i−1 = x̄i − (σi−1 − σi)σisθ(x̄i, i) (46)

The forward diffusion (5) can be equivalently represented
by the reparameterization as:

x̄i = x̄0 + σiz (47)

as α0 = 1. Therefore, we have

∂fT

∂x̄i
(x̄i) =

(
1 +

σi−1 − σi

σi

)
I =

σi−1

σi
I (48)

and the contraction rate is given by

λ = max
i∈[N ′]

σi−1

σi
< 1 (49)

as σi is increasing with i. Furthermore, we can easily show
that C = 0 as there is no noise term.

C. Proof of Theorem 2
For some of the proofs, we borrow more tight inequal-

ity to obtain the result. In fact, the inequality of stochastic
contraction

ε̄0,r ≤
2Cτ

1− λ2
+ λ2N ′

ε̄N ′ (50)

is a rough estimation of recursive inequality [22]

ε̄j−1,r ≤ λ2
j ε̄j,r + 2Cjτ, (51)

where ε̄j,r denotes the estimation error between reverse
conditional diffusion path down to j. Accordingly, we have

ε̄0,r ≤ ε̄N,r

N∏
j=0

λ2
j +

N∑
j=1

(
2Cjτ

j−1∏
i=1

λ2
i

)
, (52)

which is reduced to (50) when λj and Cj are uniformly
bounded by λ and C, respectively.

Now, our proof strategy is as follows. We specify reason-
able conditions on {βi} or {σ2

i }, which are satisfied by the
existing DDPM, SLMD, and DDIM scheduling approaches.
Then, for any 0 < µ ≤ 1, our goal is to to show that there
exists N ′ such that

ε̄0,r ≤ µε0,

and N ′ decreases as ε0 gets smaller.

C.1. DDPM

Without loss of generality, we assume that ground truth
image and the corrupted image are normalized within range
[0, 1], i.e. x, x̄ ∈ [0, 1]n. Then, we have

ε0 = ∥x− x̃∥2 ≤ n. (53)

We choose N ′ such that

N ′βN ′ ≥ 2 log

(
4n

µε0

)
(54)

N ′βN ′ ≤ µε0
4nτ

. (55)

We separately investigate each term in (52). First, from the-
orem 1,

ε̄N,r = a2N ′ε+ 2b2N ′n

= ᾱN ′ε0 + (1− ᾱN ′)2n

= 2n+ ᾱN ′(ε0 − 2n)

≤ 2n

where the last inequality comes from (53). Subsequently,

N ′∑
j=1

(
2Cjτ

j−1∏
i=1

λ2
i

)

=

N ′∑
j=1

(
2n(1− αj)τ

j−1∏
i=1

λ2
i

)

≤ 2nτ

N ′∑
j=1

βj · 1

≤ 2nτN ′βN ′ ≤ µε0
2

.

where the first inequality comes from
∏j−1

i=1 λ2
i ≤∏j−1

i=1 1 ≤ 1 and the last equality is from (55). Therefore,

ε̄0,r ≤ ε̄N ′,r

N ′∏
j=0

λ2
j +

N ′∑
j=1

(
2Cjτ

j−1∏
i=1

λ2
i

)

≤ 2n · e−
N′β

N′
2 +

µε0
2

(56)

≤ 2n · µε0
4n

+
µε0
2
≤ µε0,



where the third inequality holds by (54), and the inequality
in (56) comes from Lemma C.1 (see below). Furthermore,
from (55), we can see that N ′ becomes smaller for a smaller
ε0. This concludes the proof of DDPM.

Lemma C.1.
N ′∏
j=1

λ2
j ≤ e−

N′β
N′

2 .

Proof of Lemma C.1.

N ′∏
j=1

λ2
j =

N ′∏
j=1

αj ·
(1− ᾱj−1)

2

(1− ᾱj)2

≤
N ′∏
j=1

αj

≤

 1

N ′

N ′∑
j=1

αj

N ′

=

1− 1

N ′

N ′∑
j=1

βj

N ′

=

(
1− βN ′

2

)N ′

where the first inequality comes from ᾱj = ᾱj−1αj ≤
ᾱj−1, and the second inequality is the inequality of arith-
metic and geometric means, and the third equality is from
the linear increasing βj from β0 = 0. Finally, using

ex ≥
(
1 +

x

N

)N
for N ≥ 1, |x| ≤ N (57)

we have

N ′∏
j=1

λ2
j ≤ e−

Nβ
N′
2 ,

This concludes the proof.

C.2. SMLD

Assume that the minimum and maximum values of vari-
ance satisfy the following:

σ2
min <

µ
3
2 ε0
8n

(58)

σ2
max >

µε0
4n

. (59)

Then, using (58),

log

(
2
√
µ

)
< log

(
µε0

4nσ2
min

)
,

and thus

log(2/
√
µ)

log(σ2
max/σ

2
min)

<
log(µε0/4nσ

2
min)

log(σ2
max/σ

2
min)

. (60)

In addition, from (59), we have

µε0
4nσ2

min

<
σ2
max

σ2
min

,

and hence

log(µε0/4nσ
2
min)

log(σ2
max/σ

2
min)

< 1. (61)

Combining (60) with (61), we arrive at

log(2/
√
µ)

log(σ2
max/σ

2
min)

<
log(µε0/4nσ

2
min)

log(σ2
max/σ

2
min)

< 1. (62)

Now, we can choose N ′ such that it satisfies the following
conditions:

N ′ − 1

N − 1
≥

log(2/
√
µ)

log(σ2
max/σ

2
min)

N ′ − 1

N − 1
≤ log(µε0/4nσ

2
min)

log(σ2
max/σ

2
min)

(63)

This leads to the following bounds

(
σ2
max

σ2
min

)N′−1
N−1

≥ 2
√
µ

nσ2
min

(
σ2
max

σ2
min

)N′−1
N−1

≤ µε0
4

.

(64)

On the other hand, in the geometric scheduling of noise, for
all i, we have

λ = σ2
min

(
σ2
max

σ2
min

) i−1
N−1

/
σ2
min

(
σ2
max

σ2
min

) i−2
N−1

(65)

=

(
σ2
min

σ2
max

) 1
N−1

and

C = nmaxσ2
i

(
1−

σ2
i−1

σ2
i

)
= nσ2

N ′(1− λ). (66)

where

σ′
N = σmin

(
σmax

σmin

)N′−1
N−1

.

Note that from (64),

2nσ2
N ′ = 2nσ2

min

(
σ2
max

σ2
min

)N′−1
N−1

≤ µε0
2

, (67)



and (
σ2
min

σ2
max

) 2(N′−1)
N−1

≤ µ

4
. (68)

Hence, by plugging in (66) to (50), we have

ε̄0,r ≤
2Cτ

1− λ2
+ λ2N ′

ε̄N ′

=
2nσ2

N (1− λ)τ

(1 + λ)(1− λ)
+

(
σ2
min

σ2
max

) 2N′
N−1

(ε0 + 2nσ2
N ′)

≤ 2nσ2
N ′

τ

1 + λ
+

(
σ2
min

σ2
max

) 2(N′−1)
N−1

(ε0 + 2nσ2
N ′)

≤ µε0
2

+
µ

4

(
ε0 +

µε0
2

)
≤ µε0

2
+

µ

4
(ε0 + ε0)

= µε0,

where the third inequality comes from the bounds in (67),
(68), and the fact that τ = tr(ATA)

n < 1 for a non-expansive
linear mapping A.

Finally, we can easily see that the value N ′ satisfying
(63) decreases as ε0 decreases.

C.3. DDIM

In DDIM, we have Cj = 0 for Eq. (52). Let σ0 and N ′

satisfy the following:

σ2
0 ≤

µε0
4n

(69)

σ2
N ′ ≥

ε0
2n

(70)

Then, we have

ε̄0, r ≤ ε̄N,r

N∏
j=1

λ2
j

≤ (ε0 + σ2
N ′2n) ·

σ2
0

σ2
N ′

≤ µε0

where the second equality comes from λj = σj−1/σj and
the last equality comes from Eqs. (69) and (70).

We can also easily see that the minimum value N ′ satis-
fying (70) decreases as ε0 decreases, as σ2

i is an increasing
sequence in DDIM.

D. Implementation detail
In this section, we provide detailed explanation of dis-

crete version of CCDF for each application. Again, the
number of discretization step for our method is given N ′ =
Nt0 < N where t0 refers to the acceleration factor.

D.1. Super-resolution and Image Inpainting

For these problems, we employ the discretized version of
the VP-SDE, which has shown impressive results on con-
ditional generation [5, 8]. Namely, we use DDPM [10],
with several strategies introduced in improved DDPM (ID-
DPM) [20] for both training the score function and for re-
verse diffusion procedure.

The modified reverse diffusion is given by

x′
i−1 =

1
√
αi

(
xi + (1− αi)sθ(xi, i)

)
+
√
σiz, (71)

where σi is given by

σi = exp(v log βi + (1− v) log β̃i), (72)

letting model variance to be learnable in a range [βi, β̃i],
where β̃i is given by β̃i =

1−ᾱi−1

1−ᾱi
βi. In (72), v is the learn-

able parameter so that it can be trained using the variational
lower-bound penalty introduced in [10, 20].

Specifically, v and the score function sθ are trained using
the following objective

Ltotal(θ, v) = Lsimple(θ) + λLV LB(v), (73)

where Lsimple(θ) is given in (37) and we apply stop-
gradient for the LV LB so that the gradient of the loss con-
tributes only to estimating the model variance.

For the training of score function, we use a U-Net ar-
chitecture as used in [20] with the loss function as given
in (73). Multi-headed attention [36] was used only at the
16×16 resolution. Linear beta noise scheduling [10] with
βmin = 0.0001 and βmax = 0.02 were used, with N = 1000
discretization. We train the model with a batch size of 2,
and a static learning rate of 1e-4 with Adam [14] opti-
mizer for 5M steps. Exponential moving average (EMA)
rate of 0.9999 was applied to the model.

For super-resolution, we define a blur kernel hD which
is defined by successive applications of the downsampling
filter by a factor D, and upsampling filter by a factor D.
This can be represented as a matrix multiplication:

Px′ := hD ∗ x′. (74)

where x′ denotes intermediate estimate from the reverse
diffusion. Then, we use the following data consistency iter-
ation:

xi = (I − P )x′
i + x̂i, (75)

where xi is the current estimate, and x̂i is the forward prop-
agated image from the initial measurement x̂(0):

x̂i =
√
ᾱix̂0 +

√
1− ᾱiz (76)



Therefore, we have

A = I − P , b = x̂i.

We can easily see that σmax(A) ≤ 1 for the normalized
filter hD.

Similarly, for the case of image inpainting, P is just a
diagonal matrix with 1 at the measured locations and 0 on
the unmeasured locations so that σmax(A) ≤ 1.

The resulting pseudo-code implementation of the algo-
rithm is given in Algorithm 1.

Algorithm 1 Accelerated Super-resolution / inpainting (VP,
Markov)

Require: x0, x̂0, N
′, {αi}N

′

i=1, {σi}N
′

i=1, sθ
1: z ∼ N (0, I)
2: xN ′ ←

√
ᾱN ′x0 +

√
1− ᾱN ′z ▷ Forward diffusion

3: for i = N ′ to 1 do ▷ Reverse diffusion
4: x′

i−1 ← 1√
αi
(xi + (1− αi)sθ(xi, i))

5: z ∼ N (0, I)
6: xi−1 ← x′

i−1 + σiz ▷ Unconditional update
7: z ∼ N (0, I)
8: x̂i ←

√
ᾱix̂0 +

√
1− ᾱiz

9: xi−1 = (I − P )xi−1 + x̂i

▷ Measurement consistency
10: end for
11: return x0

D.2. DDIM for Super-resolution/Inpainting

Note that we can use the same score function trained for
DDPM, and use it in DDIM sampling [30]. Here, we study
the effect on combining DDIM together with the proposed
method to achieve even further acceleration. All we need
to do is modify the unconditional update step, arriving at
Algorithm 2.

D.3. MRI reconstruction

For the task of MRI reconstruction, we ground our work
on Score-MRI [6], and modify the previous algorithm for
our purpose. The algorithm is given in Algorithm 3. Specif-
ically, we use variance exploding (VE-SDE) with predictor-
corrector (PC) sampling which gives optimal results for MR
reconstruction. For the step size of the corrector (Langevin
dynamics) step, we use the following

ϵi = 2r
∥z∥2

∥sθ(xi, σi)∥2
, (77)

Algorithm 2 Accelerated Super-resolution / inpainting (VP,
markov) + DDIM

Require: x0, x̂0, N
′, {αi}N

′

i=1, {σi}N
′

i=1, sθ
1: z ∼ N (0, I)
2: xi ←

√
ᾱix0 +

√
1− ᾱiz ▷ Forward diffusion

3: for i = N0 to 1 do ▷ Reverse diffusion
4: xi−1 ← 1√

αi
xi+(

1−ᾱi√
αi
−
√

(1− ᾱi)(1− ᾱi−1)
)
sθ(xi, i)

▷ Unconditional update
5: z ∼ N (0, I)
6: x̂i ←

√
ᾱix̂0 +

√
1− ᾱiz

7: xi−1 = (I − P )xi−1 + x̂i

▷ Measurement consistency
8: end for
9: return x0

with r = 0.16 set as constant. For training the score func-
tion, we use the following minimization strategy:

min
θ

Et∼U(η,1)Ex(0)∼p0
Ex(t)∼N (x(0),σ2(t)I)

[
(78)∥∥∥∥σ(t)sθ(x(t), t)− x(t)− x(0)

σ(t)

∥∥∥∥2
2

]
,

with η = 1e-5, and

σ(t) = σmin

(
σmax

σmin

)t

, (79)

with σmin = 0.01, σmax = 378. We construct a modified
U-Net model introduced in [34], namely ncsnpp. Adam
optimizer is used for optimization, with a static learning rate
of 2e-4 for 5M steps. EMA rate of 0.999 is used, and
gradient clipping is applied with the maximum value of 1.0.

In compressed sensing MRI, the subsampled k-space
data y is obtained from underlying image x as:

y = DFx (80)

where F denote the Fourier transform and its inverse, D is
a diagonal matrix indicating the k-space sampling location
and y is the original zero-filled k-space data.

The associated data consistency imposing operator is
then defined by

xi = (I − F−1DF )x′
i + F−1Dy (81)

where F−1 is the inverse Fourier transform. Therefore, we
have

A = I − F−1DF , b = F−1Dy.

Again, we can easily see σmax(A) ≤ 1 as the Fourier trans-
form is orthonormal.



Algorithm 3 Accelerated MR reconstruction (VE, PC)

Require: x0,y, N
′, {σi}N

′

i=1, {ϵi}N
′

i=1, sθ
1: z ∼ N (0, I)
2: xN ′ ← x0 + σN ′z ▷ Forward diffusion
3: for i = N ′ to 1 do ▷ Reverse diffusion
4: x′

i−1 ← xi + (σ2
i − σ2

i−1)sθ(xi, σi)
5: z ∼ N (0, I)
6: xi−1 ← x′

i−1 +
√
σ2
i − σ2

i−1z ▷ Predictor

7: xi−1 = (I − F−1DF )xi + F−1Dy
▷ Measurement consistency

8: x′
i−1 ← xi−1 + ϵisθ(xi, σi)

9: z ∼ N (0, I)
10: xi−1 ← x′

i−1 +
√
2ϵiz ▷ Corrector

11: xi−1 = (I − F−1DF )xi + F−1Dy
▷ Measurement consistency

12: end for
13: return x0

The corresponding pseudo-code implementation is
shown in Algorithm 3.

All training and inference algorithms were implemented
in PyTorch, and were performed on a single RTX 3090
GPU.

E. Additional Experiments

E.1. Super-resolution

Comparison study. In Fig. E.1, we compare the results
of super-resolution using fairly large number of diffusion
steps, as opposed to using only 20 number of diffusion steps
as shown in Fig. 4. This is a region where ILVR is known
to perform well, as opposed to the few-step setting. While
in Fig. E.1, ILVR uses 1000 steps of diffusion, the proposed
method only uses 100, 200, and 300 steps of diffusion for
×4,×8, and ×16, respectively. Nevertheless, the quality of
reconstruction does not degrade, thanks to the contraction
property of CCDF.
Incorporation of DDIM. We provide additional SR results
using CCDF + DDIM. In Figure E.2, we show an experi-
ment with the FFHQ dataset, where we compare the com-
bination of ILVR + DDIM, and proposed method + DDIM.
For ILVR + DDIM, in order to reduce the number of itera-
tions, we choose larger discretization steps used in DDIM.
For the proposed method, we fix N = 50, and reduce the
value of t0 to achieve less iterations. In the figure, we con-
firm that our method can be used together with DDIM to
create high-fidelity samples with as small as 5 reverse dif-
fusion iterations, even when it comes down to extreme cases
of SR ×8 or SR ×16. Additionally, we observe that the re-
sults with t0 ≤ 0.5 is superior to the t0 = 1.0 counterparts,
again confirming our theory.

Figure E.1. Comparison on SR task (×4, ×8, ×16 for the 1st,
2nd, and 3rd row): (a) ESRGAN [37], (b) ILVR [5] (1000 steps),
(c) proposed method (100, 200, 300 steps for ×4, ×8, ×16 SR),
(d) Ground Truth

SR method 5 10 25 50

FFHQ

×4
ILVR

+DDIM 120.53 114.61 87.15 81.85

proposed
+DDIM 72.34 69.39 78.83 82.72

×8
ILVR

+DDIM 147.44 115.30 101.37 93.72

proposed
+DDIM 91.84 85.43 87.43 94.89

×16
ILVR

+DDIM 147.44 115.30 101.37 93.72

proposed
+DDIM 91.84 85.43 87.43 94.89

AFHQ

×4
ILVR

+DDIM 63.79 55.57 40.22 30.57

proposed
+DDIM 17.57 17.19 20.87 30.22

×8
ILVR

+DDIM 106.94 67.06 51.75 45.96

proposed
+DDIM 35.03 31.70 35.62 45.17

×16
ILVR

+DDIM 163.98 94.68 69.60 65.33

proposed
+DDIM 70.02 59.01 49.36 64.61

Table E.1. FID(↓) scores on FFHQ and AFHQ test set for SR task
with DDIM by varying the number of iterations.

The same trend can also be seen via quantitative met-
rics in Table E.1. Using limited number of diffusion steps,
FID score in the case of ILVR+DDIM grows exponentially,



Figure E.2. Results on SR task of FFHQ dataset with proposed
method + DDIM. Numbers on top indicate number of reverse dif-
fusion iterations. (a) LR image, (b) ground truth, (c) ILVR +
DDIM, (d) CCDF + DDIM.

as we decrease the number of steps taken. Contrarily, our
method is able to improve the metric by quite a margin, as
opposed to using full diffusion with 50 steps in total. This
trend is indeed similar to the experiments performed with
DDPM.

Experiments with ImageNet. ImageNet [7] contains di-
verse categories of natural images, and are known to be
much harder to model, due to its highly multimodal nature.
We try to examine if CCDF scales even to this challeng-
ing task, using a pre-trained model provided in the guided-
diffusion github repository3. As with other experiments
with FFHQ or AFHQ dataset, we train an ESRGAN model
for each SR factor, and use it as our initialization strategy.
In Fig. F.2, we can see that our CCDF strategy outperforms
ILVR using full reverse diffusion, and also vastly improves
the image quality of ESRGAN, which is our initialization.

t0 0.05 0.1 0.2 0.5 0.75 1.0 [34]
Box 96 46.03 45.93 45.99 46.14 48.05 48.61

Box 128 50.41 50.05 49.77 51.65 54.49 59.27
Box 160 61.77 59.62 57.99 61.04 67.50 78.50

Table E.2. FID(↓) scores on FFHQ test set for inpainting task
with varying t0 values. t0 = 1.0 is the baseline method without
any acceleration used in [34]. Numbers in boldface, and underline
indicate the best, and the second best scores.

E.2. Inpainting

Dependence on t0. As in Table 2, we compare the FID
score of reconstructions for the inpainting task, as we vary
the t0 values in table E.2. We notice similar results from
the SR task, in the sense that there always exist t0 ∈ (0, T )
which gives higher scores than using full diffusion. With
relatively small boxes, we see that t0 = 0.1 is optimal,
whereas we typically need more diffusion steps for larger
boxes.

Figure E.3. Comparison on inpainting task: (a) Input image, (b)
SN-PatchGAN [40], (c) score-SDE [34] using 1000 steps from
T = 1, (d) CCDF using 200 steps from t0 = 0.2, (e) Ground
Truth.

Comparison study. We compare the proposed CCDF strat-
egy with SN-PatchGAN [40], and score-SDE [34] using
1000 steps in Fig. E.3. For SN-PatchGAN in Fig. E.3 (b),
we often see highly unrealistic details e.g. near the mouth.
Note that SN-patchGAN serves as the initialization point
for CCDF in inpainting. Leveraging this imperfect initial-
ization, the proposed method is able to provide reconstruc-
tions that are highly realistic, as can be seen in fig. E.3 (d).
It is also notable that score-SDE using full diffusion more
often than not produces results that are incoherent with the
known regions (see second row of Fig. E.3 (c)), while the
proposed method stably outputs coherent results.
Ablation study. We perform an ablation study compar-
ing the effect of different initialization strategy. Table E.3

3https://github.com/openai/guided-diffusion

https://github.com/openai/guided-diffusion


Figure E.4. Ablation study on using different initializations for
forward diffusion (×6 1D Gaussian sampling). (a) Vanilla ini-
tialization, (b) corresponding results with the proposed method.
(c) NN initialization, (d) corresponding results with the proposed
method.

SR t0 = 0.1 0.2 0.5 1.0

FFHQ

×4 vanilla 78.39 66.77 64.25 63.14
NN init. 60.90 60.91 64.04 63.31

×8 vanilla 116.42 93.06 82.39 78.91
NN init. 78.13 75.76 79.34 77.34

×16 vanilla 184.70 135.20 96.15 92.32
NN init. 101.79 92.59 88.09 88.49

AFHQ

×4 vanilla 19.14 18.66 18.08 18.70
NN init. 15.53 17.14 19.06 18.10

×8 vanilla 48.87 39.88 33.28 34.84
NN init. 33.47 32.30 33.65 33.50

×16 vanilla 96.01 72.22 47.42 47.28
NN init. 63.27 51.13 44.18 45.17

Table E.3. FID(↓) scores for SR tasks with different initialization
strategies.

shows the difference in the results when using vanilla ini-
tialization with the corrupted image, and NN initializa-
tion. We see that with all t0, NN initialization performs
marginally better than vanilla initialization. The difference
becomes clearer as we decrease the value of t0 to 0.1. The
same ablation study was performed also for MRI recon-

struction task, and is illustrated in Figure E.4. We see simi-
lar trend as in the SR task.

Furthermore, we provide additional qualitative results of
each task on various datasets, focusing mainly on showing
the trend of reconstruction results as we vary the value of t0.
In Figure F.3, we compare the achievable image quality by
fixing the number of reverse diffusion steps to 20. Consis-
tent with what we saw in Figure 4, we see that our method
largely outperforms the other diffusion model-based meth-
ods. In Figure F.4, Figure F.5 respectively, we see that we
can stably arrive at a feasible solution with different values
of t0 ∈ [0.1, 0.5], typically requiring higher values of t0 for
severer degradation.

F. Validity of assumption
In Lemma A.1, we assumed that sθ(xi, t) =

∂
∂xi

log p0i(xi|x0). In this section, we briefly show that
the assumption is valid. In the theoretic side, [1] showed
that given an optimal reconstruction function r∗σ(xt) trained
with denoising autoencoder loss asymptotically behaves as

r∗σ(xt) = xt + σ2 ∂ log p(xt)

∂xt
+ o(σ2), σ → 0

s∗θ(xt) =
r∗σ(xt)− xt

σ2
=

∂ log p(xt)

∂xt
+ o(1), σ → 0,

where the equation emphasizes the behavior of the optimal
score function, regarding how it was parameterized. This
asymptotic behavior hints that the error will be small, es-
pecially when σ approaches zero. In our case, σ → 0 as
t→ 0, and hence the behavior holds near t = 0.

Figure F.1. Average value of ∥sθ(xt, t) − ∂
∂xt

log p0t(xt|x0)∥22,
and the norm of ∥sθ(xt, t)∥22 at time t, on fastMRI 320×320 test
set (1K samples).

In order to numerically validate such error, we conducted
an experiment to calculate the actual average error norm, il-



lustrated in Fig. F.1. Here, we see that the error norm mostly
stays at very low values across the range. We do observe
that the magnitude of error inevitably increases when the
noise level is too large, so the error grows where t > 0.5.
Nevertheless, we note that most of our contraction analysis
stays in the t ∈ [ϵ, 0.5] regime, and hence the assumption
made in Lemma A.1. is practical.



Figure F.2. Results of SR task on ImageNet256 validation dataset. (a) LR image, (b) ground truth, (c) ESRGAN, (d) ILVR (1000 steps),
(e) CCDF (100, 200, 300 steps for ×4, ×8, ×16 SR, respectively.)



Figure F.3. Results of super-resolution on FFHQ 256×256 data. The first, second and third row denote ×4 SR, ×8 SR, and ×16 SR,
respectively. (a) LR input, (b) Ground Truth, (c) ESRGAN [37], (d) SR3 [25] with 20 diffusion steps (N = 20,∆t = 0.05), (e) ILVR [5]
with 20 diffusion steps(N = 20,∆t = 0.05), (f) proposed method (CCDF) with 20 diffusion steps (N = 100, t0 = 0.2).



Figure F.4. Results of super-resolution on FFHQ 256×256 data. The first, second and third row denote ×4 SR, ×8 SR, and ×16
SR, respectively. (a) LR input, (b) Reference, (c) ESRGAN [37], (d) proposed method (CCDF) with varying t0 values, and (e) ILVR
(t0 = 1.0) [5].



Figure F.5. Additional results of inpainting on FFHQ 256×256 data. The first, second and third row denote masks of size 96×96, 128×128
and 160 × 160, respectively. (a) Masked image, (b) SN-patchGAN [40], (c) proposed method (CCDF) with varying t0 values, and (d)
Score-SDE (t0 = 1.0) [34]
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