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Figure 1. Given images of an object under different lighting conditions, our method can recover the detailed surface normal map. Images
were captured by a smartphone camera with moving handheld lights under the indoor natural illumination. Please see details in Section 5.3.

Abstract

This paper tackles a new photometric stereo task, named
universal photometric stereo. Unlike existing tasks that as-
sumed specific physical lighting models; hence, drastically
limited their usability, a solution algorithm of this task is
supposed to work for objects with diverse shapes and ma-
terials under arbitrary lighting variations without assum-
ing any specific models. To solve this extremely challenging
task, we present a purely data-driven method, which elimi-
nates the prior assumption of lighting by replacing the re-
covery of physical lighting parameters with the extraction
of the generic lighting representation, named global light-
ing contexts. We use them like lighting parameters in a cal-
ibrated photometric stereo network to recover surface nor-
mal vectors pixelwisely. To adapt our network to a wide
variety of shapes, materials and lightings, it is trained on
a new synthetic dataset which simulates the appearance of
objects in the wild. Our method is compared with other
state-of-the-art uncalibrated photometric stereo methods on
our test data to demonstrate the significance of our method.

1. Introduction
Photometric stereo is a problem of recovering the surface

normal map from appearances of an object under varying
lighting conditions. For decades, a broad spectrum of tech-
niques have been proposed to expand the scope of target
geometry, material and acquisition setup [17, 25, 26, 45] in

the framework of the physics-based inverse rendering. Re-
cently, advances in deep learning have been eliminating the
dependence on physics-based modeling from photometric
stereo methods, which contributes to handle complex opti-
cal phenomena which are hardly described in a mathemati-
cally tractable form [14, 23, 41, 47].

However, despite the long journey in this research field,
each photometric stereo algorithm is still limited to a spe-
cific physical lighting model, which severely compromises
its usability. In reality, most recent (semi-)calibrated [13,
23, 41, 42, 47] and uncalibrated [14, 29] photometric stereo
methods still assume the single lighting in a dark environ-
ment. Others address natural lighting conditions, however
both calibrated and uncalibrated methods still assume con-
vex Lambertian surfaces and their lighting models are lim-
ited to spherical harmonics lighting [9, 19], dominant sun
lighting [7, 22] and equivalent directional lighting [18, 38]
which cannot represent the complex illumination.

To address this limitation, this paper proposes the “third”
task in photometric stereo problem following calibrated and
uncalibrated tasks. We name it universal photometric stereo
(UniPS) which denotes the setup without prior assumption
of physical lighting models; hence, arbitrary lighting con-
ditions should be considered unlike calibrated and uncali-
brated tasks that consider specific ones as in Table 1.1

1It would be ideal if the task were universal on materials as well. How-
ever, since some objects such as mirrors and transparent objects must be
excluded, we consider only lighting conditions to be universal in this task.
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Table 1. Comparison of different photometric stereo tasks.

Lighting
Calibration

Lighting
Model

Lighting
Condition

Calibrated Required Required Specific
Uncalibrated Free Required Specific
Universal Free Free Arbitrary

In this paper, we present a first viable method for UniPS
based on key insights as follows. Conventional uncalibrated
photometric stereo algorithms recovered physical lighting
parameters and surface normals sequentially or simultane-
ously; thus, constrained by specific lighting models. How-
ever, we show that the recovery of physical lighting param-
eters is not essential in a UniPS network, and can be re-
placed with the extraction of global lighting contexts from
individual images by their interaction with others. In order
to keep the receptive field of our network constant, contexts
are extracted at the predefined canonical resolution which is
independent of the input image resolution. By using global
lighting contexts like calibrated lighting parameters, surface
normal vectors can be recovered in similar to existing pixel-
wise calibrated photometric stereo networks (e.g. [23, 24])
which easily scale to high-resolution images. While our net-
work drops a prior assumption of lighting, its adaptation to
diverse shapes, materials and lightings has to be ensured
by training data. Since existing training datasets for photo-
metric stereo networks are limited to the single, directional
lighting setup, we create a dataset for our task by physi-
cally rendering the appearance of objects with more than
10, 000 combinations of shape, material and lighting us-
ing high quality commercial 3-D assets. We also create an
evaluation dataset with 50 sets of attributes using different
assets to compare our method with state-of-the-art uncali-
brated photometric stereo algorithms specifically designed
for directional lighting [14] and natural lighting [19, 38].
Finally, the qualitative evaluation demonstrates that our
method even works for real objects under the challenging
spatially-varying lighting conditions that were convention-
ally considered to be intractable (See Fig. 1).

2. Related Work
Here we briefly review uncalibrated photometric stereo

methods under the directional or natural lighting. Due to the
space limit, other categories (e.g. calibrated setup [23–27],
near-light setup [28,42] or multi-view setup [31,40]) are not
included in this survey. However, we emphasize that all the
methods more or less assume any of physical lighting mod-
els; hence, are limited to specific lighting setups.

Uncalibrated, Directional Lighting: Since Woodham [49]
presented the first Lambertian photometric stereo algorithm
in 1980, methods following its setup have been called cal-
ibrated photometric stereo which assumes an orthographic
camera and a known single directional lighting. The uncal-

ibrated task is almost identical to the calibrated one except
that lighting parameters are unknown. Until very recently,
most uncalibrated photometric stereo algorithms assumed
Lambertian integrable surfaces and the goal was to resolve
the General Bas-Relief ambiguity [20] between geometry
and light. Various cues were employed for resolving this
ambiguity, which include inter-reflections [15], entropy of
surface albedo [8], color profile [43], diffuse maxima [16],
reflectance symmetry [50] and perspective geometry [39].
Though there were very few methods for non-Lambertian
surfaces due to their ill-posed nature, Lu et al. [37] utilized
the statistical distribution of the intensity profile to recover
isotropic non-Lambertian surfaces.

In 2018, the first deep neural network for uncalibrated
photometric stereo was presented [13]. However, it sim-
ply dropped the lighting channel from its calibrated variant
presented at the same time and the performance was quite
limited. Hence, authors extended their work to the two-step
approach [12] where only lighting information was firstly
recovered, and then it was used as input of the calibrated
photometric stereo network. Later, authors further updated
their work by feeding the surface normal estimation result
back to the lighting prediction to improve its accuracy [14].
Building upon this work, Kaya et al. [29] have recently uti-
lized the lighting prediction result from [14] to recover sur-
face normals in the neural inverse rendering framework.

Uncalibrated, Natural Lighting: Although most photo-
metric stereo methods assume the single directional light-
ing condition, some literature exists which addresses nat-
ural lighting conditions. However, inversely decomposing
the natural light reflected on non-Lambertian surfaces is in-
tractable in the inverse rendering framework, so it is com-
mon to assume convex Lambertian surfaces and approxi-
mated lighting models [9, 10, 18, 19, 38].

The first uncalibrated photometric stereo algorithm un-
der natural lighting was proposed by Barsri et al. [9] which
approximated natural lighting as global first-order spherical
harmonics. Though a global concave-convex ambiguity ex-
ists in estimated surface normals due to the lighting approx-
imation with an orthographic camera, Brahimi et al. [10]
recently proved that the perspective integrability constraint
makes the problem well-posed. Mo et al. [38] presented an-
other uncalibrated photometric stereo algorithm under natu-
ral lighting. They proposed the equivalent directional light-
ing model which decomposed the entire task into the patch-
wise directional uncalibrated photometric stereo problem.
This work was later extended by authors where MRF-based
global optimization and rotation averaging were introduced
for a better normal patch integration [18]. These methods
worked under an orthographic camera, however when solv-
ing the global orthogonal ambiguity with integrability, there
was a binary ambiguity left which requires to be solved
manually and a non-integrable surface can not be recov-
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Figure 2. Illustration of the proposed method. Given arbitrary
number of image crops (e.g. two in this figure) of an object un-
der different lighting conditions, they are resized to the canonical
resolution and passed to the encoder to extract global lighting con-
texts. Then, for each pixel in the original image, raw image values
and an interpolated global lighting context are concatenated to be
fed to the decoder that aggregates features on the lighting axis and
recovers the surface normal vector at the location.

ered in theory. To address this issue, Haefner et al. [19]
presented a variational method which directly recovered a
depth map rather than a surface normal map to handle non-
integrable surfaces. However, this method requires initial
geometry which is basically recovered from the object out-
line and its performance drastically affected by its quality.

3. Universal Photometric Stereo
In this section, we preliminarily define the UniPS prob-

lem setup. Given a set of q RGB images I{1,...,q} captured
under unknown, arbitrarily varying lighting conditions with
a fixed camera, and a binary mask M to specify the target
object in the image, our goal is to recover the unit surface
normal vector n at pixels which belong to the object. The
object mask is friendly provided using any existing fore-
ground extraction methods such as [46]. UniPS doesn’t put
any particular constraints on the camera model, however an
orthographic, linear camera is practically assumed in this
work as training images are rendered by the camera.

The main difficulty in UniPS is due to the lack of prior
knowledge of lighting which disables most of existing pho-
tometric stereo algorithms designed under specific physi-
cal lighting models. In UniPS, lighting conditions could
include near or distant, directional, point, area, natural or
even mixture of them (e.g. putting active near area lights
under passive natural light as demonstrated in Fig. 1). It is
highly possible that the lighting is spatially-varying which
cannot be represented by a global lighting model. This may
be the case, for example, in most indoor natural scenes [32].
In a general context, even inter-reflections and cast shadows
can also be a part of spatially-varying lightings.

Since the ultimate goal of UniPS is to realize a truly prac-

tical photometric stereo method, the available geometries
and materials (except for extreme cases such as transparent
and perfect mirror objects) should be diverse as well and the
number of input images and their resolution should be arbi-
trary. Although accepting arbitrary number of input images
was considered as an important requirement in recent works
(e.g. [13, 23, 47]), there are still some methods that do not
meet this requirement (e.g. [33]). Scalability is basically not
a problem in pixel-by-pixel algorithms (e.g. [23, 26]), but it
often becomes a major issue in methods that use the entire
image information such as convolutional neural networks
and global optimization (e.g. [14, 38]).

4. Method
4.1. UniPS Network with Global Lighting Contexts

This paper presents a first viable universal photometric
stereo network. As illustrated in Fig. 2, our network con-
sists of an encoder and decoder. The encoder extracts global
lighting contexts from images and an object mask, which is
a generic lighting representation that corresponds to physi-
cal lighting parameters (e.g. light direction) in deep uncal-
ibrated photometric stereo networks [12, 14]. The decoder
takes all raw image values and the interpolated global light-
ing context at each pixel and predict its surface normal.

Our network architecture has two major differences from
basic encoder-decoder architectures that take a single image
as input. First, our network takes multiple images as input;
hence, features must be embedded in the latent space con-
sidering the interaction of them. Therefore, we perform fea-
ture communication in the encoder and aggregation in the
decoder, respectively. Second, unlike typical architectures
where encoded features are directly passed to the decoder,
we use different working resolutions for the encoder and
decoder. The working resolution for the decoder is same as
the original image resolution, but the encoder takes as input
images that have been resized to the pre-defined canonical
resolution, which is basically smaller than the original reso-
lution and its output is passed to the decoder after inversely
converted for the decoder’s working resolution.

There are two major advantages to use different working
resolutions. First, the scalability to the image size is ensured
because memory requirements for the encoder depend only
on the canonical resolution, not on the original one, while
the decoder processes each pixel one by one. The second
and more important reason is to keep the receptive field of
the encoder invariant to the input image size. Without this,
the networks’ receptive field may not cover the entire object
in extremely high-resolution test images.

4.2. Framework Components

Preprocessing: The pixel value range of individual im-
ages can significantly vary under different lightings. There-
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Figure 3. The illustration of four different variants of the encoder
with regard to the timing of the inter-image communication.

fore, we divide each image by its mean for normalization.
Note that the common zero-mean normalization is not used
to avoid emphasizing the area of low signal-to-noise ratio.
We then crop the rectangular object bounding region with a
small margin (e.g. four pixels) based on the object mask to
confirm that the object is placed in the middle of the crop
and covered from edge to edge.

Encoder: Preprocessed crops of the images and mask are
bilinearly resized to the predefined s × s canonical resolu-
tion. They are then concatenated C{1,...,q} ∈ Rs×s×(3+1)

and passed to the encoder. The output of the encoder is em-
bedded features for individual images whose size is a quar-
ter of the canonical resolution G{1,...,q} ∈ R s

4×
s
4×de where

de is the embed dimension. We call them as global light-
ing contexts because the difference of features among im-
ages should only be attributed to the difference of lighting
conditions. Global lighting contexts are also an analogy of
physical lighting parameters similarly recovered by the con-
ventional uncalibrated photometric stereo methods. How-
ever, unlike physical parameters were basically assigned to
each image globally (e.g. light direction [12], spherical har-
monics [19]), a unique global lighting context is assigned at
each location (therefore we name context‘s’); hence has the
capacity to represent spatially-varying phenomena such as
near-lighting, inter-reflections and cast shadows.

The encoder mutually embeds global lighting contexts
via the image-wise feature extraction and inter-image fea-
ture communication. The former extracts multi-scale fea-
ture maps using a backbone (e.g. SwinTransformer [34])
followed by the basic multi-scale feature fusion [52]. The
latter propagates features across images without changing
the feature dimension by pixelwisely employing a single
Transformer layer [48] as with the recent calibrated pho-
tometric stereo network [24]. As illustrated in Fig. 3, there
are multiple feasible designs of the encoder depending on
how information propagate via inter-/intra-image interac-
tions. The best design of them will be discussed in the
ablation study in Section 5.1. As it will turn out, the fea-
ture communication should be conducted just before the
multi-scale feature fusion (i.e. pre-fusion). Please refer to
the supplementary for more details about individual imple-
mentations of the feature extraction and communication.

Decoder: For each coordinates x of the original resolution,
the decoder inputs a set of image values I{1,...,q}(x) and

a global lighting context G{1,...,q}(S(x)), and outputs the
unit normal vector at the location. Here, S is the sampling
operation to fetch the value of the global lighting context
corresponding to x using bilinear interpolation. Note that
avoiding the resize of global lighting contexts to the origi-
nal resolution also contributes to the scalability.

The decoder is composed of the feature aggregation and
the surface normal recovery. The former further propagates
information across different lighting conditions with extra
Transformer layers, and then squeezes the lighting channel
with the pooling by multi-head attention (PMA) [30]. The
output of PMA is a pixelwise feature vector independent of
number of input images. The latter feeds the feature to the
multi-layer perceptron with one hidden layer to output the
surface normal vector. We should note that when no com-
munication is conducted in the encoder as in Fig. 3, it can
be deemed that global lighting contexts have been extracted
at the aggregation step in the decoder.

Training Loss: The mean squared error between ground
truth and predicted surface normals is used as the training
loss. Because of the efficiency, we compute the loss only on
samples from specific locations, not from the entire image.
For each object, we uniformly sample pixels at the original
resolution whose centers can be projected exactly onto cen-
ters of pixels at the canonical resolution. Then, we further
sample pixels from a limited number of random locations
(e.g. 2500) at the original resolution which allows for the
normal estimation with a sub-pixel global lighting context.

Network Analysis: Our method is data-driven; hence sat-
isfies the requirements of UniPS. This is achieved by global
lighting contexts, which eliminate the need for the physical
lighting parameter recovery and makes our method feasible
to handle complex spatially-varying lighting effects.

Our framework is scalable by introducing the canonical
resolution for encoding global lighting contexts and pixel-
wisely applying the decoder. The network’s receptive field
is independent of the input image size as well as there is
no upper limit to the test image size. By utilizing the self-
attention mechanism for the feature interaction across im-
ages, the network is applicable to an arbitrary number of im-
ages as long as the computational resource permits. Given
this capacity, the availability of varying shapes, materials
and lightings are secured by training data.

4.3. PS-Wild Training Dataset

We need sufficient training examples that properly char-
acterize the universal photometric stereo task. Though two
major synthetic photometric stereo datasets (i.e. Blobby and
Sculpture [13], CyclesPS [23]) have been presented to date,
they were for the methods under the single directional light-
ing and not applicable to UniPS. Therefore, we present a
new photometric stereo dataset, named PS-Wild, which sim-



ulates the appearance of objects with diverse geometries and
materials captured under various lighting conditions in the
wild. The idea is simply to ask a physically-based renderer
(i.e. Blender Cycles [2]) to synthesize a large number of im-
ages under general lightings, taking full advantage of high
quality commercial 3-D assets.

To assemble an appropriate collection of object appear-
ances for our PS-Wild dataset, we browsed through online
marketplaces looking for 3-D assets that satisfied three main
desiderata. First, we should use 3-D models that have suffi-
cient complexity. We don’t want the objects whose surface
normal distribution deviates from ones in the wild (e.g. too
many planar objects or low-poly models are not adequate).
Second, we want 3-D materials to be as diverse as possi-
ble. In our problem, we don’t assume specific materials as
well as lighting models, so the training data needs to be cho-
sen to cover diverse materials in the wild. In addition, tex-
tures need to be realistic. In the existing synthetic datasets,
the entire image was rendered with a single BRDF [13], or
pixelwisely different random BRDFs [23, 35], but the ac-
tual surface texture has some realistic rules as mentioned
in previous studies [8, 17]. Hence, it is worth using texture
maps that were designed by professionals. Third, we want
to render scenes under diverse lighting conditions. In this
regard, the most practical method we found is to use the
HDR image-based (HDRI) lighting that covers various in-
door and outdoor scenes. To add more details, this method
uses an HDR environment map to place an omnidirectional
light source. Each ray from the light is self-shielded before
it hits the surface, so a variety of spatially-varying lighting
effects (e.g. cast shadows, near-lighting) are baked.

Based on these desiderata, we choose Adobe Stock [1]
as our assets to create the training dataset. This collection
consists of over 17,000 3-D assets including 3-D models,
materials (texture maps) and lightings (environment maps).
From all available assets, we downloaded 410 3-D models,
926 materials and 31 lightings. Most of data in Adobe Stock
assets are 3-D models and we actually used all the materials
and lightings available at the time we accessed there (Oct.
2021). The number of assets itself may not seem very large,
but in reality, a countless number of images can be synthe-
sized by various augmentation techniques such as rotation
and color transformation.

After acquiring 3-D assets, we apply our computational
pipeline to generate images with ground truth surface nor-
mal maps. For each 3-D object in assets, we randomly as-
sign one material and one environment map. Then we apply
several random rotations of the object until the Shannon en-
tropy of its surface normal distribution becomes more than
a threshold (i.e. 4.0 in our method) and if the maximum en-
tropy is less than the threshold, the 3-D model is discarded
from assets. We then scale the object to make sure that the
object’s outline reaches the edge of the image. We render 10

of 512× 512, 16-bit images per object. For each rendering,
we randomly rotate the environment map on the spherical
axis to make the variation of lighting conditions and auto-
matically adjust the exposure of the camera to make the dy-
namic range of rendered images consistent. We turn on the
ray tracer to render the cast shadow and inter-reflection for
adding the spatially-varying lighting effects. Finally, we got
10,099 objects with a different pose, material and lighting.

4.4. PS-Wild Test Dataset

We also create a test dataset for the evaluation purpose.
The computational pipeline of generating images is same as
one for the training dataset but different 3-D assets are used
for the fair evaluation; 25 objects from CGTrader [3], 50
materials from ShareTextures [5] and 50 environment maps
from sIBL Archive [6]. For each 3-D model, we assign two
sets of a material and environment map resulting in 50 dif-
ferent sets of the object, material and environment map. Un-
like training dataset, we carefully pick six textures per each
texture category; Concrete, Fabric, Floor, Ground, Wood
and Metal as categorized in ShareTextures. In order to prop-
erly evaluate the performance of a method under various
lighting conditions, we render images for the same set of
the object and material using three different lighting meth-
ods; (a) single directional lighting (uniformly sampled), (b)
HDRI lighting (same as training) and (c) mixture of (a) and
(b). The image resolution is also 512× 512 but the number
of images is 32 to evaluate the performance with varying
number of input images.

Dataset Analysis: Our test dataset characterizes the univer-
sal photometric stereo task. Objects with both convex and
non-convex geometries and a variety of spatially-varying
materials involving diffuse, specular and metallic are ren-
dered with three different lighting methods including the
HDRI lighting which exhibits challenging spatially-varying
lighting effects. Therefore, methods that assume a specific
physical lighting model are not suitable for this dataset.

5. Results
We conduct experiments on synthetic and real test data.

We first ablate the important design elements of our archi-
tecture and then we compare the proposed universal photo-
metric stereo network with the previous state-of-the-arts on
the uncalibrated photometric stereo task [12,19,38]. For the
convenience, we henceforth refer to the proposed method as
UniPS-GLC (Universal Photoemtric Stereo network using
Global Lighting Contexts) as necessary.

Training Details: Our network was trained from scratch on
a NVIDIA Quadro RTX 8000 machine with AdamW [36]
optimizer for 20 epochs using a step decay learning rate
schedule (×0.8 every three epochs). A batch size of 3, an
initial learning rate of 0.0001, and a weight decay of 0.05



Table 2. Comparison with different image feature extractors.
SwinT [34] ViL [54] ResNet101 ResNet50

Directional 19.7 29.5 48.6 50.6
HDRI 16.8 23.2 45.8 44.0
Dir.+HDRI 16.1 24.0 45.2 45.0

Table 3. Comparison with different encoder designs.
Base Dur-Ext. Pre-Fus. Post-Fus.

Directional 19.7 22.5 17.0 25.6
HDRI 16.8 20.1 14.5 22.5
Dir.+HDRI 16.1 19.4 13.8 21.1

Table 4. Comparison with different canonical resolutions.
128× 128 256× 256 512× 512

Directional 19.9 19.7 N.A
HDRI 18.1 16.8 N.A
Dir.+HDRI 17.0 16.1 N.A

Table 5. Spatially-varying vs uniform global lighting contexts.
Spatially-varying Spatially-uniform

Directional 19.7 40.5 (trival)
HDRI 16.8 40.5 (trivial)
Dir.+HDRI 16.1 40.5 (trivial)

Table 6. Comparison with different feature aggregation methods.
Max-pool TF+PMA

(3L)
TF+PMA

(6L)
Directional 59.3 19.7 37.5
HDRI 39.3 16.8 29.4
Dir.+HDRI 39.0 16.1 30.6

were used. The number of random samples from the orig-
inal resolution was fixed by 2500. In total, it took roughly
48 hours to train the network for each configuration.

Inference Time: The inference time of our method depends
on the number and resolution of input images. In the case
of 32 of 512× 512 images as input, it takes less than a few
seconds excluding IO on GPU. This is slightly slower than
the simpler deep photometric stereo networks (e.g. 0.5 sec
in [12]), however more than hundred times efficient than in-
verse rendering based methods [19, 29, 38, 47].

Evaluation metric: Evaluation is based on the mean angu-
lar errors (MAE) between predicted and true surface normal
maps measured in degrees (0 to 180). In our evaluation, we
apply each algorithm to PS-Wild test dataset with three dif-
ferent lighting methods and discuss the result mainly based
on the averaged MAE over 50 different objects.

5.1. Ablation study

Base architecture: As needed, we define the base architec-
ture for the ablation study with following design elements:
SwinTransformer [34] for feature extraction; No communi-
cation in the encoder; 256×256 canonical resolution; Three
stacks of transformer layers followed by PMA for the fea-
ture aggregation in the decoder; In ablation, only the target
property was changed from this base architecture.

Encoder: Table 2 shows the comparison of four different
image feature extractors: SwinTransformer [34], Vision-
Longformer [54] and ResNet-50/101 [21]. We observe that
Transformer-based encoders, especially SwinTransformer
outperformed ResNets probably due to the larger receptive
field of the Transformer model. Because the main purpose
of this work is to present a viable method to demonstrate
our ideas, the further discussion remains future work.

Table 3 compared four different variants of the feature
communication; no communication in the encoder (Base)
during the image feature extraction (Dur-Ext), before the
multi-scale fusion (Pre-Fus) and after the multi-scale fu-
sion (Post-Fus) as illustrated in Fig. 3. As have been men-
tioned already, the best performance was obtained when the
communication was done just before the multi-scale fusion.
Interestingly, the second best was obtained when no com-
munication among images was done in the encoder, but
only in the decoder. We analysed this result and found that
the communication during the image feature extraction sim-
ply broke the feature extraction process and the post-fusion
communication made the optimization unstable since it is
equivalent to increasing the transformer layers in the de-
coding process which is consistent with later results.

Table 4 compared different canonical resolutions either
from 128×128 or 256×256 and we observe that 256×256
worked slightly better. This result indicates that though the
lower resolution is helpful to see the entire object, important
information for details could be discarded at very low reso-
lution. On the other hand, it is surprising to see that 32×32
global lighting contexts from 128×128 canonical resolution
still provides a reasonable reconstruction for 512×512 out-
put resolution. Unfortunately, we couldn’t get the result of
512×512 canonical resolution due to the memory limit.

Finally, we compared our spatially-varying global light-
ing contexts with the spatially-uniform ones by applying
the global average pooling to shrink {G} ∈ Rs×s×de to
{Guni} ∈ R1×1×de and feeding the spatially same vector to
the decoder. In reality, this is a similar procedure in existing
uncalibrated photometric stereo networks [12,29] where the
single lighting parameter is firstly recovered for each im-
age and used as the input of the surface normal predictor.
However, Table 5 shows that the network with the uniform
context always provided the trivial solution since it couldn’t
capture spatially-varying lighting effects.

Decoder: We compared three different variants of the pixel-
wise feature aggregation strategy from a max pooling, three
Transformer layers with PMA and six Transformer layers
with PMA; The further to the right we go, the more complex
interaction can theoretically take place. Note that the latent



Table 7. Different number of input images (Ours, pre-fusion).
1 4 8 16 32

Directional 35.4 22.6 18.8 17.5 17.0
HDRI 27.2 19.5 16.5 14.7 14.5
Dir.+HDRI 28.5 20.6 17.4 15.6 13.8

Table 8. Comparison with other methods (pre-fusion).
Ours GCNet [12] MPM [38] Var. [19]

Directional 17.0 17.7 32.9 33.0
HDRI 14.5 24.8 30.4 37.5
Dir.+HDRI 13.8 31.5 30.8 32.5

Directional Environment Directional+Environment

ObjectID=31, black_metal_2(Dir.+Env.)ObjectID=18, seamless_concrete_48 (Dir.) ObjectID=37, explosionblue (Env.)

GT        Ours     GCNet MPM       Var. GT        Ours     GCNet MPM       Var. GT        Ours     GCNet MPM       Var. 

Figure 4. We compared our method with three uncalibrated photometric stereo methods specifically designed for single directional lighting
(i.e. GCNet [12]) and natural lighting (i.e. MPM [38] and Variational [19]) on our synthetic PS-Wild test dataset. There were three different
methods of lighting; directional, HDRI ( and the mixture of them. The performance was evaluated based on the mean angular errors in
degrees. We showed the examples in the dataset and the recovered surface normal maps/error maps (80 degrees at maximum).

vector size in the Transformer layer was fixed by 384 and
the hidden dimension of the feedforward layer was 1024.
The result is illustrated in Table 6. Though there is no sur-
prise to see the simple max-pooling didn’t work at all, the
reason for the worse results for the deeper Transformer net-
works seemed to be due to the over-fitting. It should be
noted that the Transformer network is known to be a diffi-
cult network to train, and careful adjustment of the hyper-
parameters may yield different results.

Different number of input images: In Table 7, we eval-
uated our network (base+pre-fusion) with different number
of input images. As expected, the accuracy dropped as the
number of input images decreased. However, unlike exit-
ing calibrated and uncalibrated photometric stereo methods
which had been shown that they didn’t work when the num-
ber of images was small (e.g. 10) [12, 23], the degree of
decline with our method was not quite significant.

5.2. Quantitative Evaluation on PS-Wild Test Data

We compared our method to state-of-the-arts on the un-
calibrated photometric stereo problem on our synthetic test
dataset. The first comparison point is GCNet [14] which is
a learning-based method under the directional lighting con-
dition that alternately estimates physical lighting parame-
ters and surface normals. The second point is the matrix-
based patch merging (MPM) [38] which is the Lambertian
photometric stereo method for uncalibrated natural light-

ing based on the equivalent directional lighting model. The
third point is the variational uncalibrated photometric stereo
method (Variational) [19] which approximates Lambertian
reflectance model through a spherical harmonic expansion.
We used authors’ official codes for the evaluation and our
GLC-UniPS architecture was “base + pre-fusion” configu-
ration that has yielded the best result so far.

The results are illustrated in Fig. 4 and Table 82. We ob-
serve that our UniPS-GLC reasonably worked independent
of the lighting methods. As expected, GCNet [12] worked
fine for objects under the directional lighting condition (e.g.
ID 48), however problematic with non-uniform materials
and non-directional lightings. Overall, MPM [38] and Vari-
ational [19] were inferior to GCNet for diverse objects due
to their assumptions of convex, Lambertian surfaces. Es-
pecially, MPM had a problem in handling spatially vary-
ing non-Lambertian textures or non-convex geometries (e.g.
ID 37) and variational also had a problem in handling non-
Lambertian reflections especially for metallic surfaces (e.g.
ID 31). Interestingly, better performance of our method was
observed for objects of the same shapes and materials under
the environment lighting than the directional one. This re-
sult may be attributed to the fact that in an image under the
directional lighting condition, the shadow or inter-reflection
behaves negatively, whereas under the environment light,
they positively yields spatially-varying lighting effects as a

2The input images and recovered normal map for individual objects are
presented in the supplementary.
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Figure 5. The quantitative comparison on real images under challenging spatially-varying lighting conditions. All the images were captured
with a moving near area light source and static indoor natural illumination. Foreground objects have been cropped off using object masks.

source of information.

5.3. Qualitative Evaluation on Real Data

Fig. 1 validates our method (base+pre-fusion) on real im-
ages. Objects of varying materials such as ceramic, metallic
and clear coat were captured by a 8-bit smartphone camera
under a few hand-held area lights and/or the indoor natural
illumination. The area light sources were intentionally put
within 30 cm of an object so that strong spatially-varying
lighting effects were observed. Although quantitative eval-
uation is not possible due to the absence of the ground truth,
we observe that overall reasonable normal maps were re-
covered even under these extremely challenging setups. We
also observe that the very low resolution of GLiCo (i.e. 64×
64) is sufficient to recover surface details.

For a more objective evaluation, Fig. 5 provides a com-
parison with GCNet, MPM and Variational. Images were
captured by putting a single area light near an object under
the static indoor natural illumination; therefore, could not
be represented by physical lighting models such as the di-
rectional lighting nor spherical harmonics. We picked four
objects with different difficulties and included two “spher-
ical” objects (i.e.Grapes and Metallic Painted Spheres) so
that the quality of normal maps could be evaluated based
on their spherical parts. Grapes exhibit complex cast shad-
ows because of its non-convex geometry. Metallic Painted
Spheres consists of four metallic-painted balls with differ-
ent surface roughness and structures which exhibit strong

inter-reflections with each other. Fortune Cat contains large
“black” regions, which are known to be difficult to distin-
guish from shadows. Bowl includes multiple challenging
objects put in a bowl which is hard to resolve the convex-
concave ambiguity. We emphasize that these are extremely
difficult objects that existing photometric stereos methods
have not even attempted to handle them. Though our re-
sults are still far from perfect (i.e., we clearly observe er-
rors in our results due to inter-reflection in Metallic Painted
Spheres and convex geometries in Bowl), our method obvi-
ously recovered most reasonable surface normal maps.

6. Conclusion
This paper tackled a new photometric stereo task, named

universal photometric stereo (UniPS) which drops prior as-
sumptions of physical lighting models. To this end, we pre-
sented the first viable UniPS network based on the generic
lighting representation named global lighting contexts. We
also presented synthetic training and evaluation datasets for
our UniPS task and our extensive evaluation demonstrated
the performance of our method.

Despite the significant progress toward a practical photo-
metric stereo method, there are some limitations remained.
First, the deeper analysis of global lighting contexts is miss-
ing. To explore its potential for applications other than the
surface normal recovery is a future work. Second, our train-
ing method specifies a camera model (e.g., orthographic,
linear camera) and we may also want to remove this depen-



dence. Finally, we need a real dataset with the ground truth
for evaluating UniPS methods in a more quantitative man-
ner.
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Appendix
Appendix A. Implementation Details

Architecture details: In the main paper, an overview of our
universal photometric stereo network was given but some
important details were omitted due to the space limit. In
this section, we detail the “basic + pre-fusion” configura-
tion of our universal photometric stereo network. It should
be noted that the hyper parameters in our architecture are
all selected empirically, so it is quite possible that there are
parameters that will give better performance.

The image-wise feature extraction network (i.e. Swin-
S variant of SwinTransformer [34]) and subsequent multi-
scale feature fusion with the feature pyramid network (i.e.
UPerNet [52]) in our encoder were implemented on MM-
Segmentation [4]. The updates from the original codes
are mainly two. First, we input a mask image in addi-
tion to an RGB image. Second, following the sugges-
tions in [51], we modified the original mlp-based patch
embedding (i.e., local information embedding during the
reduction of the image resolution to 1/4 of the canonical
resolution) to the CNN-based one with five convolutional
layers to capture the local shading variations. The num-
ber of different scales was four; hence, given the canon-
ical resolution of 256×256, sizes of the multi-scale fea-
ture maps were 64×64×96, 32×32×192, 16×16×384 and
8×8×768, which were fused to 64×64×256 global lighting
contexts.

The feature communication in our encoder and aggre-
gation in our decoder were pixelwisely applied to feature
vectors under different lighting conditions in similar to our
previous work [24]. As illustrated in Fig. 6, the feature
communication step built upon a single Transformer layer
where input feature vectors were firstly projected to query,
key and value vectors whose dimensions were same with
the input ones. They were then passed to a multi-head self-
attention (the number of heads is 8) and a multi-layer per-
ceptron (MLP) with the pre-layer normalization [53] and
dropout (p = 0.1). Though the MLP doubled the origi-
nal feature dimension, the feature dimension and number of
feature vectors in a set did not change between the input and
output of the feature communication step.

The feature aggregation step input q sets of vectors
cat{I(x),G(S(x))}{1...q} ∈ Rq×(256+3) where each vec-
tor was composed of raw pixel values and the interpolated
global lighting context. Then the input set was passed to
three Transformer layers and a PMA [30] where the num-
ber of elements in a set was shrunk from q to one. The
surface normal predictor was a MLP with one hidden layer
whose feature dimension shrank as 384 → 192 → 3 and
the norm of the output vector was normalized to be a unit
surface normal vector at the location.

Competitor details: It should be noted again that all

the algorithms (ours, GCNet [14], MPM [38] and Varia-
tional [19]) took the object mask as input. To ensure a fair
comparison, we applied the same center crop to input im-
ages, which means that the input of all the algorithms were
exactly same (i.e., crops of images and an object mask). For
a fair evaluation, we used the authors’ official implemen-
tations for competitors. Since there is a binary ambiguity
left in the surface normal recovered by MPM (i.e. signs of
x, y, z directions), we manually solved it so as to be quanti-
tatively optimal in the quantitative experiments and most vi-
sually plausible in the qualitative evaluation. As for GCNet,
we used the pretrained model provided by authors since our
training dataset was not available for their model due to the
fact that GCNet requires the supervision of directional light-
ings. In addition, we found that GCNet [12] didn’t work at
all for our raw test images without the proper image nor-
malization (The data normalization is also important for the
DiLiGenT [44] evaluation), therefore we empirically per-
formed the linear image normalization dividing each image
by 0.1·max(I) so that the pixel values in each image ranged
between 0 and 0.1. Unlike others, Variational [19] is actu-
ally an algorithm for perspective images and it requires the
focal length of images as input. So we approximated test
images as perspective ones by using the unit focal length
(i.e. f = 256 for 256×256 image) for our PS-Wild test
dataset and using ones from Exif-Tags in the real evaluation.
We note that empirically, the small differences of the focal
length didn’t show any significant difference in results. Un-
fortunately, MPM [38] is a quite computationally expensive
algorithm whose computational complexity is O(h2w2) and
we confirmed that it didn’t work for images whose sizes
were bigger than 512×512. For a fair comparison, we used
256×256 crops in both quantitative and qualitative compar-
ison because we confirmed that MAE didn’t significantly
depend on the input image resolution.

Appendix B. PS-Wild Dataset and Training Details

Renderer details: PS-Wild was rendered with the Cycles
engine in Blender2.93 [2]. For a full global illumination
rendering using a path tracing integrator with direct light
sampling, we used 256 rendering samples with 10 max ray
bounces. Each BRDF material in both training and test
3-D assets consisted of 2-D texture maps of the base color,
roughness, metalness which were directly fed to the diffuse
and specular BRDFs of the Cycles engine (i.e. we used
Principled BSDF shader [11]). In Fig. 7, we illustrated
some examples of rendered images and 3-D assets in
our PS-Wild training dataset. Each row corresponds to
one object from 10,099 objects in total. As for the test
dataset, we illustrate the entire 50 objects and correspond-
ing results in Fig.3-52. As mentioned, our textures are
classified into three types of materials (six as categorized
in ShareTextures [5]); diffuse (Fabric, Concrete), specular
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Figure 6. Implementation details of the feature communication and aggregation steps. Our feature communication step is composed of a
single Transformer layer and our feature aggregation step is composed of three Transformer layers followed by PMA layer.

(Wood, Floor, Ground) and metallic (Metal). The rendering
pipeline was exactly same as one for the training dataset.

Training details: We augmented the dataset during
the training to bring more variations in training examples.
Concretely, we randomly flipped images horizontally or
vertically, and randomly rotated images by 90 degrees.
In addition, we also performed the random color swap-
ping for each image since our task didn’t include the
surface reflectance recovery. We used p = 0.5 for all the
augmentations.
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Figure 7. Examples of images and BRDF parameter maps in our PS-Wild training dataset (metallic map is omitted).
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