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Figure 1. We leverage dense depth priors for recovering neural radiance fields of complete rooms when only a handful of input images
are available. To this end, we first utilize the sparse point cloud reconstructions from SfM preprocessing, which we feed into a depth
completion network. We then impose these depth estimates as constraints to the NeRF optimization according to the estimated uncertainty.
This facilitates novel view synthesis results at significantly higher image quality and lower depth error compared to NeRF.

Abstract

Neural radiance fields (NeRF) encode a scene into a
neural representation that enables photo-realistic rendering
of novel views. However, a successful reconstruction from
RGB images requires a large number of input views taken
under static conditions — typically up to a few hundred
images for room-size scenes. Our method aims to synthe-
size novel views of whole rooms from an order of magnitude
fewer images. To this end, we leverage dense depth priors in
order to constrain the NeRF optimization. First, we take ad-
vantage of the sparse depth data that is freely available from
the structure from motion (SfM) preprocessing step used to
estimate camera poses. Second, we use depth completion
to convert these sparse points into dense depth maps and
uncertainty estimates, which are used to guide NeRF op-
timization. Our method enables data-efficient novel view
synthesis on challenging indoor scenes, using as few as 18
images for an entire scene.

1. Introduction

Synthesizing realistic views from varying viewpoints is
essential for interactions between humans and virtual envi-
ronments, hence it is of key importance for many virtual
reality applications. The novel view synthesis task is es-
pecially relevant for indoor scenes, where it enables vir-
tual navigation through buildings, tourist destinations, or
game environments. When scaling up such applications, it
is preferable to minimize the amount of input data required
to store and process, as well as its acquisition time and cost.
In addition, a static scene requirement is increasingly diffi-
cult to fulfill for a longer capture duration. Thus, our goal is
novel view synthesis at room-scale using few input views.

NeRF [21] represents the radiance field and density dis-
tribution of a scene as a multi-layer perceptron (MLP) and
uses volume rendering to synthesize output images. This
approach creates impressive, photo-realistic novel views of
scenes with complex geometry and appearance. Unfor-
tunately, applying NeRF to real-world, room-scale scenes
given only tens of images does not produce desirable re-
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sults (Fig. 1) for the following reason: NeRF purely relies
on RGB values to determine correspondences between in-
put images. As a result, high visual quality is only achieved
by NeRF when it is given enough images to overcome the
inherent ambiguity of the correspondence problem. Real-
world indoor scenes have characteristics that further com-
plicate the ambiguity challenge: First, in contrast to an
“outside-in” viewing scenario of images taken around a cen-
tral object, views of rooms represent an “inside-out” view-
ing scenario, in which the same number of images will ex-
hibit significantly less overlap with each other. Second, in-
door scenes often have large areas with minimal texture,
such as white walls. Third, real-world data often has in-
consistent color values across views, e.g., due to white bal-
ance or lens shading artifacts. These characteristics of in-
door scenes are likewise challenging for SfM, leading to
very sparse SfM reconstructions, often with severe outliers.
Our idea is to use this noisy and incomplete depth data and
from it produce a complete dense map alongside a per-pixel
uncertainty estimate of those depths, thereby increasing its
value for NeRF — especially in textureless, rarely observed,
or color-inconsistent areas.

We propose a method that guides the NeRF optimiza-
tion with dense depth priors, without the need for additional
depth input (e.g., from an RGB-D sensor) of the scene. In-
stead, we take advantage of the sparse reconstruction that
is freely available as a byproduct of running SfM to com-
pute camera pose parameters. Specifically, we complete the
sparse depth maps with a network that estimates uncertainty
along with depth. Taking uncertainty into account, we use
the resulting dense depth to constrain the optimization and
to guide the scene sampling. We evaluate the effective-
ness of our method on complete rooms from the Matter-
port3D [2] and ScanNet [6] datasets, using only a handful
of input images. We show that our approach improves over
recent and concurrent work that uses sparse depth from SfM
or multi-view stereo (MVS) in NeRF [10, 26].

In summary, we demonstrate that dense depth priors
with uncertainty estimates enable novel view synthesis with
NeRF on room-size scenes using only 18–36 images, en-
abled by the following contributions:

1. A data-efficient approach to novel view synthesis on
real-world scenes at room-scale.

2. An approach to enhance noisy sparse depth input from
SfM to support the NeRF optimization.

3. A technique for accounting for variable uncertainty
when guiding NeRF with depth information.

2. Related Work
The ability to synthesize novel views of a scene from

a set of observed images and corresponding camera view-
points is necessary for enabling virtual experiences of real-
world environments. In situations where it is feasible to

densely sample images of the scene, novel viewpoints can
be synthesized with simple light field interpolation [12,17].
However, when fewer observed views of the scene are avail-
able, it becomes increasingly necessary to use information
about the scene’s geometry to render new views. A com-
mon paradigm for geometry-based view synthesis is to use
a triangle mesh representation of scene geometry to repro-
ject observed images into each novel viewpoint and com-
bine them using either heuristic [1,9,27] or learned [14,22]
blending algorithms. More recently, these mesh-based ge-
ometry models have been replaced by volumetric scene
representations such as voxel grids [18] or multiplane im-
ages [11, 20, 24, 29]. NeRF [21] popularized an approach
that avoids the steep scaling properties of discrete voxel
representations by representing a scene as a continuous vol-
ume, parameterized by a MLP that is optimized to minimize
the loss of re-rendering all observed views of a scene. Since
its introduction, NeRF has become the dominant scene rep-
resentation for view synthesis, and many recent works are
built on top of NeRF’s neural volumetric model.

However, in situations where the scene is observed from
very few sparsely-sampled viewpoints, NeRF’s high capac-
ity to model detailed geometry and appearance can result in
various artifacts, such as “floaters”, i.e., artifacts caused by
a flawed density distribution. In this work, we directly ad-
dress the few-input setting, proposing a strategy that takes
advantage of sparse depth to constrain NeRF’s scene geom-
etry and improve rendering quality. This depth data is freely
available as a byproduct of running SfM to compute camera
poses from the input images (e.g., by using COLMAP [23]).
Our method takes inspiration from techniques that gener-
ate complete dense depth maps from sparse depth inputs.
These include classic techniques that fuse observed depths
into a single 3D reconstruction, typically in the form of a
truncated signed distance function [5, 15], as well as more
recent techniques that train deep networks to operate over
the sparsely observed geometry in 3D [7,8]. Although these
methods are effective for dense 3D scene reconstruction, the
resulting geometry is not ideal for view synthesis since its
edges frequently do not align with edges in the observed
images. Instead, we leverage recent work on 2D sparse
depth completion that directly completes depth maps in im-
age space [3, 4] and extend it to also predict uncertainty.

A few recent works have also proposed incorporating
depth observations into NeRF reconstruction. Nerfing-
MVS [26] uses depth from MVS to overfit a depth predic-
tor to the scene. The resulting depth prior guides the NeRF
sampling. In comparison, our method employs depth com-
pletion on the SfM depth and additionally employs a depth
loss to supervise the geometry recovered by NeRF. This
way, our novel views achieve significantly better color and
depth quality in the few-input setting without relying on the
computationally more expensive MVS preprocessing. Con-
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current work on depth-supervised NeRF [10] directly uses
sparse depth information from SfM in the NeRF optimiza-
tion. To handle inaccuracy in the sparse reconstruction, the
3D points are weighted according to their reprojection error.
In contrast, we learn dense depth priors with uncertainty to
more effectively guide the optimization, leading to more de-
tailed novel views, as well as more accurate geometry and
higher robustness to SfM outliers.

3. Method
Our method facilitates room-scale novel view synthe-

sis from a small collection of RGB images {Ii}N−1
i=0 , Ii ∈

[0, 1]H×W×3 (see Fig. 2). As a preprocessing step (e.g., us-
ing SfM), the camera pose pi ∈ R6, intrinsic parameters
Ki ∈ R3×3, and a sparse depth map Zsparse

i ∈ [0, tf ]
H×W

are computed for each image. 0 values of the sparse depth
indicate invalid pixels, and tf is the far plane of the vol-
ume rendering. Our approach builds upon NeRF [21]. Prior
to the NeRF optimization, a network estimates depth with
uncertainty from the sparse depth input (Sec. 3.1). We in-
corporate the resulting dense depth prior into the NeRF op-
timization by adding a depth constraint and a guided sam-
pling approach (Sec. 3.2).

3.1. Depth Completion with Uncertainty

Network Architecture With the goal of completing
sparse depth from SfM, two challenges presented by this
input data play a key role in designing the depth prior net-
work. First, sparse reconstructions are noisy and have out-
liers. As a consequence, dense depth predictions are ex-
pected to have spatially varying accuracy, which makes it
crucial to know the uncertainty at a per-pixel level. Second,
the density of SfM point clouds varies significantly across
space, depending on the number of image features. E.g.,
SfM reconstructions from 18–20 images per ScanNet scene
lead to sparse depth maps with 0.04% valid pixels on aver-
age. Hence, depth completion must be able to predict dense
depth even from largely empty sparse depth maps.

In order to address the first challenge, we construct
our depth prior network Dθ0 to predict dense depth maps
Zdense
i ∈ [0, tf ]

H×W along with pixelwise standard devia-
tions Si ∈ [0,∞)H×W from the sparse depth maps:[

Zdense
i , Si

]
= Dθ0(Ii, Z

sparse
i ) , (1)

where Dθ0 is a convolutional network with ResNet [13]
downsampling and skip connections to two upsampling
branches to predict depth Zdense

i and standard deviation Si.
To address the second challenge of extremely sparse input
depth, we employ a Convolutional Spatial Propagation Net-
work (CSPN) [4] in each branch. This refinement block
locally and iteratively applies a kernel with weights given
by a learned affinity matrix. This refines the often blurry

depth output to become more detailed and sharp. Equally
important, this process spreads information to neighboring
pixels; i.e., information propagates further with each itera-
tion. An increased number of iterations in the depth and the
uncertainty head prove helpful to handle very sparse input.

Network Training Though we evaluate on RGB-only
data using SfM, we train our model on RGB-D data from
ScanNet [6] and Matterport3D [2]. To avoid both the effort
of running SfM on a large dataset and the possibility of SfM
failures in the training data, the sparse depth input is sam-
pled from the range sensor depth. As such, it is critical to
subsample and perturb the dense depth from the sensor in a
way that creates realistic sparse training depth to enable the
network to generalize to real SfM input at test time. Specif-
ically, a SIFT feature extractor, e.g., from COLMAP [23],
is used to determine locations where sparse depth points
would exist in a SfM reconstruction. We sample the sen-
sor depth at these points and perturb it with Gaussian noise
N (0, snoise(z)

2), where the standard deviation snoise in-
creases with depth. The function snoise(z) is determined
by fitting a second-order polynomial to the depth deviation
between the sparse SfM reconstructions and sensor depth.

Under the assumption that the output is normally dis-
tributed, we supervise the network by minimizing the nega-
tive log likelihood of a Gaussian:

Lθ0 =
1

n

n∑
j=1

(
log(s2j ) +

(zj − zsensor,j)
2

s2j

)
, (2)

where zj and sj are the predicted depth and standard devia-
tion of pixel j, zsensor,j is the sensor depth at j, and n is the
number of valid pixels in the dense sensor depth map.

3.2. Radiance Field with Dense Depth Priors

Scene Representation Following NeRF [21], we encode
the radiance field of the scene into a MLP Fθ1 that predicts
color c = [r, g, b] and volume density σ from a position
x ∈ R3 and a unit-norm viewing direction d ∈ S2. γ ap-
plies a positional encoding with 9 frequencies on the posi-
tion. Because our scenes are angularly undersampled, we
minimize the capacity of our view-dependent network by
omitting positional encoding for the viewing direction.

[c, σ] = Fθ1(γ(x),d, ℓi) . (3)

As an additional input to Fθ1 , we generate a per-image em-
bedding vector ℓi ∈ Re [19]. This allows the network to
compensate for view-specific phenomena such as inconsis-
tent lighting or lens shading, which can cause severe arti-
facts in novel views, particularly with few input images.

Optimization with Depth Constraint To optimize the
radiance field, the color Ĉ(r) of each pixel in the batch R
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Figure 2. Overview of our radiance field optimization pipeline. Given a small set of RGB images of a room, we run SfM to obtain camera
parameters and a sparse reconstruction, from which a sparse depth map is rendered for each input view. A depth completion network
predicts dense depth and standard deviation, which is used to focus the scene sampling on surfaces. The samples on a ray, its viewing
direction and a per-camera latent code are input to the radiance field. The output color and density are integrated to obtain the pixel’s color
and the ray’s expected termination depth. The radiance field is supervised using the input RGB and the depth completion output.

is computed by evaluating a discretized version of the vol-
ume rendering integral (Eq. (4) [21]). Specifically, a pixel
determines a ray r(t) = o+ td whose origin is at the cam-
era’s center of projection o. Rays are sampled along their
traversal through the volume. For each sampling location
tk ∈ [tn, tf ] within the near and far planes, a query to Fθ1

provides the local color and density.

Ĉ(r) =

K∑
k=1

wkck , (4)

where wk = Tk (1− exp(−σkδk)) , (5)

Tk = exp

(
−

k∑
k′=1

σk′δk′

)
, (6)

δk = tk+1 − tk . (7)

Besides the predicted color of a ray, a NeRF depth esti-
mate ẑ(r) and standard deviation ŝ(r) are needed to super-
vise the radiance field according to the learned depth prior
(Sec. 3.1). The NeRF depth estimate and standard deviation
are computed from the rendering weights wk:

ẑ(r) =

K∑
k=1

wktk , ŝ(r)2 =

K∑
k=1

wk(tk − ẑ(r))2. (8)

The network parameters θ1 are optimized using a loss func-
tion Lθ1 composed of a mean squared error (MSE) term on
the color output Lcolor and a Gaussian negative log likeli-
hood (GNLL) term on the depth output Ldepth:

Lθ1 =
∑
r∈R

(
Lcolor(r) + λLdepth(r)

)
, (9)

Lcolor(r) =
∥∥Ĉ(r)−C(r)

∥∥2
2
, (10)

Ldepth(r) =

{
log
(
ŝ(r)2

)
+ (ẑ(r)−z(r))2

ŝ(r)2 if P or Q

0 otherwise,
(11)

where P = |ẑ(r)− z(r)| > s(r) , (12)
Q = ŝ(r) > s(r) . (13)

Here z(r) and s(r) are the target depth and standard de-
viation from the corresponding Zdense

i and Si. The depth
loss is applied to rays where at least one of the following
conditions is true: 1) the difference between the predicted
and target depth is greater than the target standard deviation
Eq. (12), or 2) the predicted standard deviation is greater
than the target standard deviation Eq. (13). This way, the
loss encourages NeRF to terminate rays within one stan-
dard deviation of the most certain surface observation in the
depth prior. At the same time, NeRF retains some freedom
to allocate density to best minimize the color loss. The ef-
fectiveness of this depth loss in contrast to MSE is shown in
the ablation study (Sec. 4.4).

Depth-Guided Sampling In addition to the depth loss
function, the depth prior contains valuable signal to guide
sampling along a ray. To render one pixel of a room-scale
scene, we require the same number of MLP queries as the
original NeRF; however, we replace the coarse network
used for hierarchical sampling. During optimization, half of
the samples are distributed between the near and far planes
and the second half are drawn from the Gaussian distribu-
tion determined by the depth prior N (z(r), s(r)2). At test
time, when the depth is unknown, the first half of the sam-
ples are used to render an approximate depth ẑ(r) and stan-
dard deviation ŝ(r) that is then used to sample the second
half according to N (ẑ(r), ŝ(r)2).

4



4. Results
We evaluate our method with a baseline comparison

(Sec. 4.3) and an ablation study (Sec. 4.4) on the Scan-
Net [6] and Matterport3D [2] datasets.

4.1. Experimental Setup

ScanNet We run COLMAP SfM [23] to obtain camera
parameters and sparse depth. Specifically, we run SfM on
all images to obtain camera parameters. To ensure a clean
split between train and test data, we withhold the test im-
ages when computing the point cloud used for rendering the
sparse depth maps. On average, the resulting depth maps
have 0.04% valid pixels. We use three sample scenes each
with 18 to 20 train images and 8 test images. This set of im-
ages results from excluding video frames with motion blur
while ensuring that surfaces are observed from at least one
input view. Details are provided in Appendix A.1.

Matterport3D Using RGB images from the PrimeSense
camera, COLMAP SfM struggled to reconstruct complete
rooms in Matterport3D, hence, we mimic sparse depth from
SfM by sampling and perturbing the sensor depth as de-
scribed for depth prior training in Sec. 3.1. Sparse depth
maps rendered from a SfM point cloud are by nature 3D-
consistent. While consistency in 3D is irrelevant for training
2D depth completion, it plays a critical role when optimiz-
ing a 3D scene representation with NeRF. Hence, we ensure
3D-consistent sparse depth on the scenes used for NeRF by
projecting the sampled and perturbed 3D points to all other
views. On average the resulting depth maps are 0.1% com-
plete. The impact of the sparse depth density is studied in
Appendix B. We evaluate three example rooms each with
24 to 36 train images and 8 test images.

NeRF Optimization We process rays in batches of 1024
and use the Adam optimizer [16] with learning rate 0.0005.
For fairness, all approaches in the ablation and baseline ex-
periments are configured to use 256 MLP evaluations per
pixel, independent of the used sampling approach. The radi-
ance fields are optimized for 500k iterations. Further NeRF
and depth prior implementation details are available in Ap-
pendix C.

Evaluation Metrics For quantitative comparison, we
compute the peak signal-to-noise ratio (PSNR), the Struc-
tural Similarity Index Measure (SSIM) [25] and the Learned
Perceptual Image Patch Similarity (LPIPS) [28] on the
RGB of novel views as well as the root-mean-square er-
ror (RMSE) on the expected ray termination depth of NeRF
against the sensor depth in meters. By comparing color val-
ues directly, PSNR has limited expressiveness, when the
images of the scene have inconsistent color. As shown in

RMSE [m] ↓
Dataset Sparse depth Dense depth

ScanNet 0.261 0.268
Matterport3D 0.041 0.135

Table 1. Accuracy of depth priors.

Sec. 4.4, the latent codes used to represent view-specific
appearance largely help to produce consistent colors across
the scene. Still, the color of a rendered image will not nec-
essarily be similar to that of the test view against which it is
evaluated. To compensate for this difference, we report an
additional PSNR value, which is computed after optimizing
for the latent codes on the entire test views. We are unable
to use the left/right image split evaluation procedure from
NeRF-W [19], because appearance changes too drastically
across the image, so these numbers should be considered
an upper bound on performance. This additional metric is
listed in parentheses (Tabs. 2 and 3) for all approaches that
use a latent code. All other metrics as well as all renderings
in the paper are computed by setting the latent code to zero,
given that the codes are unknown at test time.

4.2. Depth Priors

Tab. 1 shows the depth prior accuracy on the three Scan-
Net and three Matterport3D scenes used for NeRF. These
scenes are part of the test sets during depth completion
training. The higher quality, generated sparse depth on Mat-
terport3D leads to more accurate dense depth priors. How-
ever, the network interpolates the more noisy sparse depth
from SfM on ScanNet without a relevant drop in accuracy.

4.3. Baseline Comparison

We compare our method to NeRF [21] as well as recent
and concurrent work that equally uses sparse depth input
in NeRF, namely Depth-supervised NeRF (DS-NeRF) [10]
and NerfingMVS [26]. Since DS-NeRF and NerfingMVS
rely on SfM and MVS depth, respectively, they are run on
ScanNet. NeRF and our method are run on both datasets.
The quantitative results (Tab. 2) show that our method out-
performs the baselines in all metrics.

“Floaters” are a common problem when applying NeRF
approaches in a setting with few input views. By using
dense depth priors with uncertainty, our method strongly
reduces these artifacts compared to the baselines (exam-
ple 2 Fig. 3). This contributes to far more accurate depth
output and greater detail in color, e.g., visible in the books
and the door handle (example 3 Fig. 3). We found that our
method is more robust to outliers in the sparse depth in-
put. E.g., erroneous SfM points in the area of the sofa back
(example 5 Fig. 3) cause much larger deficiencies in geom-
etry and color of the other approaches. This suggests that
dense depth priors with uncertainty focus the optimization
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1

2

3

4

5

6

NeRF [21] DS-NeRF [10] NerfingMVS [26] Ours Ground Truth

Figure 3. Rendered RGB and depth error for test views from three ScanNet rooms next to the ground truth RGB and depth.
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on more certain and accurate views, while direct incorpo-
ration of sparse depth, as in DS-NeRF, is more error-prone.
Besides greater robustness to outliers, dense depth guides
NeRF better at object boundaries that are not represented
in the sparse depth input. This is observable in example 6
(Fig. 3), where a part of the chair back is missing in DS-
NeRF, while it is complete using our method.

NerfingMVS Details The error map calculation in
NerfingMVS fails when applied to an entire room as op-
posed to a local region, causing invalid sampling ranges.
The issue is solved as detailed in Appendix C.2. To im-
prove the performance of this baseline, we train its depth
predictor 10 epochs longer than was done in the paper. Still,
the depth priors on the ScanNet scenes remain at RMSE

1

2

3

4

5

NeRF [21] Ours w/o
Completion

Ours w/o
Uncertainty

Ours w/o GNLL Ours w/o Latent
Code

Ours Ground Truth

Figure 4. Rendered RGB and depth error for test views from three Matterport3D rooms next to the ground truth RGB and depth.
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Depth
Method PSNR↑ SSIM↑ LPIPS↓ RMSE ↓
NeRF [21] 19.03 0.670 0.398 1.163
DS-NeRF [10] 20.85 0.713 0.344 0.447
NerfingMVS [26] 16.29 0.626 0.502 0.482
Ours w/o Completion 20.43 (22.10) 0.707 0.366 0.526
Ours w/o Uncertainty 20.09 (22.21) 0.714 0.308 0.279
Ours w/o GNLL 20.80 (22.23) 0.733 0.312 0.275
Ours w/o Latent Code 20.87 0.726 0.293 0.243
Ours 20.96 (22.30) 0.737 0.294 0.236

Table 2. Quantitative results on ScanNet. Parentheses indicate
PSNRs obtained after optimizing a latent code, when applicable.

0.379m. While our method uses only train images to com-
pute the sparse depth input, NerfingMVS runs COLMAP
MVS on train and test images together, which gives them
an advantage.

4.4. Ablation Study

To verify the effectiveness of the added components, we
conduct ablation experiments on the ScanNet and Matter-
port3D scenes. The quantitative results (Tabs. 2 and 3) show
that the full version of our method achieves the best perfor-
mance in image quality and depth estimates. This is consis-
tent with the qualitative results in Fig. 4.

Without Completion Omitting depth completion and
supervising with sparse depth only leads to inaccurate depth
and color due to “floaters” in areas without depth input.
Even in areas with sparse depth points, the results are less
sharp than in versions that use completed depth.

Without Uncertainty Removing uncertainty from the
optimization causes problems in resolving inconsistency in
overlapping areas of the 2D depth priors. This results in
wrong edges in RGB and depth (example 2 Fig. 4), dupli-
cation artifacts (example 4 Fig. 4) or lacking detail, e.g., in
the patterns on the back of the chair (example 1 Fig. 4). The
quantitative results on ScanNet (Tab. 2) show that consider-
ing uncertainty becomes even more important when using
the lower quality sparse depth from SfM.

Without GNLL In this experiment, we replace GNLL
with MSE in our depth loss (Eq. (11)), and observe that
MSE struggles to constrain density behind surfaces. The
lack of sharp edges in the density distribution is most visible
for novel views looking in tangential direction of a surface,
e.g., looking into the corridor (example 3 Fig. 4).

Without Latent Code Omitting the latent code that
models per-camera information, leads to incapability to pro-
duce smooth and consistent color output across the scene.
When rendering novel views, the frustums of training im-
ages are clearly visible by causing severe shifts in color in-
tensity (examples 2 and 3, Fig. 4).

Depth
Method PSNR↑ SSIM↑ LPIPS↓ RMSE ↓
NeRF [21] 15.24 0.531 0.610 1.362
Ours w/o Completion 16.90 (18.84) 0.615 0.521 0.427
Ours w/o Uncertainty 17.95 (20.37) 0.658 0.413 0.115
Ours w/o GNLL 18.00 (20.65) 0.669 0.423 0.133
Ours w/o Latent Code 17.42 0.654 0.410 0.110
Ours 18.33 (20.82) 0.673 0.402 0.114

Table 3. Quantitative results on Matterport3D, using the same for-
mat as Tab. 2.

4.5. Limitations

Our method allows for a significant reduction in the
number of input images for NeRF-based novel view syn-
thesis while at the same time applying it to larger room-
size scenes. However, other NeRF limitations such as long
optimization times and slow rendering remain. As a con-
sequence of the drastic reduction in the number of input
images, surfaces are typically not observed by more than
two other views, hence view-dependent effects are limited.
While our approach optimizes NeRF given as few as 18
images, the depth prior network requires a larger training
dataset. Although these priors generalize well and only
need to be trained once, it would be beneficial if the depth
reconstruction could be also learned from a sparse setting.

5. Conclusion
We have presented a method for novel view synthesis us-

ing neural radiance fields (NeRF) that leverages dense depth
priors, thus facilitating reconstructions with only 18 to 36
input images for a complete room. By learning a depth prior
that generalizes across scenes, our method takes advantage
of depth information without requiring depth sensor input
of the scene. Instead, the depth prior network relies on the
sparse reconstruction, which is available for free after struc-
ture from motion (SfM) on the input images. With only a
few input views available, we show that our dense depth pri-
ors with uncertainty effectively guide the NeRF optimiza-
tion, thus leading to significantly higher image quality of
novel views and more accurate depth estimates compared
to other approaches using SfM or multi-view stereo output
in NeRF. Overall, we believe that our method is an impor-
tant step towards making NeRF reconstructions available in
commodity settings.
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A. Datasets

A.1. ScanNet [6]

Motion Blur Detection We consider motion blur when
sampling a small subset of images to be used in NeRF: From
each window of n consecutive video frames the sharpest
one is selected according to the following metric, where
high values indicate sharpness: first, an image is converted
to grayscale, then it is convolved with a discrete Laplacian
kernel; finally, the variance is computed. n is set to 10 or
20, depending on how densely the video samples the scene.

Train/Test Image Selection After removing images
with severe motion blur, we consider the following crite-
ria: 1) SfM successfully registers the set of images. 2) Sur-
faces to be reconstructed are observed from at least one in-
put view. In practice, images are removed if their content
is visible by other images and the remaining set fulfils 1).
This way, 22% of the train pixels are not observed by any
other train view, 31% are observed by one other, 47% by
two or more. Test views have on average 66% overlap with
their most overlapping train view.

Image Resolution The image resolution is 468×624
after downsampling and cropping dark borders from cali-
bration.

Test Scenes We ensure that the test scenes are complete,
sufficiently large rooms. The following scenes are used for
evaluation:

• scene0710 00
• scene0758 00
• scene0781 00
SfM Quality on Few Views Figure 5 shows the mean

absolute error (MAE) of the SfM points against the sensor
depth. It is computed on the 6291 points from the three
ScanNet evaluation scenes. The maximal error is 5.85m.
We do not filter the COLMAP SfM output, i.e., all points
are projected to the corresponding input views and used as
input to the depth completion.
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Figure 5. SfM depth error on ScanNet.

A.2. Matterport3D [2]

Train/Test Image Selection Similar to ScanNet, it is
ensured that surfaces are observed from at least one input
view. 25% of the train pixels are not observed by any other
train view, 45% are observed by one other, 30% by two or

Sparse depth Depth
Method density PSNR↑ SSIM↑ LPIPS↓ RMSE ↓
Ours w/o completion 0.10% 16.90 0.615 0.521 0.427
Ours 0.10% 18.33 0.673 0.402 0.114
Ours 0.05% 18.10 0.662 0.414 0.136
Ours 0.01% 17.99 0.662 0.437 0.140

Table 4. Impact of sparse depth density on Matterport3D. Depth
RMSE is in meters.

more. Test views have on average 67% overlap with their
most overlapping train view.

Image Resolution The image resolution is 504×630
after downsampling and cropping dark borders from cali-
bration.

Test Scenes We avoid unbounded open space, which
is challenging for NeRF approaches. The following scenes
are used for evaluation:

• Region 5, house VzqfbhrpDEA
• Region 2, house Vvot9Ly1tCj
• Region 19, house Vvot9Ly1tCj

B. Impact of Sparse Depth Density
We investigate the impact of the sparse depth density

on Matterport3D by decreasing it from 0.1% to 0.05% and
0.01% (Tab. 4). While reduced sparse depth lowers per-
formance, it clearly shows that depth completion increases
the value of very sparse depth input: With just one tenth
of the sparse depth our method still performs better, than
the version without completion. Despite 0.01% being very
sparse—just 32 points per image on average—we expect
that using monocular depth estimation is challenging as
view-consistent depth is needed.

C. Implementation Details
C.1. Our Method

Radiance Fields Our model architecture is based on
NeRF [21]. The encoded position γ(x) is provided as input
to the first of 8 layers as well as to the fifth, by concate-
nating it with the activations from the fourth layer. Layers
1–8 each have 256 neurons and ReLU activations. The out-
put of layer 8 is passed through a single layer with softplus
activation to produce density σ. The output of layer 8 is
also passed through a 256-channel layer without activation,
whose output is concatenated with the viewing direction d
and the latent code ℓ. The concatenated vector is fed to
a 128-channel layer with ReLU activation, before the final
layer producing the color c. The latent codes ℓ have a size
of 4 on ScanNet and 16 on Matterport3D. Due to the dif-
ferent characteristics of the depth input on the two datasets,
a suitable depth loss weight λ is determined for each ap-
proach and dataset and used across all scenes of the same

11



ScanNet Matterport3D

Ours w/o Completion 1.0 0.25
Ours w/o Uncertainty 0.001 0.007
Ours w/o GNLL 0.04 0.03
Ours w/o Latent Code 0.003 0.007
Ours 0.003 0.007

Table 5. Depth loss weights λ.

dataset (Tab. 5).
Depth Completion The depth completion network is

based on the architecture from Cheng et al. [4]. We use
a ResNet-18 [13] encoder and add a second upsampling
branch for uncertainty estimation. It equally consists of up-
projection layers with skip connections to the same down-
sampling layers as the depth prediction branch. To increase
performance on very sparse input depth, both branches use
a CSPN module, configured to 48 iterations in the depth
branch and 24 iterations in the standard deviation branch.
The depth completion network is trained at a lower resolu-
tion of 256×320 on Matterport3D, and 240×320 on Scan-
Net. We use the Adam optimizer [16] with a learning rate
of 0.0001 and a batch size of 8. We train for 50 epochs on
Matterport3D and 12 epochs on ScanNet. On Matterport3D
80 houses are used for training, 5 houses for validation, and
5 houses for testing. On ScanNet we use the provided data
split. We ensure that the scenes used for NeRF are not in-
cluded during training, and are instead in the test sets.

C.2. NerfingMVS [26]

The error map calculation used by NerfingMVS was not
sufficiently robust to by applied to entire rooms, so to im-
prove this baseline’s performance we adapted it as follows:

Original Calculation For each input view an error map
is computed by projecting the 3D points according to the
depth prior to all other views, where a depth reprojection
error is computed and normalized with the projected depth.
The mean of the 4 smallest errors are used as values in the
error map.

Problem on Entire Rooms When applying the com-
putation on entire rooms as opposed to a local region, the
projected 3D points from other views frequently lie behind
the camera. As a result the computed mean is often nega-
tive. Similarly, the computation of the near and far planes
of the scenes is not suited for entire rooms, leading to a
negative near plane in our case. Negative near plane and
negative error map content lead to invalid sampling ranges,
where the far bound lies in front of the near bound. to ad-
dress this, we set the near and far planes (tn and tf ) of each
scene such that all depth prior values are contained. In the
error map calculation, we assign a maximal error tf − tn
for projected points that lie behind the camera. Afterwards,
the error map values are still computed as the mean of the

smallest 4 errors.

C.3. DS-NeRF [10]

We used the same positional encoding frequencies as de-
scribed for our method in the main paper for this baseline,
which improved its performance. A depth loss weight of
0.1 was suitable for the ScanNet scenes.

C.4. NeRF [21]

As in DS-NeRF, we used our own positional encoding
frequencies for this baseline, which improved its perfor-
mance.
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