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Abstract

Neural Radiance Fields (NeRF) has been wildly applied
to various tasks for its high-quality representation of 3D
scenes. It takes long per-scene training time and per-image
testing time. In this paper, we present EfficientNeRF as
an efficient NeRF-based method to represent 3D scene and
synthesize novel-view images. Although several ways exist
to accelerate the training or testing process, it is still dif-
ficult to much reduce time for both phases simultaneously.
We analyze the density and weight distribution of the sam-
pled points then propose valid and pivotal sampling at the
coarse and fine stage, respectively, to significantly improve
sampling efficiency. In addition, we design a novel data
structure to cache the whole scene during testing to accel-
erate the rendering speed. Overall, our method can reduce
over 88% of training time, reach rendering speed of over
200 FPS, while still achieving competitive accuracy. Ex-
periments prove that our method promotes the practical-
ity of NeRF in the real world and enables many applica-
tions. The code is available in https://github.com/dvlab-
research/EfficientNeRF.

1. Introduction
Novel View Synthesis (NVS) aims to generate images at

new views, given multiple camera-calibrated images. It is
an effective line for realizing Visual or Augmented Real-
ity. With Neural Radiance Fields (NeRF) [17] proposed,
NVS tasks [20, 24], like large-scale or dynamic synthe-
sis [21,22,25], were successfully dealt with in high quality.
NeRF adopts implicit functions to directly map 3D-point
spatial information, in terms of locations and directions, to
the attributes of color and densities. To synthesize high-
resolution images, NeRF needs to densely sample points
over the whole scene, which consumes far more computa-
tion than traditional solutions [14, 16, 29]. For instance, for
a scene containing 100 images with resolution 800 × 800,
NeRF training time usually takes 1-2 days [17], and the per-
image testing time is around 30 seconds. These two ineffi-
ciencies impede the fast practical applications of NeRF.

Figure 1. Training and testing efficiency on realistic synthetic
dataset [17] on a single GPU. Our EfficientNeRF much improves
efficiency in both training and testing phases.

Recently, methods [2, 4, 12, 18, 32, 35] were proposed to
accelerate either the training process or the testing phase.
On the one hand, during testing, NSVF [12] and DON-
eRF [18] decrease the number of samples by their gener-
ated sparse voxels or predicted depth. FastNeRF [4] and
PlenOctree [35] discretely cache the target scene and syn-
thesize novel-view images by fast query. Although these
methods successfully reduce the per-image inference time,
their training time is equivalent or even longer, as illustrated
in Fig. 1.

On the other hand, during training, methods of [2,32,36]
combine NeRF with image features extracted from ResNet
[7] or MVSNet [34] to construct a generalized model, thus
achieving fast training. Nevertheless, as the image prior
comes from limited neighboring views, the synthesis accu-
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racy tends to be lower than NeRF [2, 32]. Besides, obtain-
ing features from multi-view images takes more time during
testing. There is no work yet to significantly shorten both
training and testing time simultaneously.

In this paper, we present the Efficient Neural Radiance
Fields (EfficientNeRF) as the first attempt to accelerate both
per-scene training and per-image testing. Apart from ob-
taining competitive accuracy, the training time can be re-
duced by more than 88%, and the rendering speed is accel-
erated to over 200 FPS, as illustrated in Fig. 1.

The pipeline of original NeRF [17] consists of the coarse
and fine stages. During training, the coarse stage obtains the
density distribution over the whole scene. It uniformly and
densely samples points and calculates corresponding densi-
ties by a coarse MLP. However, as will be shown in Table
1, for common scenes with uniformly sampling, there are
only around 10% - 20% of valid samples (in Eq. (5)) – 5%
- 10% are pivotal samples (in Eq. (12)).

Also, since each point’s density is shared by all rays,
it is possible to memorize the global density by Voxels.
Although NSVF [12] also marks this fact, its solution is
to gradually delete invalid voxels, which may cause ad-
verse effects when removal is wrong. Differently, we pro-
pose Valid Sampling, which maintains dense voxels and up-
dates density in an online way with momentum. The coarse
MLP only infers valid samples whose queried densities are
greater than a threshold, thus saving most of the time at the
coarse stage.

For the fine stage, the original NeRF samples more
points following previous coarse density distribution. We
find that many rays even do not contain any valid and pivotal
points because of the empty background. We instead pro-
pose Pivotal Sampling for the fine stage that focuses on the
nearby area of pivotal samples to efficiently sample points.
Our strategy substantially decreases the number of sampled
points while achieving comparable accuracy.

During testing, inspired by [35] and [4] that replace MLP
modules by caching the whole scene in voxels, we design a
novel tree-based data structure, i.e. NerfTree, to more effi-
ciently represent 3D scenes. Our NerfTree only has 2 layers.
The first layer represents the coarse dense voxels extracted
from the coarse MLP, and the second layer stores the fine
sparse voxels obtained from the fine MLP. The combination
of our dense and sparse voxels leads to fast inference speed.

Our main contributions are the following.

1. We propose EfficientNeRF, the first work to signifi-
cantly accelerate both training and testing of NeRF-
based methods while maintaining reasonable accuracy.

2. We propose Valid Sampling, which constructs dy-
namic Voxels to accelerate the sampling process at the
coarse stage. Also, we propose Pivotal Sampling to ac-
celerate the fine stage. They in total reduce over 88%

of computation and training time.

3. We design a simple and yet efficient data structure,
called NerfTree, for NeRF-based methods. It quickly
caches and queries 3D scenes, thus improving the ren-
dering speed by 4, 000+ times.

2. Related Work
Novel View Synthesis NVS is a long-standing problem
in computer vision and computer graphics. Voxel grids
[8, 10, 14, 28] can achieve real-time synthesis. But they are
challenging to represent high-resolution images with large
memory consumption. MPI-based methods [16, 23, 30, 31,
33, 38] can synthesize high-resolution images. They first
synthesize multiple depth-wise images and then fuse them
to the target views by α-compositing [15]. Large-view syn-
thesis [32] is necessary.

NeRF-based Applications NeRF [17] resolves the res-
olution and memory issues, and can be easily expanded
to various applications. Nerfies [21], NSVF [12], and D-
NeRF [25] implicitly learn 3D spatial deformation func-
tions for dynamic scenes where objects are moving in differ-
ent frames. Neural Actor [13] and Animatable-NeRF [22]
also adopt similar functions to synthesize human body with
novel poses. GRAF [27], pi-GAN [1], and GIRAFFE [19]
treat NeRF as a generator in GAN [5] and generate geomet-
rically controllable images. Recently, StyleNeRF [6] suc-
ceeds in generating images at 1K resolution, which encour-
ages development of NeRF generator.

Training Acceleration Training of NeRF [17] and its
variants usually takes 1 to 2 days [12, 17, 35], which lim-
its efficiency-critical applications. Yu et al. proposed Pixel-
NeRF [36] that introduces image features from ResNet [7]
and skips training in novel scenes. But its synthesis accu-
racy reduces [2]. Wang et al. proposed IBRNet [32] that
integrates multi-view features in the weighted sum, thus
improving accuracy. Chen et al. proposed MVSNeRF [2],
which employs MVSNet [34] to provide a feature volume
for NeRF. It can synthesize high-quality images within 15-
minute finetuning. However, the testing time of the above
methods is as long as the original NeRF.

Testing Acceleration To accelerate per-image inference,
NSVF [12] gives a hybrid scene representation that com-
bines NeRF with sparse voxels structure. The generated
sparse voxels guide and reduce sampling. It improves the
inference speed to around 1 FPS. KiloNeRF [26] reduced
the inference time by adopting around 1,000 tiny MLPs,
where each MLP takes care of a specific 3D area. The
running speed is over 10 FPS. PlenOctree [35] and Fast-
NeRF [4] achieved inference speed over 168 FPS and 200
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Figure 2. Overview of our proposed EfficientNeRF. Training: we first uniformly sample Nc points along each ray r, and query the density
from the Momentum Density Voxels Vσ . We calculate its coarse density for the valid samples whose density σi > 0, obtain weight to
calculate the final ray color, and update Vσ by the coarse density. The pivotal samples with weights wi > ε are taken care of. Ns nearby
samples are linearly sampled along ray r at higher resolutions. Finally, we infer the fine density and color parameters by the fine MLP
and predict the ray color by volume rendering. Testing: The Coarse Dense Voxels and Fine Sparse Voxels are respectively extracted from
coarse and fine MLPs. The densities and colors are obtained by voxels query rather than MLPs.

FPS respectively by caching the whole 3D scenes. We note
that their training is still heavy. In contrast, our Efficient-
NeRF achieves faster per-image inference speed along with
far less training time.

3. Our Approach

Given M images Im(m = 1, 2, ...,M) with calibrated
cameras parameters in multiple views of a scene, we aim to
achieve accurate 3D scene representation and novel image
synthesis regarding both fast training and testing. To begin
with, we review the basic idea and pipeline of NeRF [17].
Then, we introduce our efficient strategies during training,
including lightweight MLP, valid sampling at the coarse
stage, and pivotal sampling at the fine stage. Finally, we
represent the whole scene by our proposed NerfTree during
testing to reach hundreds of FPS.

3.1. Background: Neural Radiance Fields

NeRF [17] is a new representation to 3D scenes. Differ-
ent from 3D mesh, point clouds, and voxels, it introduces
implicit functions to model scenes while adopting volume
rendering to synthesize images. Compared with voxels-
based representation, NeRF overcomes the limitation of res-
olution and storage to synthesize high-quality results.

Implicit Function NeRF employs implicit functions to
inference the sampled points’ 4D attributes when inputting
5D spatial information, formulated as

(r, g, b, σ) = f(x, y, z, θ, φ), (1)

where x = (x, y, z) and d = (θ, φ) denote the point location
and direction in the world coordinate. The color and density
attributes are respectively represented by c = (r, g, b) and
σ. f is a mapping function, usually implemented by a MLP
network.

Volume Rendering For each pixel in the synthesized im-
age, to calculate its color, NeRF first samples N points
xi(i = 1, 2, ..., N) along ray r. It then calculates corre-
sponding density σi and color ci by Eq. (1). The final pre-
dicted color Ĉ(r) is rendered by α-compositing [15] as

Ĉ(r) =
N∑
i=1

wici, (2)

wi = Tiαi,

Ti = exp(−
i−1∑
j=1

σjδj),

αi = 1− exp(−σiδi),



Scene Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean
Valid Samples (V, %) 9.58 % 7.00 % 3.85 % 9.35 % 15.43 % 19.47 % 8.44 % 11.32 % 10.56 %

Pivotal Samples (P, %) 3.79 % 2.25% 1.68 % 3.59 % 5.81 % 7.42 % 3.14 % 4.62 % 4.04 %
Scene Fern Flower Fortress Horns Leaves Orchids Room Trex Mean

Valid Samples (V, %) 24.28 % 13.68 % 23.45 % 21.34 % 15.09% 19.74 % 30.62 % 18.27 % 20.81%
Pivotal Samples (P, %) 15.63 % 7.49 % 4.48 % 10.45 % 8.49% 9.43 % 15.23 % 7.89 % 9.89%

Table 1. Proportions of valid and pivotal samples on the Realistic Synthetic dataset [17] and the Real Forward-Facing dataset [16].

where δi denotes interval of samples along ray r.

Training Objective The training objective L of NeRF
is the mean square error between each ground-truth pixel
color C(r) and the rendering color Ĉ(r) as

L =
∑
r∈R
‖ C(r)− Ĉ(r) ‖22, (3)

whereR is the set of all rays shooting from the camera cen-
ter to image pixels.

3.2. Network

The original NeRF [17] adopts a coarse-to-fine pipeline
to represent scenes. There are two Multi-Layer Perceptrons
(MLPs) in the model with the same network size, while re-
spectively operate the coarse and fine stages. We call them
coarse and fine MLPs. Since the coarse MLP mainly infers
a coarse density distribution, original coarse MLP is redun-
dant and reducible.

For the sake of simplicity, we directly decrease both the
depth and width of coarse MLP by half and keep the consis-
tency of the fine MLP, as illustrated in Fig. 2. According to
the experimental results in Table 5, our lightweight coarse
MLP almost does not weaken performance while improv-
ing the overall inference speed. Taking advantage of our
lightweight coarse MLP, we increaseNc to improve the syn-
thesized quality.

Different from the original NeRF that employs an im-
plicit mapping from direction to color, we adopt the Spher-
ical Harmonics model in PlenOctree [35] to explicitly pre-
dict color parameters by the MLP network. It not only im-
proves the accuracy but also is beneficial for offline caching
during testing.

3.3. Valid Sampling at the Coarse Stage

Valid Samples We define the point with location xv with
density σv > 0 as a valid sample, as shown in Fig. 3. For
the N points along ray r, suppose a point with location xi
has density σi = 0. Because Ti = exp(−

∑i−1
j=1 σjδj) be-

longs to the range of [0, 1] and αi = 1 − exp(−σiδi) = 0,
we calculate its contribution wi to the ray color Ĉ(r) by

wi = Ti · αi = 0. (4)

Figure 3. Density and weight distributions of a typical ray for
NeRF-based methods. Green and yellow points indicate valid and
pivotal samples, respectively.

It means the point is an invalid sample and makes no dif-
ference to the final rendering result. Therefore, it can be
skipped once we know the locations. The proportion of
valid samples is represented as

V =
Nv
Nc

. (5)

We measure the percentage of area by trained NeRF that
is valid over common scenes and show the numbers in Table
1. It is surprising to note that only a small portion (around
10% - 20%) of the samples are valid. From this analysis,
we conclude that it is feasible and necessary to adopt sparse
and valid sampling to achieve efficient scene representation.

Momentum Density Voxels For a specific scene, the den-
sity of any world coordinate x ∈ R3 is shared by all rays.
Thus, we construct momentum density voxels Vσ with res-
olution D ×D ×D to memorize the latest global value of
density over the target scene during training.

Initialization Since each point’s density σ ≥ 0, we ini-
tialize the default density value in Vσ as a positive number
ε. It means that all points in Vσ are valid samples in the
beginning.

Update For a sampled point with location x ∈ R3, we
infer its coarse density σc(x) by the coarse MLP. Then we
update the density voxels Vσ by σc(x). We add a momen-
tum to stabilize the values. Specifically, we first transfer x



to 3D Voxels index i ∈ R3 as

i =
x− xmin

xmax − xmin
·D, (6)

where xmin, xmax ∈ R3 denote the minimal and maximal
world coordinate borders of the scene.

Next, for every training iteration, we update the global
density σ at index i of Vσ through

Vσ[i]← (1− β) · Vσ[i] + β · σc(x). (7)

Where β ∈ [0, 1] controls the updating rate.
Our momentum density Voxels Vσ reflect the latest den-

sity distribution over the whole scene. Thus, we directly
obtain the density attribute at coordinate x through query
rather than calculating through a MLP module. It primarily
reduces the inference time and is utilized to guide a dynamic
sampling process.

Valid Sampling During training, for each ray r whose
starting point is ro ∈ R3 and normalized direction is rd ∈
R3, the original NeRF adopts a uniform sampling strategy
to obtain the sampled points as

xi = ro + iδcrd, (8)

where i ∈ Z and ∀i ∈ [1, Nc]. δc is the interval between the
nearest coarse sampled points along ray r.

We propose Valid Sampling to pay attention to valid
samples. Specifically, instead of directly inferring all these
samples, we first query the latest density from Vσ , and only
input xi with global densities

Vσ[i] > 0 (9)

to the coarse MLP.
Inferring a single point by a coarse MLP takes times

Tm, and querying a single point from voxels takes Tq . For
all sampled points along ray r, predicting their densities
through a coarse MLP consumes time NcTm. Our method
takes time (NvTm + (Nc − Nv)Tq). Considering time of
voxels query Tq � Tm [4,35], we calculate the acceleration
ratio Ac of the coarse stage by

Ac =
NcTm

NvTm + (Nc −Nv)Tq
≈ Nc
Nv

=
1

V
. (10)

As illustrated in Table 1, if the proportion of valid samples
V = 10%, the coarse stage can be accelerated by 10 times
in theory.

3.4. Pivotal Sampling at the Fine Stage

During the fine stage, 3D points should be sampled in
higher resolution for better quality. The original NeRF [17]
first samples Nf points along each ray r that follows the

coarse weight distribution. It then predicts densities and
colors by the fine MLP. Since the number of points at the
fine stages is usually 2 times of Nc, it requires more com-
putation during running time. To achieve efficient sampling
at the fine stage, we propose a Pivotal Sampling strategy.

Pivotal Samples We define the point with location xp
whose weight wp > ε as a pivotal sample, where ε is a
tiny threashold, as illustrated in Fig. 3.

Pivotal Sampling wi represents the contribution of xi to
the ray r’s color. The nearby area of the pivotal samples is
focused to infer more detailed densities and colors. Apart
from xp, we uniformly sampleNs points near xp along each
ray r as

xp,j = xp + jδfrd, (11)

where j ∈ Z and ∀j ∈ [−Ns

2 ,
Ns

2 ]. δf is the interval at the
fine stage. Suppose there are Np pivotal points, the propor-
tion of the pivotal samples can be represented by

P =
Np
Nc

. (12)

Similar to the coarse stage, we calculate the acceleration
ratio Af of the fine stage as

Af =
Nf
NpNs

=
2Nc
NpNs

=
2

PNs
. (13)

In our experiments with results listed in Table 1, if Ns = 5
and P = 5%, our pivotal sampling strategy can accelerate
the fine stage by 8 times.

3.5. Represent Scene by NerfTree

Although the training time has been significantly short-
ened through our valid and pivotal sampling, the system is
still constrained by the inference time of MLP during test-
ing. Inspired by [4,35] that cache the target scene in Voxels
or Octrees, we design an efficient tree-based data structure,
called NerfTree, for NeRF-based methods to accelerate the
inference speed. NerfTree can store the whole scene offline,
thus eliminating the coarse and fine MLP.

Different from the dense Voxels and Octrees in PlenOc-
tree [35], our NerfTree T = {Vc, Vf} is a 2-depth tree. The
first depth caches the coarse dense Voxels Vc, and the sec-
ond depth caches the fine sparse Voxels Vf , as illustrated in
Fig. 2. Vc ∈ RDc×Dc×Dc only contains density attribute,
which is extracted by inferring the density values of every
voxel grid by the coarse MLP.

For the fine sparse voxels Vf ∈ RNV ×D3
f , the first di-

mension NV represents the number of all valid samples,
and the second dimension represents local voxels with size
Df × Df × Df . Each voxel in Vf stores the density and
color parameters inferred from the fine MLP. As illustrated
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Figure 4. 2D graph representation of different 3D data structures.
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in Fig. 4, between these three representations, dense vox-
els only have one depth layer, thus achieving the minimal
access time and maximum storage. Octree has the opposite
characteristic of Voxels. Our NerfTree combines the advan-
tages of both Voxels and Octrees. Thus it can be accessed
at a fast speed while not consuming much storage.

4. Experiments

4.1. Experimental Setting

Datasets We first introduce the common high-resolution
Novel View Synthesis datasets, including the Realistic Syn-
thetic dataset [17] and the Real Forward-Facing dataset
[16]. The Realistic Synthetic dataset [17] contains 8 syn-
thetic scenes. Each scene contains 100 training images and
200 testing images, all at 800 × 800 resolution. The Real
Forward-Facing dataset [16] consists of 8 complex and real-
world scenes, each has 20 to 62 images at 1, 008×756 reso-
lution. We follow the same training and testing dataset split
as the original NeRF [17].

Metrics We evaluate the accuracy of synthesized images
via metrics including PSNR / SSIM (the higher the bet-
ter), and LPIPS [37] (the lower the better), following recent
methods [12,14,17,35]. Moreover, we measure the training
speed by total training time in terms of hour and the render-
ing speed by Frame Per Second (FPS). For fair comparison,
we re-train their source code on the same machine and skip
the evaluation time during training.

Implementation Details During training, for the Mo-
mentum Density Voxels Vσ , its resolution is set as 384 ×
384 × 384, the initial density ε = 10.0, and the updating
rate β = 0.1. The degree of Spherical Harmonics is 3,
which means the output dimension of MLPs is 49 [35].The
pivotal threshold ε is 1× 10−4. The learning rate is initial-
ized to 5×10−4 with Adam [9] optimizer and exponentially
decays by 0.1 for every 500K iteration when the batch size
is 1024. Finally, the total number of training iteration is
1× 106.

During testing, we set Dc = 384 and Df = 4, which
means the coarse voxels have resolution 384 × 384 × 384,
and local fine sparse voxels have resolution 4× 4× 4. The

quantification from MLP’s continuous coordinates to dis-
crete ones usually weakens the performance [35]. We avoid
it by directly inputting the converted discrete coordinate to
the MLP during training or using linear interpolation. All
our experiments are performed on a server with one RTX-
3090 GPU. Please refer to the supplementary material for
more experimental results.

4.2. Quantitative Comparison

We compare the proposed EfficientNeRF with state-of-
the-art methods [11, 12, 14, 17, 29, 35] in terms of both ac-
curacy and speed. Results are listed in Table 2. Depend-
ing on whether image prior is introduced or not, state-of-
the-art methods can be divided into two groups. The first
[2, 14, 29, 32] is based on image prior. These methods can
fine-tune a novel scene in short time while sacrificing test-
ing accuracy. The second group [11, 12, 35] is by training
from scratch. They were designed to improve the rendering
speed. However, the training time is found even longer than
that of the original NeRF [17].

In contrast, our EfficientNeRF achieves competitive ac-
curacy on both datasets and demonstrates notable advan-
tage in terms of training and testing efficiency. As shown in
Fig. 1 and Table 2, even though our method does not intro-
duce image prior, it still outperforms previous fast finetun-
ing method i.e., MVSNeRF [2], when training for 15 min-
utes or longer. In addition, our proposed NerfTree quickly
queries the 3D attributes at the target locations, which con-
tributes to our final 238.46 FPS during testing.

In summary, our EfficientNeRF adopts efficient strate-
gies, including lightweight MLP, valid sampling, and piv-
otal sampling, thus accelerating both the training and testing
while maintaining comparable accuracy.

Trade-off between Accuracy and Speed To balance the
synthesized accuracy and inference speed, we provide four
versions of EfficientNeRF (N1-N4) according to the num-
ber of coarse and fine sampling parameters Nc and Ns in
Table 3 and plot the PSNR-Speed curves in Fig. 1. Our
work achieves a better rendering speed than other state-of-
the-art methods like PlenOctree [35].

4.3. Qualitative Comparison

We also demonstrate the performance of our method by
visual comparison. As illustrated in Fig. 5, we intuitively
show the training visualization of different methods at 0.25,
2, and 5 hours, and the final training time. In the timeline
of training, ours already synthesizes detailed images within
1 hour, while other methods [12, 32, 35] need to train 5
hours or longer to achieve similar performance. Also, com-
pared with IBRNet [32] based on image prior, our method
is trained from scratch while outperforming it within 0.25-
hour training.



Method Realistic Synthetic [17] Real Forward Facing [16, 17]

PSNR(↑) SSIM (↑) LPIPS (↓) Training Time
(Hours, ↓)

Rendering Speed
(FPS, ↑) PSNR (↑) SSIM (↓) LPIPS (↓) Training Time

(Hours, ↓)
Rendering Speed

(FPS, ↑)
SRN [29] 22.26 0.846 0.170 - 0.909 22.84 0.668 0.378 - -
NV [14] 26.05 0.893 0.160 - 3.330 - - - - 3.052

MVSNeRF [2] 27.21 0.945 0.227 0.25 0.020 26.25 0.907 0.139 0.25 0.016
IBRNet [32] 28.14 0.942 0.072 2.0 0.042 26.73 0.851 0.175 2.0 0.036
NeRF [17] 31.01 0.947 0.081 56 0.023 26.50 0.811 0.250 20 0.018
NSVF [12] 31.75 0.953 0.047 100+ 0.815 - - - - 0.758

AutoInt [11] 25.55 0.911 0.170 - 0.380 24.13 0.820 0.176 - -
KiloNeRF [11] 31.00 0.950 0.030 25+ 10.64 - - - - -
FastNeRF [4] - - - - ∼200 26.04 0.856 0.085 - ∼200

Nex [33] - - - - - 27.26 0.904 0.178 18+ 300
PlenOctree [35] 31.71 0.958 0.053 58 167.68 - - - - -
EfficientNeRF 31.68 0.954 0.028 6 238.46 27.39 0.912 0.082 4 218.83

Table 2. Accuracy and time comparison on the Realistic Synthetic [17] and the Real Forward-Facing [16, 17] datasets. Ours achieves
comparable PSNR/SSIM/LPIPS accuracy with state-of-the-art methods, while showing promising acceleration in both training and testing
phases.

Version # Sampling PSNR (↑) Rendering Speed (FPS, ↑)Coarse Fine

EfficientNeRF

N1 64 2 29.54 493.62
N2 64 3 30.49 403.28
N3 96 4 31.22 324.62
N4 128 5 31.68 238.46

Table 3. Different versions of our EfficientNeRF with trade-off
between synthesized accuracy and rendering speed.

Coarse MLP Fine MLP Time
(s / iter, ↓) PSNR(↑)Lightweight Standard Lightweight Standard

X X 0.184 31.01
X X 0.121 29.28

X X 0.132 29.39
X X 0.138 30.96

Table 4. Performance of different combinations between
lightweight and standard MLPs at the coarse and fine stages of
the original NeRF [17]. The batch size is 1024.

4.4. Ablation Studies

Networks We explore the influence of the different sizes
of the coarse and fine networks, as shown in Table 4.
The baseline combination is two identical standard MLPs,
which come from the original NeRF [17]. The accuracy is
the best under the longest running time. The combination of
two lightweight MLPs yields opposite performance, which
indicates the effect of standard MLPs.

It is found that lightweight coarse MLP plus standard
fine MLP yields nearly the same accuracy and fast render-
ing speed. It reveals that the size of fine MLP mainly de-
termines the final synthesis quality. We thus adopt the final
combination as the network of our EfficientNeRF.

Efficient Modules As shown in Table 5, we evaluate per-
formance of the proposed efficient modules. First, repre-
senting the color in different directions by Spherical Har-
monic (SH) [35] is in favor of the performance. Second,
our lightweight coarse MLP and coarse valid sampling ac-

Method PSNR (↑) Time (↓) Improvement (↑)
NeRF [17] 31.01 0.184 s / iter -
+ SH [35] 31.57 0.183 s / iter -

+ Lightweight Coarse MLP 31.52 0.137 s / iter 25.54%
+ Coarse Valid Sampling 31.49 0.085 s / iter 53.80%
+ Fine Pivotal Sampling 31.68 0.021 s / iter 88.58%

Table 5. Contributions of our proposed modules to the training
time on the Realistic Sythetic dataset [17].

Method Sampling Strategy Training Time
(Hours) PSNRUniform NeRF [17] Ours

NeRF [17]
X 41 30.06

X 56 31.01
X 6 31.25

IBRNet [32] X 2 25.49
X 1 26.23

MVSNeRF [2] X 0.25 27.21
X 0.18 28.03

PlenOctree [35] X 58 31.71
X 6 31.66

Table 6. Effect of our efficient sampling strategies when combined
with different NeRF-based Methods.

celerate the training process. Third, our fine pivotal sam-
pling further reduces the training time and improves syn-
thesis accuracy. It performs better than the original proba-
bilistic sampling of original NeRF [17].

Sampling Strategy We compare our efficient sampling
with the common uniform sampling and original sampling
of NeRF. The result is presented in Table 6. First, uniform
sampling is adopted by IBRNet [32] and MVSNeRF [2].
It is faster than NeRF sampling while achieving lower ac-
curacy. Second, NeRF [17] and PlenOctree [35] adopt
NeRF sampling and achieve high performance. However,
the training time is very long. Finally, our efficient sampling
successfully accelerates all these methods while achieving
comparable or even better accuracy.
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Figure 5. Qualitative comparison with state-of-the-art methods on the Realistic Synthetic dataset [17] and the Real Forward-Facing dataset
[16, 17]. It is best viewed by zoom-in.

Scene
Representation Memory Caching Time Querying Time

Dense Voxels 16 GB 16.55 ms 13.64 ms
Sparse Tensor

(Minkowski Engine [3]) 2.1 GB 24.72 s 121.21 ms

Octree
(PlenOctree [35]) 2.6 GB 14.51 s 18.84 ms

NerfTree
(Ours) 2.8 GB 22.43 ms 15.39 ms

Table 7. Comparison of different data structures when caching
and querying all points in a common 3D scene with size 1, 024×
1, 024× 1, 024 and 20% valid samples.

Scene Representation Before applying NerfTree, other
data structures, such as dense voxels, sparse tensor [3], and
Octree [35], can also be used to cache the trained scene for
fast synthesis of novel views. To compare their efficiency,
we calculate memory consumption and running time when
storing and querying a whole scene with resolution 1, 024×
1, 024 × 1, 024 and 20% of valid space. Each voxel has a
4D feature (r, g, b, σ) with the same data type.

The results are shown in Table 7, Dense voxels rep-
resentation spends the least time in caching and querying
while requiring 16.0 GB memory. The required memory by
Sparse Tensor (Minkowski Engine [3]) is the smallest. But
as it adopts hash structure making caching and query longer
process. PlenOctree [35] balances memory consumption
and query time. However, its caching time is long because

of its internal optimization. Our NerfTree representation
performs the best with all these three aspects. It does not re-
quire much storage memory, and cache and query 3D points
at a very fast speed.

5. Conclusion

In this paper, we have presented Efficient Neural Ra-
diance Fields (EfficientNeRF) to accomplish accurate rep-
resentation of 3D scenes and synthesis of novel view im-
ages at a fast speed. We studied the distribution of density
and weight and proposed valid sampling at the coarse stage
and pivotal sampling at the fine stage. These two sampling
strategies are efficiently handle the important samples, thus
saving a great amount of computation. Also, we designed
NerfTree for NeRF-based methods to cache 3D scenes. It
yields faster speed than state-of-the-art methods [12,26,35]
during testing.

Limitations and Future Work Our EfficientNeRF
achieves fast and accurate 3D scene representation and view
synthesis. It still needs to train from scratch when handling
novel scenes. This is also a common issue in other state-of-
the-art NeRF-based methods [35]. Although we combined
images prior with our efficient sampling in Table 6, the syn-
thesis accuracy is limited. In future work, we will improve
generalization of EfficientNeRF and aim to achieve compet-
itive accuracy when there is no finetuning in novel scenes.
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