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Abstract

Multi-view Stereo (MVS) with known camera parame-
ters is essentially a 1D search problem within a valid depth
range. Recent deep learning-based MVS methods typically
densely sample depth hypotheses in the depth range, and
then construct prohibitively memory-consuming 3D cost
volumes for depth prediction. Although coarse-to-fine sam-
pling strategies alleviate this overhead issue to a certain
extent, the efficiency of MVS is still an open challenge.
In this work, we propose a novel method for highly effi-
cient MVS that remarkably decreases the memory footprint,
meanwhile clearly advancing state-of-the-art depth predic-
tion performance. We investigate what a search strategy can
be reasonably optimal for MVS taking into account of both
efficiency and effectiveness. We first formulate MVS as a
binary search problem, and accordingly propose a gener-
alized binary search network for MVS. Specifically, in each
step, the depth range is split into 2 bins with extra 1 error
tolerance bin on both sides. A classification is performed to
identify which bin contains the true depth. We also design
three mechanisms to respectively handle classification er-
rors, deal with out-of-range samples and decrease the train-
ing memory. The new formulation makes our method only
sample a very small number of depth hypotheses in each
step, which is highly memory efficient, and also greatly fa-
cilitates quick training convergence. Experiments on com-
petitive benchmarks show that our method achieves state-
of-the-art accuracy with much less memory. Particularly,
our method obtains an overall score of 0.289 on DTU
dataset and tops the first place on challenging Tanks and
Temples advanced dataset among all the learning-based
methods. The trained models and code will be released at
https://github.com/MiZhenxing/GBi—-Net.

1. Introduction

Multi-view Stereo (MVS) is a long-standing and fun-
damental topic in computer vision, which aims to recon-
struct 3D geometry of a scene from a set of overlap-
ping images [9, 10, 26, 32, 35]. With known camera pa-
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Figure 1. (a) Comparison with previous state-of-the-art learning-
based MVS methods [5,11,33,34,41,44,45] on DTU [2]. The rela-
tionship between the overall error and the GPU memory overhead
with image size 1152 x 1600 and image number 5. (b) Comparison
of the previous dense search and the proposed binary search.

Overall Error (mm)
°
o
&

MVSNet @ VisMVSNet

D Hypothesis

e 2 ]

) snese

rameters, MVS matches pixels across images to compute
dense correspondences and recover 3D points, which is
essentially a 1D search problem [8]. A depth map is
widely used as 3D representation due to its regular for-
mat. To overcome the issue of coarse matching in previ-
ous purely geometry-based methods, recent learning-based
MYVS methods [14,21,41,42] designed deep networks for
dense depth prediction to significantly advance traditional
pipelines. For instance, MVSNet [4 1] and RMVSNet [42]
propose to construct 3D cost volumes from 2D image fea-
tures with dense depth hypotheses. A 3D cost volume is
a 5D tensor and is typically regularized by a 3D Convolu-
tional Neural Network (CNN) or a Recurrent Neural Net-
work (RNN) for depth prediction.

The importance of 3D cost volume regularization for ac-
curate depth prediction has been confirmed by other works
[4,5, 11]. However, a severe problem is that 3D cost
volumes are highly memory-consuming. Existing works
made significant efforts to address this issue via decreasing
the resolution of feature maps [41], using a coarse-to-fine
strategy that gradually increases resolution of feature maps
while decreasing the depth hypothesis number [4, 5, 11],
and removing expensive 3D CNN or RNN [33,40]. Al-
though the memory can be alleviated to some extent, rela-
tively lower accuracy is commonly observed. The size of
3D cost volume, specifically the depth hypothesis number,
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plays a dominant role in causing a large memory footprint.

Due to the significance of 3D cost volumes in both
model efficiency and effectiveness, a critical question nat-
urally arises: what is a minimum volume size to secure
satisfactory accuracy while maintaining as small as possi-
ble the memory overhead? In this work, we investigate this
question by exploring from a perspective of discrete search
strategies, to identify a minimal depth hypotheses number,
a key factor in 3D cost volumes. As shown in Fig. 1b, the
vanilla MVSNet [4 1] can be seen as a dense search method
that checks all depth hypotheses similar to a linear search in
a parallel manner. The coarse-to-fine methods [5, | 1] per-
form a multi-granularity search, which starts from a coarse
level and gradually refines the prediction. However, these
two types of methods both consider dense search in each
stage. We argue that the dense search does not necessarily
guarantee better accuracy due to a much larger prediction
space and significantly increases model complexity, leading
to higher optimization difficulty in model training.

To explore a reasonably optimal search strategy, we first
formulate MVS as a binary search problem, which can re-
markably reduce the cost volume size to an extremely low
bound. It performs comparisons and eliminates half of
the search space in each stage (see Fig. 1b), and can con-
vergence quickly to a fine granularity within logarithmic
stages. In contrast to regression-based methods, which di-
rectly sample depth values from the depth range, we first
divide the depth range into 2 bins. In our design, the ‘com-
parisons’ by the network is to determine which bin contains
the true depth value via performing a binary discrete classi-
fication. We use center points of the two bins to represent
them and construct 3D cost volumes. The binary search of-
fers superior efficiency, while it also brings an issue of the
network classification error (i.e. prediction out of bins). The
error can be accumulated from each search stage causing
unstable optimization gradients and relatively low accuracy.

To tackle this issue, we further design three effective
mechanisms, and accordingly propose a generalized binary
search deep network, termed as GBi-Net, for highly effi-
cient MVS. The first mechanism is that we pad two error
tolerance bins on the two sides to reduce the prediction er-
ror of out of bins. The second mechanism is for training.
If the network generates an error of prediction out of bins
for a pixel at a search stage, we stop the forward pass of
this pixel in the next stage, and the gradients at this stage
are not used to update the network. Extensive experiments
show that the proposed GBi-Net can largely decrease the
size of 3D cost volumes for a significantly efficient net-
work, and more importantly, without any trade-off on the
depth prediction performance. The third is efficient gradi-
ent updating. It updates the network parameters immedi-
ately at each search stage without accumulating across dif-
ferent stages as most works do. It can largely reduce the

training memory while maintaining the performance. Our
method achieves state-of-the-art performance on different
competitive datasets including DTU [2] and Tanks & Tem-
ples [17]. Notably, on DTU, we achieve an overall score
of 0.289 (lower is better), remarkably improving the pre-
vious best performing method, and also obtain a memory
efficiency improvement of 48.0% compared to UCSNet [5]
and 54.1% compared to CasMVSNet [1 1] (see Fig. 1a).
In summary, our contribution is three-fold:

* We investigate efficient MVS from a perspective of
search strategies, and propose a discrete binary search
method for MVS (Bi-Net) which can vastly decrease
the memory usage of 3D cost volumes.

* We design a highly-efficient generalized binary search
network (GBi-Net) via further designing three mech-
anisms (i.e. padding error tolerance bins, gradients
masking, and efficient gradient updating) with the bi-
nary search to avoid error accumulation of false net-
work predictions and improve efficiency.

* We evaluate our method on several challenging MVS
datasets and significantly advance existing state-of-
the-art methods in terms of both the depth prediction
accuracy and the memory efficiency.

2. Related Work

We review the most related works in the literature from
two aspects, i.e. traditional MVS and learning-based MVS.
Traditional Multi-View Stereo. In 3D reconstruction, var-
ious 3D representations are used, such as volumetric repre-
sentation [ 18,27], point cloud [9, 19], mesh [6,16,29,30] and
depth map [3, 10,26]. In MVS [23,26,35], depth maps have
shown advantages in robustness, efficiency. They estimate
a depth map of each reference image and fuse them into
one 3D point cloud. For instance, COLMAP [26] simulta-
neously estimates pixel-wise view selection, depth, and sur-
face normal. ACMM [35] leverages a multi-hypothesis joint
voting scheme for view selection from different candidates.
These existing methods perform modeling of occlusion,
illumination across neighboring views for depth estima-
tion. Although stable results can be achieved, high match-
ing noise and poor correspondence localization in complex
scenes are still severe limitations. Thus, our method mainly
focuses on developing a deep learning-based MVS pipeline
to advance the estimation performance.

Learning-based Multi-View Stereo. Deep learning-based
MVS methods [13, 15,34, 41] recently have achieved re-
markable performance. Deep learning-based methods usu-
ally utilize Deep CNNss to estimate a dense depth map. Re-
cently, 3D cost volumes have been widely used in MVS [33,

,41,45]. As a pioneering method, MVSNet [4]1] con-
structs the 3D cost volume from feature warping and regu-
larizes the cost volume with 3D CNNs for depth regression.
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Figure 2. The multi-stage framework of our GBi-Net. The 2D CNN:ss first extract 2D feature maps. Then a 3D cost volume is constructed
and fused by differentiable warping and only 4 depth hypotheses. The cost volume is regularized by 3D CNNs and gets a probability
volume for loss calculation with one-hot labels and training masks. We select the depth bin at current stage using argmax operation. Then
we update the depth hypotheses for the next stage with our proposed Generalized Binary Search.

The main problem of vanilla MVSNet is the large memory
consumption of the 3D cost volume. Recurrent MVSNet ar-
chitectures [34,38,42] leverage recurrent networks to regu-
larize cost volumes, which can decrease the memory usage
to some extent in the testing phase. However, the major
overhead from the 3D cost volumes is not specifically ad-
dressed by these existing methods.

To reconstruct hig-resolution depth maps meanwhile
obtaining a memory-efficient cost volume, cascade-based
pipelines are proposed [5, | 1,39], considering a coarse-to-
fine dense search strategy to gradually refine the depths. For
instance, CasMVSNet [ 1 1] utilizes coarse feature maps and
depth hypotheses in the first stage for coarse depth predic-
tion, and then upsamples depth maps and narrows the depth
range for fine-grained prediction in the next stage. Patch-
matchnet [33] learns adaptive propagation and evaluation
for depth hypotheses. It removes heavy regularization of 3D
cost volumes to achieve an efficient model while it makes a
significant trade-off between efficiency and accuracy.

However, these existing works still consider a dense
search in each regression stage. The memory overhead
on the expensive 3D cost volume is clearly not optimized,
while the proposed method targets highly efficient MVS
with the designed binary search network, which largely ad-
vances the model efficiency, and more importantly, without
sacrificing any depth prediction performance.

3. The Proposed Approach

In this section, we introduce the detailed structure of
the proposed Generalized Binary Search Network (GBi-
Net) for highly-efficient MVS. The overall framework is

depicted in Fig. 2. It mainly consists of two parts, i.e. a
2D CNN network for learning visual image representa-
tions, and the generalized binary search network for iter-
ative depth estimation. The GBi-Net contains K search
stages. In each search stage, we first compute 3D cost vol-
umes by differentiable warping between the reference and
source feature map in a specific corresponding scale. Then
3D cost volumes are regularized by 3D CNNs for depth la-
bel prediction. The Generalized Binary Search is responsi-
ble for initializing and updating depth hypotheses according
to the predicted labels iteratively. In every two stages, the
networks deal with the same scale of feature maps, and the
network parameters are shared. Finally, one-hot labels for
training the whole network are computed from ground-truth
depth maps. In the next, we first introduce the 2D image en-
coder in Sec. 3.1 and the 3D cost volume regularization in
Sec. 3.2. Then, we elaborate on details about our proposed
Binary Search for MVS and Generalized Binary Search for
MVS in Sec. 3.3 and Sec. 3.4, respectively. Finally, we
present the overall network optimization in Sec. 3.5.

3.1. Image Encoding

The input consists of N images {I;}~ ! I is a ref-

erence image and {I;})* ' is a set of N — 1 source im-
ages. We use Feature Pyramid Network (FPN) [20] as an
image encoder to learn generic representation for the im-
ages with shared network parameters. From FPN, we ob-
tain a pyramid of feature maps with 4 different scales. To
have more powerful representations of the images, one de-
formable convolutional network (DCN) [7] layer is used as
output layer for each scale to more effectively capture scene
contexts that are very beneficial for the MVS task.



3.2. Cost Volume Regularization

The construction of 3D cost volumes is a critical step for
deep learning-based MVS [41]. We present details about
the cost volume construction and regularization for the pro-
posed generalized binary search network. Given D depth
hypotheses at the k-th search stage, i.e. {dj ;|7 = 1, ..., D},
a pixel-wise dense 3D cost volume can be built by differen-
tiable warping on the learned image feature maps [33,41].
To simplify the description, we ignore the stage index k in
the following formulation.

The input of MVS consists of relative camera rotation
Ry, ¥, and translation ty, ., from a reference feature map
F to a source feature map F';. Their corresponding camera
intrinsics Ky, K; are also known. We first construct a set
of 2-view cost volumes {V;}¥ ' from the N — 1 source
image feature maps by differentiable warping and group-
wise correlation [12,33,37]. Let p be a pixel in I, p’ be the
warped pixel of p in the source image I; by the j-th depth
hypothesis, i.e. d;. Then p’ can be computed by:

P =K Rr,r, Ko' - p-dj +tr,or,), (D)

where the feature maps Fg and F; all have a channel dimen-
sion of N.. Following [12], we divide the channels of the
feature maps into N, groups along the channel dimension,
and each feature group therefore has N./N, channels. Let
FY be the g-th feature group of F;. Then we can compute
the i-th cost volume V; from F; as follows:

Vilipo) = MEELEE). O
Where (-,-) denotes a correlation calculation by an inner
product operation. The group-wise correlation allows us to
more efficiently construct a full cost volume. After the con-
struction of each 2-view cost volume, we apply several 3D
CNN layers to predict a set of pixel-wise weight matrices
{W,;}¥71. Then we fuse these cost volumes into one cost
volume V via weighted fusion [33,37] with {W,-}ZN:I1 as:

N— .
Yoy Wip) - Vi(§,p,9)
N—1 :
2121 Wi (p)
The fused 3D cost volume V is then regularized by a 3D
UNet [24,41], which gradually reduces the channel size of
V to 1 and output a volume of size D, H, W, i.e. spatial size
of the volume. Finally, a Softmax(-) function is performed
along the D dimension to produce a probability volume P
for computing the training loss and labels.

V(i,p,9) = 3)

3.3. Binary Search for MVS

Multi-view stereo networks [11,41,42] typically densely
sample depth hypotheses for each pixel to construct 3D cost
volumes, resulting in remarkably high memory footprint.
To alleviate this issue, recent cascade-based MVS methods

[5,11] propose to construct cost volumes in a coarse-to-fine
manner which reduces the memory usage to some extent.
However, in each iterative stage, the sampling is still much
dense, and thus the model efficiency is far less than optimal.
In this work, we explore a reasonably optimal sampling
strategy from a perspective of discrete search for highly-
efficent MVS, and propose a binary search method (Bi-Net).
Specifically, instead of directly sampling depth values in the
given depth range R, we divide the current depth range into
bins. For the k-th search stage, we divide the depth range
into 2 equal bins, i.e. { By j|j = 1,2} with By, ; denoting a
bin. The bin width of B; ; in the first stage is R/2. As we
cannot directly use discrete bins for warping feature maps,
we sample center points of the 2 bins to represent the depth
hypotheses of bins, and then construct the cost volume and
perform label prediction for the 2 bins. Let the three edges
from left to right of the 2 bins be {ej, .,,|m = 1,2, 3}. Then,
the two edges of bin By, ; are ey, ; and ey ;1. For instance,
ex,1 and ey, o are edges of By 1. Then the depth hypothesis
dy,; for the 2 bins can be computed as follows:
di; = €k,j +2€k,j+1)
The predicted label of a depth hypothesis indicates whether
the true depth value is in the corresponding bin. In the k-
th search stage, after the network outputs the probability
volume P, we apply an argmax(-) operation along the D
dimension of P, which returns the label j indicates that the
true depth value is in the bin By, ;. The new 2 bins at the
(k 4 1)-th search stage can be further generated by dividing
By,.; into two equal-width bins By 1 1 and By 1 2, and the
corresponding three edges at this stage can be defined as:

j=12 @)

€k,j T Chj+1
€k+1,1 = €k,j;Ck+1,2 = -5

y€k+1,3 = €k j+1-

&)
Then new depth hypotheses are sampled from the center
points of bins By 1 1 and By 1 2 for the (k + 1)-th stage.
The initial bin width in the proposed binary search is R/2
and in the k-th stage, the bin width is R/ 2k,

With our proposed binary search strategy, the depth di-
mension of the 3D cost volume can be decreased to 2, which
pushes the cost volume size to an extremely low bound, and
the memory footprint is dramatically decreased. In our ex-
periments, the Binary Search for MVS achieves satisfactory
results, outperforming several existing competitive meth-
ods, and the memory overhead of the whole MVS network
becomes dominated by the 2D image encoder, no longer
by the 3D cost volumes. However, as discussed in the In-
troduction, the issue of the network classification error can
cause unstable optimization and degraded accuracy.

3.4. Generalized Binary Search for MVS

To handle the error accumulation and the training is-
sue in the proposed Binary Search for MVS, we extend it
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Figure 3. [llustration of Generalized Binary Search. We subdivide
the selected bin into two bins according to the label. Then we pad
Error Tolerance Bins (ETB) on both sides. We check the gradient
mask of this pixel. Only if it is valid, the loss could participate in
back-propagation.
to a Generalized Binary Search for MVS. Specifically, we
further design three effective mechanisms which are error
tolerance bins, gradient-masked optimization and efficient
gradient updating mechanism, making substantial improve-
ment over the Binary Search method.
Error Tolerance Bins. After obtaining the selected bin
By, ; in the k-th search stage, we first divide it into two new
bins Byy1,1 and By 2 for the next (k + 1)-th stage, as
shown in Fig. 3. To make the network have a certain ca-
pability of tolerating prediction errors, we propose to re-
spectively add one small bins on the left side of By,
and on the right side of By 2. This process is termed
as Error Tolerance Bins (ETB). More formally, given D
(D is an even number and small enough) as the final num-
ber of bins, we pad (D — 2)/2 more bins to the two sides
of the original two bins. After the padding, D new bins,
ie. {Bk+1,j|j = 1,...,, D}, are obtained, as well as their
corresponding bin edges, i.e. {exy1.m|m = 1,...,D + 1}.
We still sample the center points as the depth hypotheses
{dry1]7 = 1,..., D} from these bins with Eq. 4. The er-
ror tolerance bins extend the sampling of depth hypotheses
to a range out of the two original bins in the binary search,
thus enabling the network to correct the predictions and to
reduce error accumulation to some extent. Since the depth
hypotheses number is now D, we also change the initial-
ization of depth hypotheses in the first stage. As the initial
depth range R in split into D bins, the initial bin width is
R/D and in the k-th stage, the bin width is R/(D x 2F~1).
In our network implementation, we pad only 1 ETB on
both sides. This leads to a depth hypothesis number of 4,
i.e. D = 4. In the experiments, we observe dramatically im-
proved depth prediction accuracy while notably, the mem-
ory consumption can be the same level as the original binary
search, as the memory is still dominated by the 2D image
encoder. Fig. 3 shows a real example of our GBi-Net. The
hypothesis number D is set to 4. With the error tolerance

bins, the network can predict a correct label of 4 when the
true depth is in B3 4 at the 3-th search stage, while the orig-
inal binary search fails.
Gradient-Masked Optimization. The proposed GBi-Net
is trained in a supervised manner. The ground-truth labels
are generated from the ground-truth depth map. In the k-th
search stage, after we obtain the bins, we calculate which
bin is occupied by the ground-truth depth value. Then we
can convert the ground truth depth map into a ground truth
occupancy volume G with one-hot encoding, which is fur-
ther used for loss calculation. One problem in the iterative
search is that the ground-truth depth values for some pix-
els may be out of the D bins. In this situation, no valid
labels exist and the losses cannot be computed. This is
a critical problem in network optimization. The coarse-
to-fine methods typically leverage a continuous regression
loss, while existing MVS methods with a discrete classifi-
cation loss [42] widely employ dense space discretization.
In our GBiNet, a designed mechanism to this problem
is computing a mask map for each stage, based on the bins
and ground-truth depth maps. If the ground-truth depth of a
pixel is in the current bins, the pixel is considered as valid.
Let the ground-truth depth for a pixel be dg; and the current
bin edges be {e,,|m = 1,...,D + 1}, omitting the stage
index for simplicity. Then the pixel is valid only if:

e1 <dg < epti- (6)

Only the loss gradients from the valid pixels are used to
update the parameters in the network. The gradients from
all the invalid pixels are not accumulated. With this pro-
cess, we can train both Bi-Net and GBi-net successfully,
as clearly confirmed by our experimental results. The
gradient-masked optimization is similar to the popular self-
paced learning [25], in which at the very beginning, the net-
work only involves easy samples (i.e. easy pixels) in train-
ing, while with the optimization proceeds, the network can
predict more accurate labels for hard pixels, and most pixels
will eventually participate in the learning process. As can
be observed in Fig. 6¢ in the experiments, a large portion of
pixels falls into the the current bins in our GBi-Net.

3.5. Network Optimization

Loss Function. Our loss function is a standard cross-
entropy loss that applies on the probability volume P and
a ground truth occupancy volume G. A set of the valid pix-
els §)q is first obtained by the valid mask map and then a
mean loss of all valid pixels is computed as follows:

D
Loss= Y Y -G(.@)lgPla) ()

qeQq j=1

Memory-efficient Training. MVS methods with multiple
stages [5, | ] typically average the losses from all the stages
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Figure 5. Point clouds examples of our method on DTU [2] and
Tanks and Temples [17].

and back-propagate the gradients together. Nevertheless,
this training strategy consumes significant memory because
of the gradients accumulation across different stages. In our
GBi-Net, we train our network in a more memory-efficient
way. Specifically, we compute the loss and back-propagate
the gradients immediately after each stage. The gradients
are not accumulated across stages, and thus the maximum
memory overhead does not exceed the stage with the largest
scale. To make the training with multiple stages more sta-
ble, we first set the maximum number of search stages as 2,
and gradually increase it as the epoch number increases.

4. Experiments
4.1. Datasets

The DTU dataset [2] is an indoor dataset with multi-
view images and camera poses. We Follow MVSNet [41]
for dividing training and testing set. There are 27097 train-
ing samples in total. The BlendedMVS dataset [43] is a
large-scale dataset with indoor and outdoor scenes. Fol-
lowing [22, 34, 45], we only use this dataset for training.
There are 16904 training samples in total. Tanks and
Temples [17] is a large-scale dataset with various outdoor
scenes. It contains Intermediate subset and Advanced sub-
set. The evaluation on this benchmark is conducted online
by submitting generated point clouds to the official website.

4.2. Implementation Details

Training Details. The proposed GBi-Net is trained on the
DTU dataset for DTU benchmarking and trained on Blend-
edMVS dataset for Tanks and Temples benchmarking, fol-
lowing [22, 34,45]. We use the high-resolution DTU data
provided by the open source code of MVSNet [41]. The
original image size is 1200 x 1600. We first crop the input
images into 1024 x 1280 following MVSNet [41]. Differ-
ent from MVSNet [41] that directly downscale the image
to 512 x 640, we propose an online random cropping data

Table 1. Point cloud evaluation results on DTU [2]. The lower is
better for Accuracy (Acc.), Completeness (Comp.), and Overall.
The best result is highlighted in bold and the second in italic bold.
* denotes ours without using random cropping data augmentation.

Method Acc.] Comp.] Overalll Mem. (MB)
Tola [31] 0.342 1.190 0.766 -
Gipuma [10] 0.283 0.873 0.578 -
MVSNet [41] 0.396  0.527 0.462 9384
R-MVSNet [42] 0.383 0452 0.417 -
CIDER [36] 0.417 0.437 0.427 -
Point-MVSNet [4] 0.342 0411 0.376 -
CasMVSNet [11] 0.325  0.385 0.355 4591
UCS-Net [5] 0.338  0.349 0.344 4057
CVP-MVSNet [39] 0.296  0.406 0.351 -
Vis-MVSNet [45] 0.369  0.361 0.365 4775
PatchmatchNet [33] 0.427 0.277 0.352 1629
AA-RMVSNet [34] 0376  0.339 0.357 11973
EPP-MVSNet [22]  0.413  0.296 0.355 -
Bi-Net (ours) 0.360  0.360 0.360 2108
GBi-Net* (ours) 0.327  0.268 0.298 2108
GBi-Net (ours) 0.315  0.262 0.289 2108

Table 2. Depth map evaluation results in terms of accuracy, and the
memory consumption on DTU [2]. The unit of these thresholds are
all in millimeters. The higher is better.

Method <0.1251 <0251 <051 <1t Mem. (MB)
MVSNet [41] 8539 1685 32.02 53.61 9384
CasMVSNet[11]  10.13  19.88 37.04 594 4591
Patchmatchnet [33]  8.113 1605 30.77 52.69 1629

GBi-Net (ours) 12.77 24.89 451 65.94 2108

augmentation. We randomly crop images of 512 x 640 from
images of 1024 x 1280. The motivation is that cropping
smaller images from larger images could help to learn bet-
ter features for larger image scales without increasing the
training overhead. When training on BlendedMVS dataset,
we use the original resolution of 576 x 768. For all the train-
ing, N = 5 input images are used, i.e. 1 reference image
and 4 source images. We adopt the robust training strategy
proposed in Patchmatchnet [33] for better learning of pixel-
wise weights. The maximum stage number is set to 8. For
every 2 stages, we share the same feature map scale and the
3D-CNN network parameters. The whole network is opti-
mized by Adam optimizer in Pytorch for 16 epochs with an
initial learning rate of 0.0001, which is down-scaled by a
factor of 2 after 10, 12, and 14 epochs. The total training
batch size is 4 on two NVIDIA RTX 3090 GPUs.

Testing Details. The model trained on DTU training set
is used for testing on DTU testing set. The input image
number NV is set to 5, each with a resolution of 1152 x 1600.
It takes 0.61 seconds for each testing sample. The model
trained on BlendedM VS dataset is used for testing on Tanks
and Temples dataset. The image sizes are set to 1024 X
1920 or 1024 x 2048 to make the images divisible by 64.
The input image number NN is set to 7. All the testings are
conducted on an NVIDIA RTX 3090 GPU. We then filter
and fuse depth maps of a scene into one point cloud, details



Table 3. Point cloud evaluation results on the Advanced and Intermediate subsets of Tanks and Temples dataset [

better. The Mean is the average score of all scenes.

]. Higher scores are

Advanced | Intermediate
Method Mean Aud. Bal. Cou. Mus. Pal. Tem. ‘ Mean Fam.  Fra. Hor. Lig. M60  Pan. Pla. Tra.
MVSNet [41] - - - - - - - 4348 5599 2855 2507 50.79 5396 50.86 47.90 34.69
Point-MVSNet [4] - - - - - - - 4827 61.79 41.15 3420 50.79 5197 50.85 52.38 43.06
UCSNet [5] - - - - - - - 5483 76.09 53.16 43.03 54.00 55.60 5149 5738 47.89
CasMVSNet [11] 31.12 19.81 3846 29.10 43.87 27.36 28.11 | 5642 7636 5845 46.20 55.53 56.11 54.02 58.17 46.56
PatchmatchNet [33] 32.31 23.69 37.73 30.04 41.80 2831 3229 | 53.15 6699 52.64 4324 5487 5287 49.54 5421 50.81
BP-MVSNet [28] 31.35 20.44 3587 29.63 43.33 2793 3091 | 57.60 7731 6090 47.89 5826 56.00 51.54 5847 5041
Vis-MVSNet [45] 33.78 20.79 38.77 3245 4420 28.73 37.70 | 60.03 7740 6023 47.07 63.44 6221 5728 60.54 52.07
AA-RMVSNet [34] 33.53 2096 40.15 32.05 46.01 29.28 3271 | 61.51 77.77 59.53 5153 64.02 64.05 5947 60.85 54.90
EPP-MVSNet [22]  35.72 21.28 39.74 3534 49.21 30.00 38.75 | 61.68 77.86 60.54 5296 62.33 61.69 6034 62.44 55.30
Bi-Net (ours) 32.03 2197 37.59 31.63 44.81 2792 2830 | 5341 7493 5437 4509 51.86 49.09 49.56 55.76 46.67
GBi-Net (ours) 3732 2977 4212 3630 47.69 31.11 3693 | 6142 79.77 67.69 5181 61.25 6037 5587 60.67 53.89

in the supplemental file. Fig. 4 and Fig. 5 are visualizations
of depth maps and point clouds of our method.

4.3. Benchmark Performance

Overall Evaluation on DTU Dataset. We evaluate the re-
sults on the DTU testing set by two types of metrics. The
first type of metric evaluates point clouds using official eval-
uation scripts of DTU [2]. It compares the distance between
ground-truth point clouds and the produced point clouds.
The state-of-the-art comparison results are shown in Ta-
ble 1. Our two models, GBi-Net and GBi-Net* both sig-
nificantly improved the best performance on the complete-
ness and the most important overall score (lower is better for
both metrics). Our best model improves the overall score
from 0.344 of UCSNet [5] to 0.289, while the memory is
reduced by 48%. Note that our Bi-Net, i.e. the proposed Bi-
nary Search Network can also achieve comparable results
to other dense search methods, clearly showing its effec-
tiveness. The second type of metric directly evaluates the
accuracy of the predicted depth maps. The depth ranges
of DTU dataset are all 510 millimeters. Thus, we compute
the depth accuracy, which counts the percentage of pixels
whose absolute depth errors are less than a threshold, and 4
thresholds are considered in the evaluation (i.e. 0.125, 0.25,
0.5, 1, with millimeters as a unit). Compared to the depth
range of 510 mm, these thresholds are extremely tight and
challenging. The results of this type of metric are shown in
Table 2. Our GBi-Net also obtains the best results on all the
thresholds. The quality of depth maps also explains our best
performance on point cloud evaluation.

Overall Evaluation on Tanks and Temples. We train the
proposed Bi-Net and GBi-Net on BlendedMVS [43], and
testing on Tanks and Temples dataset. We compare our
method to state-of-the-art methods. Table 3 shows results
on both the Advanced subset and the Intermediate subset.
Our GBi-Net achieves the best mean score of 37.32 (higher
is better) on Advanced subset compared to all the com-
petitors, and it performs the best on 4 out of the overall
6 scenes. Note that the Advanced subset contains differ-

ent large-scale outdoor scenes. The results can fully con-
firm the effectiveness of our method. Table 3 also shows
the evaluation results on the Intermediate subset. Our GBi-
Net obtains highly comparable results to the state-of-the-art.
Notably, with significantly less memory, our mean score is
only 0.09 lower than AA-RMVSNet [34] and 0.26 lower
than EPP-MVSNet [22]. Moreover, we also obtain state-of-
the-art scores on the Family and Francis scenes. Our binary
search model Bi-Net also achieves satisfactory performance
on both subsets. Our anonymous evaluation results on the
leaderboard [ 1] are named as Bi-Net and GBi-Net.

Memory Efficiency Comparison. = We compare the
memory overhead with several previous best-performing
learning-based MVS methods [5, | 1,33, 34,41, 44,45] on
the DTU testing set. The memory usage evaluation is con-
ducted with an image size of 1152 x 1600. We use py-
torch functions' to measure the peak allocated memory us-
age of all the methods. Fig. 1a shows a comparison of the
methods regarding memory usage and reconstruction error.
Our GBi-Net shows a great improvement in the reconstruc-
tion quality while using much less memory. More specifi-
cally, the memory footprint is reduced by 77.5% compared

to MVSNet [41], by 54.1% compared to CasMVSNet [ 1],
by 82.4% to AA-RMVSNet [34], and by 55.9% to Vis-
MVSNet [45]. Although the memory of our method is

slightly 479MB larger than Patchmatchnet [33], shown in
Table 1 and 2, our method significantly outperforms it in
both the point cloud (0.289 vs. 0.352) and depth map (12.77
vs. 8.113) evaluation by a large margin.

4.4. Model Analysis

Effect of Different Search Strategies. We first conduct a
direct comparison on different search strategies as shown
in Table 4, including dense linear search by regression
(i.e. Dense LS), dense coarse-to-fine search by regression
(i.e. Dense C2F), and our Bi-Net and GBi-Net search by
discrete classification. In this comparison, Bi-Net and GBi-
Net are trained without using the random cropping data aug-

'max_memory_allocated and reset_peak_memory_stats



Table 4. Performance comparison of different search strategies for
MVS on DTU [2]. LS indicates linear search, and C2F indicates
coarse-to-fine search. Both of them perform search via regression
in a dense manner.

Method Acc. ] Comp.| Overall| Mem (MB)/|
Dense LS (Regression) 0.396 0.527 0.462 9384
Dense C2F (Regression)  0.325 0.385 0.355 4591
Bi-Net (Classification) 0.360 0.360 0.360 2108
GBi-Net (Classification)  0.327 0.268 0.298 2108

mentation described in Sec. 4.2. As we can observe from
Table 4, our binary search networks achieve significantly
better results than Dense LS and Dense C2F on both the
depth performance and the memory footprint, fully confirm-
ing the effectiveness of the proposed methods.

Effect of Stage Number. We analyze the influence of the
number of search stages in our method. We test our GBi-
Net model on DTU dataset with a maximum stage number
of 9. We compare the reconstruction results of Stage 6, 7, 8,
9 with both the point cloud evaluation metrics and the depth
map evaluation metrics. As shown in Fig. 6a and Fig. 6b,
the reconstruction results improve quickly from Stage 6 to
8 and then convergence, which indicates that our model can
converge with a reasonably small stage number.
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Figure 6. (a) and (b) are evaluation results of different stage num-
bers. (c) and (d) are valid pixel percentage and <1mm percentage
of different stage numbers of models with different ETBs.

Table 5. Evaluation on the number of Error Tolerance Bin (ETB),
considering the performance of point cloud, depth map, and the
memory usage on DTU. 0, 1 and 2 indicate respectively adding 0,
1, 2 ETBs on both sides of the search bins.

#0of ETBs. Overall ] <0.1251 <0.251 <0.57 <11 Mem.(MB)

0 0.360 5.622 11.19 2191 39.14 2108
1 0.298 11.75 2292  41.62 60.99 2108
2 0.300 13.58 26.18 4578 63.92 2438

Effect of ETB Number. We evaluate our generalized bi-

Table 6. Point cloud evaluation and training memory overhead
comparison on DTU [2] for different gradient updating strategies.
GBi-Net w/GC and GBi-Net w/EGU indicate the proposed GBi-
Net with commonly used gradient accumulation and the proposed
efficient gradient updating, respectively.

Method Acc. Comp. Overall Memory (MB)
GBi-Netw/ GC  0.320 0277  0.299 12137
GBi-Netw/ EGU  0.326 0.269  0.298 5208

nary search with different numbers of error tolerance bins
on DTU. We train 3 networks with 0, 1 and 2 ETBs on
both sides, i.e. 2, 4 and 6 depth hypotheses respectively.
All of the experiments run with the same setting. The eval-
uation results and the memory consumption are shown in
Table 5. Fig. 6¢ and Fig. 6d also shows the valid pixel per-
centage and <1mm pixel percentage of different models in
different stages. From O ETB to 1 ETB, we can observe a
significant improvement in accuracy. This reveals the im-
portance of ETBs. Note that the memory consumption of
1 ETB remains the same level as 0 ETB because the GPU
memory is still dominated by the 2D image encoder. In Ta-
ble 5, 2 ETBs model is slightly better than 1 ETB model
on the depth map metric while consuming more memory. It
also does not show better performance on the point cloud
metric. Besides, in Fig. 6d, the valid and <Imm pixel per-
centages of 1 ETB and 2 ETBs models are very close. All
these results reveal that 1 ETB in our GBi-Net is already
sufficient to achieve a good balance between accuracy and
memory usage. More importantly, further increasing ETBs
may make the model more complex and harder to optimize.
Effect of memory-efficient Training. We train a
model without our Memory-efficient Training strategy (see
Sec. 3.5) on the DTU dataset. This model averages the gra-
dients accumulated from all the different stages and back-
propagates them, which is a widely performed gradient up-
dating scheme in existing MVS methods. As shown in
Table 6, these two comparison models obtain very simi-
lar results on the depth performance, while with the pro-
posed Memory-efficient Training, the memory consumption
is largely reduced by 57.1%.

5. Conclusion

In this paper, we first presented a binary search network
(Bi-Net) design for MVS to significantly reduce the mem-
ory footprint of 3D cost volumes. Based on this design,
we further proposed a generalized binary search network
(GBi-Net) containing three effective mechanisms, i.e. er-
ror tolerance bins, gradients masking, and efficient gradient
updating. The GBi-Net can greatly improve the accuracy
while maintaining the same memory usage as the Bi-Net.
Experiments on challenging datasets also showed state-of-
the-art depth prediction accuracy, and remarkable memory
efficiency of the proposed methods.



Supplementary material

In this supplementary, we introduce details about the
depth map fusion procedure and provide more qualitative
results regarding the ablation study and the overall perfor-
mance of the proposed model.

1. Depth map Fusion

As indicated in the main paper, after obtaining the fi-
nal depth maps of a scene, we filter and fuse depth maps
into one point cloud. The final depth maps are generated
from center points of the selected bins of the final stage.
We consider both the photometric and the geometric con-
sistency for depth map filtering. The geometric consis-
tency is similar to MVSNet [4 1] measuring the depth con-
sistency among multiple views. The photometric consis-
tency, however, is different. The probability volume P is
considered to construct the photometric consistency, fol-
lowing R-MVSNet [42]. As the probability volume is the
classification probabilities for the depth hypotheses, it mea-
sures the matching quality of these hypotheses. Since the
proposed method consists of K stages, we can obtain K
probability volumes, i.e. {Py|k = 1, ..., K'}. For each pixel
p, its photometric consistency from its K probabilities can
be calculated as follows:

K’

1
Ph(p) = 55 >_max{Py(j,p)lj = 1,... D}. (8)
k=1

Where Ph(p) is the photometric consistency of pixel p; D
is depth hypothesis number; The max operation obtains the
classification probability of a selected hypothesis; K is the
maximum stage considered in photometric consistency and
1 < K’ < K. Equation 8 actually computes an average
of the probabilities of the K stages. In practice, when the
maximum stage number K = 8, we set K’ = 6. It means
that we take the average probability of the first 6 stages as
the score of the photometric consistency. In our multi-stage
search pipeline, as the resolutions of probability volumes
are different, we upsample them to the maximum resolution
of stage K before the computation. After producing the
photometric consistency score for each pixel, the depths of
pixels are discarded if their consistency scores are below a
threshold.

Figure 7a in the supplementary shows the results of each
stage of a sample in the DTU dataset [2]. The depth map
in each stage consists of the center-point depth values of
selected bins. The quality of these depth maps can be im-
proved quickly, demonstrating a fast search convergence of
our method. The valid mask maps represent valid pixels in
each search stage. Note that these mask maps are combined
with the ground-truth mask maps from the dataset, and thus
the background pixels are not considered. The photometric

consistency (Photo. Consi.) map in stage k is computed
using Equation 8 by setting K/ = k. As shown in the
Figure 7a, the photometric consistency maps is an effec-
tive measurement of depth map quality. As shown in Fig-
ure 7b, the photometric consistency (Photo. Consi.) maps
from Stage 6 are used to filter the final depth maps produced
from Stage 8. The filtered depth maps are further refined by
geometric consistency map, and finally fused into one point
cloud. Figure 8 also shows qualitative results of a sample
from the Tanks and Temples [17] dataset. The background
of this image is far away from the foreground and is out of
the depth range, so the MVS methods predict outlier values
for the background pixels. Using the photometric consis-
tency maps, we can effectively filter out these outliers.

2. More Visualization Results

We show more qualitative results of the proposed model
in this section. Figure 9 and Figure 11 show several im-
ages and their corresponding depth maps in DTU dataset [2]
and Tanks and Temples dataset [ | 7] respectively. The depth
maps are filtered by photometric consistency. Figure 10 and
Figure 12 shows several point clouds of our method in DTU
dataset [2] and Tanks and Temples dataset [ 1 7] respectively.
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Figure 7. (a) The predicted depth maps, valid mask maps and photometric consistency (Photo. Consi.) maps in all the stages of a sample
in DTU [2]. (b) The input image, final predicted depth map of Stage 8, photometric consistency (Photo. Consi.) map of Stage 6, filtered
depth map by photometric consistency, ground truth depth map and fused point cloud.
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Figure 8. (a) The predicted depth maps and photometric consistency (Photo. Consi.) maps in all the stages of a sample in Tanks and
Temples [17]. (b) The input image, final predicted depth map of Stage 8, photometric consistency (Photo. Consi.) map of Stage 6 and
filtered depth map by photometric consistency. The background of this image is far away from the foreground and is out of the depth range
so MVS methods will predicted outlier values for background pixels. With the photometric consistency, we can effectively filter out these
outliers.



Figure 9. Examples of images and their corresponding depth maps in DTU dataset [2]. The depth maps are filtered by photometric
consistency.



Figure 10. Point clouds of our method on DTU dataset [2].



Figure 11. Examples of images and their corresponding depth maps in Tanks and Temples dataset [17]. The depth maps are filtered by
photometric consistency.

Figure 12. Point clouds of our method on Tanks and Temples dataset [17].
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